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Abstract

Entity Alignment (EA) aims to find equiva-
lent entities between two Knowledge Graphs
(KGs). While numerous neural EA models
have been devised, they are mainly learned us-
ing labelled data only. In this work, we argue
that different entities within one KG should
have compatible counterparts in the other KG
due to the potential dependencies among the
entities. Making compatible predictions thus
should be one of the goals of training an EA
model along with fitting the labelled data: this
aspect however is neglected in current meth-
ods. To power neural EA models with com-
patibility, we devise a training framework by
addressing three problems: (1) how to mea-
sure the compatibility of an EA model; (2)
how to inject the property of being compatible
into an EA model; (3) how to optimise param-
eters of the compatibility model. Extensive
experiments on widely-used datasets demon-
strate the advantages of integrating compatibil-
ity within EA models. In fact, state-of-the-art
neural EA models trained within our frame-
work using just 5% of the labelled data can
achieve comparable effectiveness with super-
vised training using 20% of the labelled data.

1 Introduction

Knowledge Graphs (KGs) have been widely used
across many Natural Language Processing applica-
tions (Ji et al., 2022). However, most KGs suffer
from incompleteness which limits their impact on
downstream applications. At the same time, dif-
ferent KGs often contain complementary knowl-
edge. This makes fusing complementary KGs a
promising solution for building a more compre-
hensive KG. Entity Alignment (EA), which iden-
tifies equivalent entities between two KGs, is es-
sential for KG fusion. Given the two examples
KGs shown in Fig. 1, EA aims to recognize two
entity mappings Donald Trump ≡ D.J. Trump and
Fred Trump ≡ Frederick Christ Trump.
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Figure 1: Example of EA predictions. While differ-
ent mappings have dependencies, the neural EA model
may make incompatible predictions.

Neural EA models are the current state-of-the-
art for entity alignment (Sun et al., 2020b; Zhao
et al., 2022; Zhang et al., 2020; Mao et al., 2021b)
These methods use pre-aligned mappings to learn
an EA model: it encodes entities into informative
embeddings and then, for each source entity, se-
lects the closest target entity in the vector space
as its counterpart. Though significant progress
has been achieved, the dependencies between en-
tities, which is the nature of graph data, is under-
explored. In an EA task, the counterparts of dif-
ferent entities within one KG should be compati-
ble w.r.t. the underlying dependencies. For exam-
ple, in Fig 1, the two mappings Donald Trump ≡
D.J. Trump and Ivanka Trump ≡ Melania Trump
should not co-exist at the same time (i.e. they
are incompatible) since "someone’s daughter and
wife cannot be the same person". On the contrary,
Donald Trump ≡ D.J. Trump and Fred Trump ≡
Frederick Christ Trump are compatible mappings
since equivalent entities’ father entities should also
be equivalent. Through an experimental study, we
verified that more effective EA models make more
compatible predictions (see Appendix A for more
details). Therefore, we argue that making compati-
ble predictions should be one of the objectives of
training a neural EA model, other than fitting the
labelled data. Unfortunately, compatibility has thus
far been neglected by the existing neural EA works.
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To fill this gap, we propose a training framework
EMEA , which exploits compatibility to improve
existing neural EA models. Few critical problems
make it challenging to drive a neural EA model
with compatibility: (1) A first problem is how to
measure the overall compatibility of all EA predic-
tions. We notice some reasoning rules defined in
traditional reasoning-based EA works (Suchanek
et al., 2011) can reflect the dependencies between
entities well. To inherit their merits, we devise a
compatibility model which can reuse them. In this
way, we contribute one mechanism of combining
reasoning-based and neural EA methods. (2) The
second problem is how to improve the compatibil-
ity of EA model. Compatibility is measured on
the counterparts (i.e. labels) sampled from the EA
model, but the sampling process is not differen-
tiable and thus the popular approach of regulariz-
ing an item in the loss is infeasible. We overcome
this problem with variational inference. (3) The
third problem lies in optimising the compatibility
model, which has interdependencies with the un-
known counterparts. We solve this problem with
a variational EM framework, which alternates up-
dating the neural EA model and the compatibility
model until convergence.

Our contributions can be summarized as:

• We investigate the compatibility issue of the neu-
ral EA model, which is critical but so far ne-
glected by the existing neural EA works.

• We propose one generic framework, which can
guide the training of neural EA models with com-
patibility apart from labelled data.

• Our framework bridges the gap between neural
and reasoning-based EA methods.

• We empirically show compatibility is very pow-
erful in improving neural EA models, especially
when the training data is limited 1.

2 Related Work

Neural EA. Entity Alignment is an important task
and has been widely studied. Neural EA (Sun et al.,
2020b; Zhao et al., 2022; Zhang et al., 2020) is
current mainstream direction which emerges with
the development of deep learning techniques. Var-
ious neural architectures have been introduced to
encode entities. Translation-based KG encoders

1Our code and used data are released at https://github.
com/uqbingliu/EMEA

were explored at the start (Chen et al., 2017; Zhu
et al., 2017). Though these models could capture
the structure information, they were not capable
of incorporating attribute information. Graph Con-
volutional Network (GCN)-based encoders later
became the mainstream method because they were
flexible in combining different types of informa-
tion and achieved higher performance (Wang et al.,
2018; Cao et al., 2019; Mao et al., 2020a; Sun
et al., 2020a; Mao et al., 2020b). Neural EA mod-
els rely on pre-aligned mappings for training (Liu
et al., 2021a). To improve EA effectiveness, semi-
supervised learning (self-training) was explored to
generate pseudo mappings to enrich the training
data (Sun et al., 2018; Mao et al., 2021b). Our
work aims to complement the existing EA works
regardless of their training methods.

Among previous neural EA methods, some were
done on KGs with rich attributes and pay attention
to exploiting extra information other than KG struc-
ture (Wu et al., 2019; Liu et al., 2021b, 2020; Mao
et al., 2021c; Qi et al., 2021). Alternatively, some
others only focused on designing novel models to
extract better features from the KG structure (Sun
et al., 2018, 2020a; Mao et al., 2020b; Liu et al.,
2022) since structure is the most basic information
and the proposed method would be more generic.
We evaluate our method by applying it to models
that only consider KG structure, which is a more
challenging setting.

Reasoning-based EA. In the reasoning-based
EA works (Saïs et al., 2007; Hogan et al., 2007;
Suchanek et al., 2011), some rules are defined
based on the dependencies between entities. With
the rules, label-level reasoning, i.e. inferring the
label of one entity according to other entities’
labels instead of its own features, was performed
to detect more potential mappings from the
pre-aligned ones. Functional relation (or attribute),
which can only have one object for a certain
subject, is critical for some reasoning rules (Hogan
et al., 2007). One rule example is: ∃r, e1, e

′
1 :

r(e1, r, e2), r(e′1, r, e
′
2), r is functional, e1 ≡

e′1 ⇒ e2 ≡ e′2. Saïs et al. proposed to combine
multiple properties instead of only using a
functional property since the combination of
several weak properties can also be functional.
Hogan et al. quantified functional as functionality
in a statistical way. Suchanek et al. inherited the
reasoning ideas from previous works and further
transformed the logic rules into a probabilistic
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form in their work named PARIS. Apart from
(Suchanek et al., 2011), few recent works (Sun
et al., 2020b; Zhao et al., 2022) verified PARIS can
achieve promising performance. In this work, we
reuse one reasoning rule defined in PARIS because
it is very effective and representative.
Combining Reasoning-based and Neural EA.
One previous work named PRASE (Qi et al.,
2021) also explored the combination of neural and
reasoning-based EA methods. It used a neural EA
model to measure the similarities between entities
and fed these similarities to the reasoning method
of PARIS. Our work provides a different combina-
tion mechanism of these two lines of methods.

3 Notations & Problem Definition

Suppose we have two KGs G and G′ with respective
entity sets E and E′. Each source entity e ∈ E
corresponds to one counterpart variable ye ∈ E′.
For simplicity, we denote the counterpart variables
of a setE of entities as yE collectively, while use ŷe
to represent an assignment of ye. The counterpart
variables yL of labelled entities L ⊂ E are already
known (i.e. ŷL). EA aims to solve the unknown
variables yU of the unlabelled entities U ⊂ E.
One neural EA model measures the similarity
sΘ(e, e′) between each source entity e ∈ E and
each target entity e′ ∈ E′, and infers its coun-
terpart via ŷe = arg maxe′∈E′ sΘ(e, e′). Here, Θ
represents the parameters of the EA model.

4 The EMEA Framework

Fig. 2 shows an overview of our EMEA framework.
Towards improving a given neural EA model, the
EMEA performs the following core operations:
(1) Normalises similarities between source entity e
and all target entities into distribution qΘ(ye);
(2) Measure the compatibility of all predictions by
modelling the joint probability pΦ(yL, yU ) (Φ is
paramters) of all (known or predicted) mappings;
(3) Derive more compatible predictions q∗(yU )
(than current EA model) using the compatibility
model to guide updating the EA model.
(4) To learn the parameters of the compatibility
model, we devise one optimisation mechanism
based on variational EM (Neal and Hinton, 1998),
which alternates the update of Θ and Φ. The neural
EA model Θ is initially trained in its original way.
In the M-step, we assume current Θ is correct, and
sample ŷU ∼ qΘ to update Φ. In the E-step, we
in turn assume current Φ is correct, and exploit
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Figure 2: Overview of the EMEA framework. The two
modules are trained iteratively with variational EM.

pΦ to derive more compatible distribution q∗(yu).
The neural EA model Θ is then updated using the
samples ŷU ∼ q∗ together with the labelled data.
This EM process repeats until Θ converges.

4.1 Normalising EA Similarity to Probability

Our method relies on the distribution form of
counterpart variable ye as will be seen. However,
the existing neural EA models only output sim-
ilarities. To solve this problem, we introduce a
separate model to normalise the similarities into
probabilities 2. Given entity e ∈ E and similar-
ities sΘ(e, e′), we use s(e, e′) = sΘ(e, e′) and
d(e, e′) = max (sΘ(e, :))−sΘ(e, e′) as features of
each target entity e′ ∈ E′. These features are com-
bined linearly and fed into a softmax function with
a temperature factor τ , as shown in Eq. 1 and 2.
The parameters Ω = {ω1, ω2, ω0, τ} are learned
by minimizing cross-entropy loss on the labelled
data, i.e. Eq. 3. With the obtained model, we can
transform sΘ(e, e′) into qΘ(ye).

f(e, e′) = ω1 · s(e, e′) + ω2 · d(e, e′) + ω0 (1)

PrΩ(ye = e′) =
exp(fΘ(e, e′)/τ)

sum (exp(fΘ(e, :)/τ))
(2)

OΩ = −
∑

e∈L
log PrΩ(ye = ŷe) (3)

4.2 Measuring Compatibility

It is not easy to establish the distribution
pΦ(yL, yU ) over a large number of variables yL, yU .
To address this problem, we model pΦ(yL, yU )
with graphical model (Wainwright and Jordan,

2Some simple normalisation method like MinMax scaler
were tried but led to poor results.
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2008; Bishop, 2006), which can be represented
by a product of local functions (i.e. local com-
patibility). Each local function only depends on a
factor subset 3 F ⊂ E, which is small and can be
checked easily.

4.2.1 Local Compatibility

One rule κ is defined on a set of labels yF accord-
ing to the potential dependencies among yF . The
assignments of variables yF meeting the rule κ
are thought compatible. Given a rule set K =
{κ1, κ2, ..., κ|K|} and a factor subset F to check,
we define the corresponding local compatibility (i.e.
local function) as Eq. 4, where gκ(·) is an indicator
function, Φ = {φκ∈K, φ0} are the weights of rules.

l(yF ) = exp

(∑

κ∈K
φκ · gκ(yF ) + φ0

)
(4)

Next, we use two concrete examples to explain
local compatibility. The PARIS rule is the primary
one used by our framework, while another is for
exploring the generality of different rule sets.

PARIS Rule (Suchanek et al., 2011) can be un-
derstood intuitively as: one mapping ye = e′ can
be inferred from (or supported by) the other map-
pings between their neighbours Ne and Ne′ .

Given the predicted mappings, we can build one
factor subset Fe at each entity e, which contains e
and its neighbouring entities Ne. Then, we check
whether PARIS rule can be satisfied by mappings
yFe . For example, in Fig. 3, we want to check
the PARIS compatibility at e2. In plot (a), for the
mapping y2 = e′2 we can find two mappings be-
tween the neighbours of e2 and e′2 – y1 = e′1 and
y3 = e′3. Also, they can provide supporting ev-
idence for y2 = e′2: if two entities have equiva-
lent father entities and equivalent friend entities,
they might also be equivalent. However, in plot (b),
y2 = e′4 cannot get this kind of supporting evidence
since there is no mapping between the neighbours
of e2 and e′4. Thus, the local PARIS compatibility
at e2 in plot (a) is higher than that in plot (b).

In this work, we reuse the probabilistic form of
PARIS rule (i.e. Eq.(13) in (Suchanek et al., 2011))
as our indicator function g. See Appendix B.5 for
its equation with our symbols.

3In graphical model, nodes in F form a factor graph.
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Figure 3: Example of PARIS compatibility. In (a),
y2 = e′2 can get supporting evidence from y1 = e′1
and y3 = e′3, while y2 = e′4 in (b) cannot. Thus, the
compatibility at e2 in (a) is higher than that in (b).

Rules for Avoiding Conflicts. We notice that
most neural EA works assume that there is no du-
plicate within one KG, and thus different entities
should have different counterparts. Otherwise, EA
model makes conflicting predictions for them.

To reduce alignment conflicts, at each entity e,
we build one factor subset Fe, which includes e
and its top-N nearest neighbours in the embed-
ding space of EA model. Basically, ye should
follow the prediction of neural EA model, i.e.
g1(yFe) = 1ye=arg maxe′∈E sΘ(e,e′); Further, ye
should be unique, i.e. g2(yFe) = 1ye 6=yn,∀n6=e.

4.2.2 Overall Compatibility

We further formulate the overall compatibility by
aggregating local compatibilities on all the factor
subsets F = {Fe, e ∈ E} as in Eq. 5, where z is
for normalisation.

pΦ(yL, yU ) =
1

z

∏

F∈F
l(yF ) (5)

z =
∑

yU∈E|U|

∏

F∈F
l(yF ) (6)

Note that z is intractable because it involves in-
tegral over yU ∈ E|U |, which is a very large
space. For such computation reason, we avoid
computing pΦ(yL, yU ), conditional probability like
pΦ(yU |yL), and marginal probability pΦ(yL) di-
rectly in the following sections.

Instead, we will exploit pΦ(ye|y−e) (−e refers
to E \ e), whose computation is actually much
easier. As in Eq. 7, computing pΦ(ye|y−e) only
involves a few factor subsets containing e. MBe

is the Markov Blanket of e, which only contains
entities cooccuring in any factor subset with e. See
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Appendix B.1 for the derivation process.

pΦ(ye|y−e) =

∏
F |e∈F l(yF )

∑
e′∈E′

∏
F |e∈F l(yF |ye = e′)

.
= pΦ(ye|yMBe)

(7)

4.3 Guiding Neural EA with Compatibility
Suppose we have pΦ(yL, yU ) which can measure
the compatibility well. We attempt to make the
distribution qΘ(yU ) close to pΦ(yU |yL), so that
variable yU sampled from qΘ are compatible. To
this end, we treat minimizing the KL-divergence
KL(qΘ(yU )||pΦ(yU |yL)) as one of the objectives
of optimising neural EA model Θ.

However, it is difficult to minimize the KL-
divergence directly. We solve this problem with
variational inference (Hogan, 2002). As shown
in Eq. 8 and 9, the KL-divergence can be writ-
ten as the difference between observed evidence
log pΦ(yL), which is irrelevant to Θ, and its Evi-
dence Lower Bound (ELBO), i.e. Eq. 9 (see Ap-
pendix B.2 for derivation process.). Minimizing
the KL divergence is equivalent to maximizing the
ELBO, which is computationally simpler.

KL(qΘ(yU )||pΦ(yU |yL)) = log pΦ(yL)− ELBO
(8)

ELBO =EqΘ(yU ) log pΦ(yU , yL)

− EqΘ(yU ) log qΘ(yU )
(9)

Because yi are independent in neural EA model,
we have q(yU ) =

∏
i∈U q(yi). In addition, we use

pseudolikelihood (Besag, 1975) to approximate the
joint probability pΦ(yU , yL) for simpler compu-
tation, as in Eq. 10. Then, ELBO can be approxi-
mated with Eq. 11 (see Appendix B.3 for derivation
details), where −u denotes U \ u.

pΦ(yU , yL) = pΦ(yL)
∏

u∈U
pΦ(yu|y1:u−1, yL)

≈ pΦ(yL)
∏

u∈U
pΦ(yu|y−u)

(10)

OΘ =
∑

u∈U
EqΘ(yu)

[
EqΘ(y−u)[log pΦ(yu|y−u)]

− log qΘ(yu)
]

(11)

Now, our goal becomes to maximize OΘ w.r.t.
Θ. Our solution is to derive a local optima q∗(yU )
of qΘ(yU ) with coordinate ascent, and then exploit
ŷU ∼ q∗(yU ) to update Θ. In particular, we initial-
ize q∗(yU ) with current qΘ(yU ) firstly. Then, we
update q∗(yu) for each u ∈ E in turn iteratively.
Everytime we only update a single (or a block of)
q∗(yu) with Eq. 12, which can be derived from
dQΘ

dqΘ(yu) = 0 (see Appendix B.4 for derivation de-
tails), while keeping the other q∗(y−u) fixed. This
process ends until q∗(yU ) converges.

q∗(yu) ∝ exp
(
EqΘ(yMBu ) log pΦ(yu|yMBu)

)

(12)
Afterwards, we sample ŷu ∼ q∗(yu) for u ∈ U ,
and join ŷU with the labelled data ŷL to form the
training data. Eventually, we update Θ with the
original training method of neural EA model.

4.4 Optimisation with Variational EM
Though we have derived a way of guiding the train-
ing of Θ with pΦ, it remains a problem to optimise
the weights of rules Φ. Typically, we learn Φ by
maximizing the log-likelihood of observed data
log pΦ(yL). However, as shown in log pΦ(yL) =
log
∑

yU
pΦ(yL, yU ), log pΦ(yL) relies on the la-

tent variables yU . We apply a variational EM frame-
work (Neal and Hinton, 1998; Qu and Tang, 2019)
to update Θ and Φ by turns iteratively. In E-step,
we compute the expectation of log pΦ(yL, yU ), i.e.
EpΦ(yU |yL) log pΦ(yL, yU ). Here, we approximate
pΦ(yU |yL) with qΘ(yU ) and use the pseudolikeli-
hood to approximate pΦ(yL, yU ); Accordingly, we
obtain the objective Eq. 13 for optimization. In
M-step, we update Φ to maximize OΦ.

OΦ = EqΘ(yU ) log pΦ(yL, yU )

≈ EqΘ(yU )

∑

e∈E
log pΦ(ye|y−e) (13)

4.5 Implementation
We take a few measures to simplify the computa-
tion. (1) In Eq. 12 and Eq. 13, it is costly to esti-
mate distribution q∗(yu) and pΦ(yu) because yu’s
assignment space E′ can be very large. Instead,
we only estimate q∗(yu) for the top K most likely
candidates according to current qΘ(yu). (2) Both
Eq. 11 and Eq. 12 involve sampling from qΘ(yu)
for estimating the expectation. We only sample
one yu as in ŷu = arg maxe′∈E qΘ(yu = e′) for
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Algorithm 1: The EMEA Framework

1 Train neural EA model Θ using ŷL ;
2 Normalise EA similarity to get qΘ(yu) ;
3 for iterations do

// M-step
4 Update Φ by maximizing Eq. 13 ;

// E-step
5 Derive q∗(yU ) with Eq. 12 ;
6 Sample ŷu ∼ q∗(yu) for u ∈ U ;
7 Update EA model Θ with data ŷU ∪ ŷL ;
8 Normalise EA similarity to get qΘ(yu) ;

each u ∈ U . (3) When computing q∗(yU ) with
coordinate ascent, we treat U as a single block and
update q∗(yU ) for once.

We describe the whole process of EMEA in Alg. 1.

5 Experimental Settings

5.1 Datasets and Partitions

We choose five datasets widely used in previous
EA research. Each dataset contains two KGs and a
set of pre-aligned entity mappings. Three datasets
are from DBP15K (Sun et al., 2017), which con-
tains three cross-lingual KGs extracted from DB-
pedia: French-English (fr_en), Chinese-English
(zh_en), and Japanese-English (ja_en). Each KG
contains around 20K entities, among which 15K
are pre-aligned. The other two datasets are from
DWY100K (Sun et al., 2018), which consists of
two mono-lingual datasets: dbp_yg extracted from
DBpedia and Yago, and dbp_wd extracted from
DBpedia and Wikidata. Each KG contains 100K
entities which are all pre-aligned. Our experiment
settings only consider the structural information of
KGs and thus will not be affected by the problems
of attributes like name bias in these datasets (Zhao
et al., 2022; Liu et al., 2020).

Most existing EA works use 30% of the pre-
aligned mappings as training data, which how-
ever was pointed out unrealistic in practice (Zhang
et al., 2020). We explore the power of compatibil-
ity under different amounts of labelled data – 1%,
5%, 10%, 20%, and 30% of pre-aligned mappings,
which are sampled randomly. Another 100 map-
pings are used as the validation set, while all the
remaining mappings form the test set.

5.2 Metrics

EA methods typically output a ranked list of can-
didate counterparts for each entity. Therefore, we
choose metrics for measuring the quality of ranking.
We use Hit@1 (i.e., accuracy), Mean Reciprocal
Rank (MRR) and Mean Rank (MR) to reflect the
model performance at suggesting a single entity,
a handful of entities, and many entities. Higher
Hit@1, higher MRR, and lower MR indicate better
performance. Statistical significance is performed
using paired two-tailed t-test.

5.3 Comparable Methods

Baselines. We select baselines with the following
considerations: (1) To examine the effect of com-
patibility, we compare EMEA with the original
neural EA model. (2) We compare EMEA with
PARIS, which performs reasoning with the rule, to
gain insights on different ways of using the rules.
(3) To compare different combination mechanisms
of neural and reasoning-based EA methods, we
add PRASE (Qi et al., 2021), which exploits neural
models to improve PARIS (Suchanek et al., 2011),
as one baseline.
Neural EA models. For our choice of neural mod-
els, we select RREA (Mao et al., 2020b), which is
a SOTA neural EA model under both supervised
(denoted as RREA (sup)) and semi-supervised
(denoted as RREA (semi)) modes. In addition,
we also choose Dual-AMN (Mao et al., 2021b),
AliNet (Sun et al., 2020a) and IPTransE (Zhu et al.,
2017) to verify the generality of EMEA across dif-
ferent neural models. These three neural models
vary in performance (see Appendix C.1) and KG
encoders.

Note direct comparison between EMEA and the
existing neural EA methods is not fair. The EMEA
is a training framework designed to enhance the
existing neural EA models. Its effectiveness is
reflected by the performance difference of neural
EA models before and after being enhanced with
EMEA . The details about reproducibility (e.g. hy-
perparameter settings, etc.) can be found in Ap-
pendix C.

6 Results

Comparison with Baselines In Table 1, we re-
port the overall performance of EMEA with super-
vised RREA and the baselines. Note the results
of PRASE and PARIS are much lower than those
in the literature because we only use the structure
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Table 1: Overall performance of EMEA and PRASE in combining RREA (sup) and PARIS rule across different
percentages (1%-30%) of annotations. Bold indicates best for the specific annotation percentage; all differences
between RREA and other baselines are statistically significant (p < 0.01); the hyphen ’-’ means not applicable
because the corresponding methods do not formulate EA as a ranking problem. The results of PRASE and PARIS
have big differences from those in the literature because of different experimental settings.

Method zh_en fr_en ja_en dbp_wd dbp_yg
Hit@1 MRR MR Hit@1 MRR MR Hit@1 MRR MR Hit@1 MRR MR Hit@1 MRR MR

1%

PARIS 0.01 - - 0.016 - - 0.002 - - 0.19 - - 0.451 - -
RREA (sup) 0.140 0.215 652.3 0.126 0.208 366.5 0.138 0.203 684.0 0.278 0.368 317.9 0.509 0.602 64.4

PRASE 0.241 - - 0.227 - - 0.163 - - 0.517 - - 0.667 - -
EMEA 0.517 0.591 116.4 0.480 0.565 72.1 0.411 0.488 181.3 0.581 0.657 72.8 0.773 0.828 17.6

5%

PARIS 0.221 - - 0.281 - - 0.226 - - 0.537 - - 0.608 - -
RREA (sup) 0.413 0.518 118.8 0.424 0.539 65.3 0.391 0.496 113.9 0.522 0.616 78.4 0.737 0.803 21.0

PRASE 0.461 - - 0.514 - - 0.432 - - 0.531 - - 0.689 - -
EMEA 0.665 0.738 36.8 0.677 0.757 18.0 0.630 0.710 35.9 0.708 0.778 21.5 0.811 0.861 12.7

10%

PARIS 0.414 - - 0.473 - - 0.395 - - 0.623 - - 0.64 - -
RREA (sup) 0.542 0.641 56.9 0.571 0.675 31.3 0.528 0.631 52.6 0.622 0.709 36.2 0.782 0.841 14.0

PRASE 0.522 - - 0.575 - - 0.508 - - 0.679 - - 0.701 - -
EMEA 0.706 0.777 27.4 0.727 0.802 9.7 0.688 0.764 24.5 0.755 0.820 13.4 0.828 0.877 9.2

20%

PARIS 0.532 - - 0.584 - - 0.511 - - 0.69 - - 0.676 - -
RREA (sup) 0.657 0.745 26.5 0.686 0.775 14.7 0.649 0.740 25.3 0.711 0.787 20.6 0.824 0.875 12.0

PRASE 0.593 - - 0.622 - - 0.580 - - 0.726 - - 0.719 - -
EMEA 0.748 0.815 16.6 0.773 0.841 6.8 0.736 0.807 16.3 0.808 0.866 6.6 0.846 0.891 10.4

30%

PARIS 0.589 - - 0.628 - - 0.577 - - 0.739 - - 0.696 - -
RREA (sup) 0.720 0.797 16.7 0.742 0.821 9.2 0.717 0.797 14.9 0.758 0.827 14.0 0.849 0.894 6.9

PRASE 0.623 - - 0.649 - - 0.613 - - 0.754 - - 0.735 - -
EMEA 0.782 0.842 12.6 0.801 0.863 5.9 0.771 0.837 12.6 0.836 0.889 7.3 0.862 0.904 5.8

information of KGs for all the methods. We have
the following findings:

(1) By comparing EMEA with RREA, we can
see that EMEA can significantly improve RREA
across all the datasets and percentages of labelled
data, especially when the amount of labelled data
is small. For instance, EMEA using 5% of labelled
data can achieve comparable effectiveness with
supervised RREA using 20% of labelled data.

(2) EMEA always outperforms PARIS with a
big margin. Thus, EMEA provides a better way of
using the same reasoning rule. PARIS can only do
label-level inference based on the reasoning rule,
while EMEA can combine the power of neural EA
model and reasoning rule.

(3) Some existing works show PARIS have very
competitive performance with the SOTA neural EA
models when the attribute information can be used.
However, we find its performance is actually much
worse than the SOTA neural model RREA when
only the KG structure is available. This is a com-
plementary finding about PARIS to the literature.

(4) Regarding the combination of RREA and
PARIS, EMEA outperforms PRASE across all
datasets and annotation costs. Though PRASE
can always improve PARIS, there are some cases
where it is worse than only using RREA. The po-
tential reason is PARIS becomes the bottleneck of
PRASE. On the contrary, EMEA is more robust –
it consistently performs better than separately run-
ning RREA or PARIS.

To conclude, EMEA can significantly improve

Table 2: Overall performance of EMEA in combining
RREA (semi) with PARIS rule across different percent-
ages (1%-30%) of annotations. Bold indicates best for
the specific annotation percentage; all differences be-
tween RREA and EMEA are statistically significant
(p < 0.05).

Method
zh_en fr_en ja_en

Hit@1 MRR Hit@1 MRR Hit@1 MRR

1%
RREA (semi) 0.309 0.405 0.277 0.382 0.263 0.348

EMEA 0.471 0.541 0.435 0.518 0.386 0.457

5%
RREA (semi) 0.590 0.683 0.610 0.708 0.550 0.647

EMEA 0.680 0.751 0.703 0.778 0.641 0.716

10%
RREA (semi) 0.677 0.757 0.710 0.791 0.658 0.743

EMEA 0.731 0.796 0.762 0.828 0.711 0.781

20%
RREA (semi) 0.756 0.821 0.782 0.848 0.743 0.814

EMEA 0.782 0.840 0.805 0.865 0.765 0.829

30%
RREA (semi) 0.794 0.851 0.819 0.876 0.790 0.851

EMEA 0.808 0.862 0.833 0.886 0.801 0.859

the SOTA EA model RREA by introducing com-
patibility. It also provides an effective combina-
tion mechanism of neural and reasoning-based EA
methods, which outperforms the existing methods.

The further explorations of EMEA are done on
zh_en dataset if not specially clarified.

Generality across Neural EA Models To ex-
plore the generality of EMEA across neural EA
models, we apply EMEA to another three models:
Dual-AMN (Mao et al., 2021b), AliNet (Sun et al.,
2020a) and IPTransE (Zhu et al., 2017) other than
RREA. We find that: (1) EMEA can bring improve-
ments to the three EA models as shown in Fig.4
(a), (b) and (c). Also, no matter whether the neural
model is better or worse than PARIS, their combi-
nation using EMEA is more effective than using
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Figure 4: Generality of EMEA on neural EA models.
Plots (a), (b) and (c) show EMEA can boost different
EA models consistently; Plot (d) shows better EA mod-
els lead to a better final performance.
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Figure 5: Convergence process of EMEA trained with
1% and 5% annotations. Compatibility model can
boost the neural EA model, no matter whether it can
derive more accurate supervision signals or not.

them separately. (2) Fig.4 (d) shows more effective
neural models lead to more accurate final results.

Generality across Training Modes To verify
the generality of EMEA across training modes,
we also attempt to apply EMEA to improve semi-
supervised RREA. As reported in Table 2, we find
that EMEA can also boost semi-supervised RREA
consistently across different datasets and amounts
of training data. By comparing EMEA in Table 1
and Table 2, we find that semi-supervised RREA
usually leads to better final EA effectiveness than
supervised RREA after the boost of EMEA . Never-
theless, when the training data is extremely small,
i.e. 1%, semi-supervised RREA get worse final
EA effectiveness than the supervised one. This
might be caused by the low-quality seeds itera-
tively added into the training data during the semi-
supervised training. We treat the exploration of this
phenomenon as future work.

7 Further Analysis

Further analysis of EMEA is done on dataset zh_en.
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Figure 6: Effect of different rule sets on EMEA. PARIS
rule is stronger than AvoidConf.

Impact of Compatibility on Training Process
In each iteration of the training procedure, the com-
patibility model derives more compatible predic-
tions to assist in updating the neural EA model in
the next iteration. To gain insights into their inter-
action, we examine the EA effectiveness of the two
components in the training process. Fig. 5 shows
this processes running on datasets with 1% and 5%
annotated data. Step 0 is the original neural EA
model. We make the following observations: (1)
Overall, the effectiveness of the two components
jointly increases across the training procedure. This
phenomenon indicates that they indeed both ben-
efit from each other. (2) The compatibility model
performs better than the neural model in the early
stage while worse later. Thus, we can conclude that
the compatibility model can always boost the neu-
ral EA model, regardless of whether it can derive
more accurate supervision signals.

Effect of Rule Sets on EMEA To explore the
effect of different rule sets on EMEA , we deploy
another rule set used for avoiding conflicts (denoted
as AvoidConf here) in EMEA . As shown in Fig. 6,
AvoidConf can improve supervised RREA consis-
tently, as well as semi-supervised RREA when the
training data is of a small amount. However, it can
only bring very slight (or even no) improvement
to the semi-supervised RREA when the training
data is > 10%. Also, its performance is always
worse than PARIS rule. Therefore, PARIS rule is
stronger in indicating the compatibility of EA than
AvoidConf. This finding is intuitively reasonable
because the PARIS rule can be used to infer new
mappings, while AvoidConf can only indicate the
potential errors.

Sensitivity to Hyper-parameters We also anal-
yse the sensitivity of parameter K (discussed in
Sec. 4.5) in EMEA under three annotation settings:
1%, 5% and 10%. Fig. 7 shows the performance
of EMEA, measured with Hit@1 and MR, with
respect to different K values. We find that: (1) the
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Figure 7: Sensitivity of EMEA to the parameterK w.r.t.
both shallow and deep metrics. The EMEA is not sen-
sitive when K is not too small; The poorer EA model
(trained with fewer data) is relatively more sensitive; A
small K out of the sensitive range is suggested for the
trade-off between computation cost and EA effective-
ness.

performance of EMEA fluctuates when K < 10
but is relatively stable when K > 10. (2) EMEA
is more sensitive to K in settings with fewer an-
notations. The reason is that a well-trained neural
model can rank most true correspondences in the
top positions and thus is less affected by the cut-off.
(3) Large K values (e.g., 50) only make EMEA
slightly more effective (note lower MR is better).
Since larger K values require more computation, a
small value outside the sensitive range is suggested,
like 10 in Fig. 7.

8 Conclusion

Entity Alignment is a primary step of fusing differ-
ent Knowledge Graphs. Many neural EA models
have been explored and achieved SOTA perfor-
mance. Though, one nature of graph data – the
dependencies between entities – is under-explored.
In this work, we raise attention to one neglected as-
pect of EA task – different entities have compatible
counterparts w.r.t. their underlying dependencies.
We argue that making self-consistent predictions
should be one objective of training EA model other
than fitting the labelled data. Towards this goal,
we devise one training framework named EMEA ,
which can intervene in the update of EA model to
improve its compatibility. In EMEA , we address
three key problems: (1) measure compatibility with
a graphical model which can aggregate local com-
patibilities; (2) guide the training of EA models
with the compatibility measure via variational in-
ference; (3) optimize the compatibility module with
a variational EM framework. We empirically show
that compatibility is very powerful in driving the
training of neural EA models. The EMEA comple-
ments the existing neural EA works.

Limitations

Our EMEA framework has a higher computation
cost than the original neural EA model. It needs
to compute the compatibility module and continue
updating the neural EA model in the iterations. As
a result, more time is taken to train the neural EA
model. In addition, we only measure compatibility
in one direction (i.e. selecting one KG as the source
KG and measuring compatibility on the target KG).
Considering both directions might be able to further
increase the EA performance.

In future, we plan to explore dual compatibility
modules. Also, we will study how to combine
compatibility and self-training.
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A Preliminary Study

Our preliminary study examines the compatibilities
of neural EA models with different performances.
We choose RREA (Mao et al., 2020b) as the neural
EA model and train it with different amounts of
labelled data. As for the compatibility, we measure
it with PARIS rule and the number of conflicting
predictions (see Sec. 4.2). The PARIS compatibil-
ity is shown in Fig. 8, where the violins represent
the distributions of compatibility scores while the
triangles represent the average compatibilities. We
can observe that RREA always makes numerous
incompatible predictions, especially when trained
with few annotated entities, while most oracle align-
ments are compatible. The curve strongly suggests
that a better model makes more compatible predic-
tions. Similar findings can be observed in Fig. 8
(b), where fewer conflicts mean better compatibil-
ity. These observations motivate us to improve
the neural EA methods by guiding them to better
compatibility.

B Derivation Processes

B.1 Simplification of pΦ(ye|y−e)
The derivation process of Eq. 7 is shown in Eq. 14.
MBe is the Markov Blanket of e and only contains
entities cooccuring in any factor subset with e. We
only need to sample yMBe to compute pΦ(ye|y−e).

B.2 Evidence Lower Bound

The relationship between KL divergence and
ELBO shown in Eq. 8 and Eq. 9 can be derived
through Eq. 15.
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Figure 8: PARIS compatibility and proportions of con-
flicting predictions of RREA trained with different pro-
portions of annotated data. Both plots highlight the cor-
relation between compatibility and performance in EA
models.

B.3 Derivation of QΘ

The ELBO can be written as in Eq. 16. In the last
line, the first item is irrelevant to Θ. Thus, we drop
it and keep the second item as QΘ.

B.4 Derivation of q∗

We write QΘ in the form of Eq. 17, and then dif-
ferentiate QΘ regarding qΘ(yu) as in Eq. 18. By
letting dQΘ

dqΘ(yu) = 0, we can get Eq. 12. Note that
the obtained q∗ in Eq. 12 needs to be normalized
into probabilities since it is proportional to (i.e. ∝)
the right size, which is not normalized.

B.5 Indicator Function of PARIS Rule

With symbols used in this work, the probabilistic
form of PARIS rule, i.e. our indicator function,
can be written as Eq. 19, where r(e, n) denote any
triple with e as head entity, r′(ye, n′) denote any
triple with ye as head entity. In addition, Pr(r′ ⊆ r)
represents the likelihood that r′ is a subrelation
of r (Pr(r ⊆ r′) is analogous), while fun−1(r)
denotes the reverse functionality of relation r. See

(Suchanek et al., 2011) for more details about them.

g(yFe) = Pr(e ≡ ye) = 1−
∏

r(e,n),r′(ye,n′)(
1− Pr(r′ ⊆ r)× fun−1(r)× qΘ(yn = n′)

)
×

(
1− Pr(r ⊆ r′)× fun−1(r′)× qΘ(yn = n′)

)

(19)

C Experiments

C.1 Performance of Neural EA Models
Table 3 summarizes the performance of SOTA neu-
ral EA models. The results of IPTransE, GCN-
Align, MUGNN, RSN, AliNet are reported in (Sun
et al., 2020a) while others are reported in their orig-
inal papers. The results of RREA trained with 30%
of training data in Table 1 are reproduced by us and
slightly different from the results reported in Ta-
ble 3 because of different random settings. Similar
situation can be found in Table 2.

C.2 Details for Reproducibility
Hyper-parameters We search the number of
candidate counterparts K from [5,10,20,50], and
set it as 10 for the trade-off of effectiveness and ef-
ficiency as discussed in Sec. 7. The number of near-
est neighbours N in the AvoidConf rule is searched
from [5,10,15,20] and set as 5 for similar consider-
ation as K;

Implementation of Baselines and Neural EA
Models The source codes of PARIS 4 and
PRASE 5 are used to produce their results. As for
the neural EA models, RREA 6 and Dual-AMN 7

are implemented based on their source codes, while
AliNet and IPTransE are implemented with Ope-
nEA. 8. We use the default settings of their hyper-
parameters in these source codes.

Configuration of Running Device We run the
experiments on one GPU server, which is config-
ured with an Intel(R) Xeon(R) Gold 6128 3.40GHz
CPU, 128GB memory, 3 NVIDIA GeForce GTX
2080Ti GPU and Ubuntu 20.04 OS.

C.3 Running Time
We report our running time on datasets zh_en (15K)
and dbp_wd (100K) in Table 4 and 5 as refer-

4https://github.com/dig-team/PARIS
5https://github.com/qizhyuan/PRASE-Python
6https://github.com/MaoXinn/RREA
7https://github.com/MaoXinn/Dual-AMN
8https://github.com/nju-websoft/OpenEA
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pΦ(ye|y−e) =
pΦ(ye, y−e)
pΦ(y−e)

=
pΦ(ye, y−e)∑

e′∈E′ pΦ(ye = e′, y−e)

=

∏
F |e∈F Φ(yF )×∏F |e/∈F Φ(yF )

∑
e′∈E′

∏
F |e∈F Φ(yF |ye = e′)×∏F |e∈F Φ(yF )

=

∏
F |e∈F Φ(yF )

∑
e′∈E′

∏
F |e∈F Φ(yF |ye = e′)

.
= pΦ(ye|yMBe)

(14)

KL(qΘ(yU )||pΦ(yU |yL)) = EqΘ(yU ) log
qΘ(yU )

pΦ(yU |yL)

= EqΘ(yU ) log qΘ(yU )− EqΘ(yU ) log pΦ(yU |yL)

= EqΘ(yU ) log qΘ(yU )− EqΘ(yU ) log pΦ(yU , yL) + EqΘ(yU ) log pΦ(yL)

= −
(
EqΘ(yU ) log pΦ(yU , yL)− EqΘ(yU ) log qΘ(yU )

)
+ log pΦ(yL)

(15)

ELBO = EqΘ(yU ) log pΦ(yU , yL)− EqΘ(yU ) log qΘ(yU )

≈ EqΘ(yU ) log(pΦ(yL)
∏

u∈U
pΦ(yu|y−u, yL))− EqΘ(yU ) log

∏

u∈U
qΘ(yu)

= EqΘ(yU ) log pΦ(yL) + EqΘ(yU )

∑

i∈U
log pΦ(yu|y−u, yL)− EqΘ(yU )

∑

u∈U
log qΘ(yu)

= log pΦ(yL) +
∑

u∈U

(
EqΘ(yu)[EqΘ(y−u) log pΦ(yu|y−u, yL)]− EqΘ(yu) log qΘ(yu)

)

= log pΦ(yL) +
∑

u∈U

(
EqΘ(yu)[EqΘ(y−u) log pΦ(yu|y−u, yL)− log qΘ(yu)]

)

(16)

QΘ =
∑

u∈U

∑

yu

qΘ(yu)
(
EqΘ(y−u) log pΦ(yu|y−u, yL)− log qΘ(yu)

)
(17)

dQΘ

dqΘ(yu)
=
(
EqΘ(y−u) log pΦ(yu|y−u, yL)− log qΘ(yu)

)
+ qΘ(yu)(− 1

qΘ(yu)
)

= EqΘ(y−u) log pΦ(yu|y−u, yL)− log qΘ(yu)− 1

(18)

Table 3: Performance of neural EA baselines. Percentage of labelled data: 30%; sup: supervised; semi: semi-
supervised.

Method
zh_en ja_en fr_en

Hit@1 MRR Hit@1 MRR Hit@1 MRR
IPTransE (Zhu et al., 2017) 0.406 0.516 0.367 0.474 0.333 0.451

GCN-Align (Wang et al., 2018) 0.413 0.549 0.399 0.546 0.373 0.532
MuGNN (Cao et al., 2019) 0.494 0.611 0.501 0.621 0.495 0.621

RSN (Guo et al., 2019) 0.508 0.591 0.507 0.590 0.516 0.605
AliNet (Sun et al., 2020a) 0.539 0.628 0.549 0.645 0.552 0.657

MRAEA (sup) (Mao et al., 2020a) 0.638 0.736 0.646 0.735 0.666 0.765
PSR (sup) (Mao et al., 2021a) 0.702 0.781 0.698 0.782 0.731 0.807

RREA (sup) (Mao et al., 2020b) 0.715 0.794 0.713 0.793 0.739 0.816
Dual-AMN (sup) (Mao et al., 2021b) 0.731 0.799 0.726 0.799 0.756 0.827

BootEA (semi) (Sun et al., 2018) 0.629 0.703 0.622 0.701 0.653 0.731
MRAEA (semi) (Mao et al., 2020a) 0.757 0.827 0.758 0.826 0.781 0.849

PSR (semi) (Mao et al., 2021a) 0.802 0.851 0.803 0.852 0.828 0.874
RREA (semi) (Mao et al., 2020b) 0.801 0.857 0.802 0.858 0.827 0.881

Dual-AMN (semi) (Mao et al., 2021b) 0.808 0.857 0.801 0.855 0.840 0.888
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Table 4: Time consumption (seconds) of running
EMEA on zh_en.

Anno. Initialization Neural Module Joint Distr. Module
1 % 254.1 108.1±1.2 88.5±1.1
5 % 249.7 108.0±2.5 98.2±15.5
10 % 249.2 108.6±0.9 86.0±0.3
20 % 252.8 109.6±1.6 86.7±0.6
30 % 252.4 111.1±2.0 90.2±2.7

Table 5: Time consumption (minutes) of running
EMEA on dbp_wd.

Anno. Initialization Neural Module Joint Distr. Module
1 % 169.1 36.8±0.6 19.1±1.4
5 % 172.2 33.0±6.6 15.9±3.9
10 % 146.3 43.5±3.2 22.8±2.4
20 % 190.0 45.3±3.3 29.2±2.0
30 % 183.9 49.0±4.4 30.2±6.9

ence. The experiments on other datasets take com-
parable running time as them w.r.t. correspond-
ing dataset size. Note that these experiments are
run on a shared server and cannot be used to mea-
sure the precise running efficiency. In each table,
we count the time consumption of initializing EA
model, updating EA model and computing the self-
consistency module in each EM iteration. The ex-
periments on dbp_wd (100K) are slow because the
source code of RREA can only run on CPU while
raising Out-of-Memory exception on GPU.

504


