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Abstract

Pre-trained seq2seq models excel at graph se-
mantic parsing with rich annotated data, but
generalize worse to out-of-distribution (OOD)
and long-tail examples. In comparison, sym-
bolic parsers under-perform on population-
level metrics, but exhibit unique strength in
OOD and tail generalization. In this work,
we study compositionality-aware approach to
neural-symbolic inference informed by model
confidence, performing fine-grained neural-
symbolic reasoning at subgraph level (i.e.,
nodes and edges) and precisely targeting sub-
graph components with high uncertainty in the
neural parser. As a result, the method combines
the distinct strength of the neural and symbolic
approaches in capturing different aspects of the
graph prediction, leading to well-rounded gen-
eralization performance both across domains
and in the tail. We empirically investigate the
approach in the English Resource Grammar
(ERG) parsing problem on a diverse suite of
standard in-domain and seven OOD corpora.
Our approach leads to 35.26% and 35.60% er-
ror reduction in aggregated SMATCH score over
neural and symbolic approaches respectively,
and 14% absolute accuracy gain in key tail lin-
guistic categories over the neural model, out-
performing prior state-of-art methods that do
not account for compositionality or uncertainty.

1 Introduction

A structured account of compositional meaning has
become a longstanding goal for Natural Language
Processing. To this end, a number of efforts have
focused on encoding semantic relationships and at-
tributes into graph-based meaning representations
(MRs, see Appendix A for details). In particular,
graph semantic parsing has been an important task
in almost every Semantic Evaluation (SemEval)
exercise since 2014. In recent years, we have wit-
nessed the burgeoning of applying neural networks
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to semantic parsing. Pre-trained language model-
based approaches have led to significant improve-
ments across different MRs (Oepen et al., 2019,
2020). However, these models often generalize
poorly to out-of-distribution (OOD) and tail ex-
amples (Cheng et al., 2019; Shaw et al., 2021;
Kim, 2021; Lin et al., 2022), while grammar or
rule-based parser work relatively robustly across
different linguistic phenomena and language do-
mains (Cao et al., 2021; Lin et al., 2022). See
Section 6 for a review of related work.

In this paper, we propose a novel compositional
neural-symbolic inference for graph semantic pars-
ing, which takes advantage of both uncertainty
quantification from a seq2seq parser and prior
knowledge from a symbolic parser at the subgraph
level (i.e., nodes and edges). We take graph seman-
tic parsing for English Resource Grammar (ERG)
as our case study. ERG is a compositional semantic
representation explicitly coupled with the syntactic
structure. Compared to other graph-based meaning
representations like Abstract Meaning Representa-
tion (AMR), ERG has high coverage of English text
and strong transferability across domains, render-
ing itself as an attractive target formalism for auto-
mated semantic parsing. Furthermore, many years
of ERG research has led to well-established sym-
bolic parser and a rich set of carefully constructed
corpus across different application domains and
fine-grained linguistic phenomena, making it an
ideal candidate for studying cross-domain general-
ization of neural-symbolic methods (Oepen et al.,
2002; Crysmann and Packard, 2012).

We start with a novel investigation of the uncer-
tainty calibration behaviour of a T5-based state-of-
the-art neural ERG parser (Lin et al., 2022) on the
subgraph level (Section 3), where we make some
key observations: (1) the performance of the neu-
ral parser degrades when it becomes uncertain at
the subgraph level, while (2) the symbolic parser
works still robustly when the neural parser is un-
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<> Token-Node Alignments
B Root \
Abstract Concepts BV ARG1 ARG2
(grammatical function)
Surface Concepts \/
(related to surface tokens)
BV ARG1 ARG2

The_,, boy., wants_, the_, girl, to_ believe g him_,

(a) EDS Representation

( _want v 1
:ARG1 ( _boy n 1
:BV-of ( _the q ) )
:AGR2 ( _believe v_1
ARGl ( _girl n 1
:BV-of ( _the q ) )
:ARG2 ( pron
:BV-of ( pronoun q ) ) ) )

(b) Variable-free PENMAN notation

Figure 1: The EDS representation for ERG and the corresponding linearization of the example sentence “The boy

wants the girl to believe him”.

certain at the subgraph level. This motivates us to
develop a compositional neural-symbolic inference
process where the neural and symbolic parser col-
laborates at a more fine-grained level and guided
by model uncertainty, which is an aspect missing in
the previous neural-symbolic and ensemble parsing
literature (see Appendix 6).

We then propose a decision-theoretic criteria to
allow for neural-symbolic inference at subgraph
level (i.e., nodes and edges) and incorporates the
neural parser’s fine-grained uncertainty for each
graph component prediction (Section 4.1). The
key to this approach is a meta graph Gy that enu-
merates possible candidates for each node/edge
prediction, and is constructed by merging multiple
beam predictions from the neural seq2seq model.

The core challenge here is how to properly quan-
tify compositional uncertainty using a seq2seq
model, i.e., assigning model probability for a node
or edge prediction. For example, our interest is to
express the conditional probability of a graph node
v with respect to its parent p(v|pa(v),x), rather
than the likelihood of v conditioning on the previ-
ous tokens in the linearized string. As a result, it
cannot be achieved by relying on the naive token-
level autoregressive probabilities from the beam
search. To address this issue, we introduce a sim-
ple probabilistic formalism termed Graph Autore-
gressive Process (GAP) (Section 4.2). GAP adopts
a dual representation of an autoregressive process
and a probabilistic graphical model, and can serve
as a powerful medium for expressing compositional
uncertainty for seq2seq graph parsing.

We demonstrate the effectiveness of our ap-
proach in experiments across a diverse suite of
eight in-domain and OOD evaluation datasets en-
compassing domains including Wikipedia entries,
news articles, email communications, etc (Section
5). We achieve the best results on the overall
performance across the eight domains, attaining
35.26% and 35.60% error reduction in the aggre-

gated SMATCH score over the neural and symbolic
parser, respectively. Our approach also exhibits sig-
nificantly stronger robustness in generalization to
OOD datasets and long-tail linguistic phenomena
than previous work, while maintaining the state-
of-the-art performance on in-domain test. Further
study also shows that the compositionality aspects
of neural-symbolic inference helps the model to as-
semble novel graph solution that the original infer-
ence process (e.g., beam search or symbolic parse)
fails to provide (Section 5.4).

In summary, our contributions are four-fold:

* We present a novel investigation of neural graph
parser’s uncertainty calibration performance at
subgraph level (Section 3). Our study confirms
the seq2seq uncertainty is effective for detecting
model error even out-of-distribution, establishing
the first empirical basis for the utility of compo-
sitional uncertainty in seq2seq graph parsing.

* We propose a practical and principled framework
for neural-symbolic graph parsing that utilizes
model uncertainty and exploits compositionality
(Section 4.1). The method is fully compatible
with modern large pre-trained seq2seq network
using beam decoding, and is general-purpose and
applicable to any graph semantic parsing task.

* We propose a simple probabilistic formalism
(GAP) to express a seq2seq model’s composi-
tional uncertainty (Section 4.2). GAP allows
us to go beyond the conventional autoregres-
sive sequence probability and express long-range
parent-child conditional probability on the graph,
serving as a useful medium of compositional un-
certainty quantification.

* We conduct a comprehensive study to evalu-
ate the state-of-the-art graph parsing approaches
across a diverse suite of in-domain and out-of-
distribution datasets (Section 5). Our study re-
veals surprising weakness of previous neural-
symbolic methods in OOD generalization, and
confirms the proposed method significantly im-
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Figure 2: Bar charts for the predictive accuracies of the T5 parser (blue) and ACE parser (orange) for all the node /
edge prediction across different uncertainty buckets based on TS model’s probabilities. The performance is evaluated
on the Tanaka and Brown datasets. Each bin represents a quantile bucket of the model probability (i.e., they contain
the same number of examples). Since at most of the subgraphs, the model is pretty certain (log P > —le — 5), we

exclude these pretty certain predictions in the figures.

proves models OOD and tail performance.
Reproducibility. Our code is available
on Github: https://github.com/google/
uncertainty-baselines/tree/main/
baselines/t5/data/deepbank.

2 Background

2.1 English Resource Grammar (ERG)

In this work, we take the representations from En-
glish Resource Grammar (ERG; Flickinger et al.,
2014) as our target meaning representations. ERG
is a broad-coverage computational grammar of En-
glish that derives underspecified logical-form rep-
resentations of meaning (Oepen and Flickinger,
2019). It is rooted in the general linguistic theory
of Head-driven Phrase Structure Grammar (HPSG;
Pollard and Sag, 1994).

ERG can be presented into different types of an-
notation formalism (Copestake et al., 2005). This
work focuses on the Elementary Dependency Struc-
ture (EDS; Oepen and Lgnning, 2006) which is
a compact representation that can be expressed
as a directed acyclic graph (DAG) and is widely
adopted in the neural parsing approaches (Buys and
Blunsom, 2017; Chen et al., 2018). An example is
shown in Figure 1(a).

2.2 Parsing Approaches

In this section, we review the state-of-the-art sym-
bolic and neural parsers utilized in our work, i.e.,
the ACE parser (Crysmann and Packard, 2012) and
the T5 parser (Lin et al., 2022). Appendix B re-
views other ERG parsing techniques.

The symbolic parser: ACE. The ACE parser
(Crysmann and Packard, 2012) is one of the state-
of-the-art symbolic parsers. It first decomposes
sentences into ERG-consistent candidate derivation
trees, and the parser will rank candidates based on

the structural features in the nodes of the deriva-
tion trees via maximum entropy models (Oepen
and Lgnning, 2006; Toutanova et al., 2005). This
approach fails to parse sentences for which no valid
derivation is found.

The neural parser: T5. Lin et al. (2022) pro-
posed a T5-based ERG parser which achieves the
best known results on the in-domain DeepBank
benchmark. It is the first work that successfully
transfers the ERG parsing problem into a pure end-
to-end translation problem via compositionality-
aware tokenization and a variable-free top-down
graph linearization based on the PENMAN nota-
tion (Kasper, 1989). Figure 1(b) shows an example
of the linearized graph string from the original EDS
graph.

3 Motivation: Subgraph-level
Uncertainty in Seq2seq Graph Parsing

We hypothesize that when the neural seq2seq
model is uncertain at the subgraph level, it is more
likely to make mistakes. Assuming the symbolic
parser performs more robustly in these situations,
we can then design a procedure to ask the symbolic
parser for help when the model is uncertain. To
validate this hypothesis, we conduct experiments
to empirically explore the following two questions:
(1) how does the model perform when it is uncer-
tain at the subgraph level? and (2) how does the
symbolic parser perform when the model is uncer-
tain?

First, we compute model probabilities for each
graph element (i.e., node and edge) prediction (see
Section 4.2 for how to compute these quanitities),
and identify the corresponding ACE parser pre-
diction using the graph matching algorithm from
SMATCH (Cai and Knight, 2013). We then evaluate
the accuracies of those graph element predictions
with respect to the gold labels, and compare it to
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that of the ACE parser.

In Figure 2, we plot the bar charts compare
the neural and symbolic performance in different
bucket of seq2seq model uncertainties on the two
largest datasets (e.g., Tanaka and Brown, see Ap-
pendix G). Results on other datasets can be found in
the Appendix K. As shown in the figure, low model
probability generally corresponds to low TS5 per-
formance, while the corresponding ACE parser’s
accuracies spread relatively stably (e.g., it attains
> 90% accuracy in the lowest-confidence buck-
ets, while T5 accuracy is < 50%). This implies
that when the model is uncertain, the accuracy of
the neural model tend to be low, while the ACE
parser still performs well. This has motivated us
to develop a compositional neural-symbolic infer-
ence procedure guided the model’s subgraph level
uncertainty, such that the T5 and ACE parser can
collaborate at a more fine-grained level via com-
postional uncertainty quantification (Section 4).

4 Methods

Notation & Problem Statement. For graph se-
mantic parsing, the input is a natural language ut-
terance x, and the output is a directed acyclic graph
(DAG) G = (N, E), where N is the set of nodes
and E € N x N is the set of edges (e.g., Figure
1(a)). In the case of seq2seq parsing, G is repre-
sented as a linearized graph string g = s159 - s,
which consists of symbols {s;}~ | (e.g., Figure
1(b)). As the graph prediction is probabilistic, each
of the graph element v € N U E is a random vari-
able whose values are the symbols s; observed
from the beam outputs, leading to marginal prob-
abilities p(v = s;|x) and conditional probabilities
p(v = s;|v" = sj, ).

To this end, our goal is to produce a principled
inference procedure for graph prediction account-
ing for model uncertainty on predicting graph ele-
ments v € G. In the sequel, Section 4.1 presents
a decision-theoretic criterion that leverages the
graphical model likelihood p(G|x) to conduct com-
positional neural-symbolic inference for graph pre-
diction. To properly express the graphic model
likelihood p(G|z) = [],cqp(v|pa(v),z) using
a learned seq2seq model, Section 4.2 introduces
a simple probabilistic formalism termed Graph
Autoregressive Process (GAP) to translate the au-
toregressive sequence probability from the seq2seq
model to graphical model probability. Appendix E
discusses some additional extensions.

4.1 Compositional Neural-Symbolic Inference

Previously, an uncertainty-aware decision criteria
was proposed for neural-symbolic inference based
on the Hurwicz pessimism-optimism criteria
R(G|x) (Lin et al., 2022). Specifically, the criteria
is written as:

R(Glz) = a(z)* Ry(Glz) + (1 — az)) * Ro(G),

where R(G|z) = — log p(G|x) is the neural model
likelihood, Ro(G) = logpo(G) is the symbolic
prior likelihood, and «(x) is a the uncertainty-
driven trade-off coefficient to balance between
the optimistic MLE criteria R,,(G|x) and the pes-
simistic, prior-centered criteria Ro(G|x) centered
around symbolic prediction Gy.

A key drawback of this approach is the lack of
accounting for the compositionality. This motivates
us to consider synthesizing the multiple graph pre-
dictions {Gy }}*_, from the neural parser to form
a meta graph G ', where we can leverage the dis-
entangled uncertainty of p(G|x) to perform fine-
grained neural-symbolic inference for each graph
component v € G (i.e., nodes or edges). Specifi-
cally, we leverage the factorized graphical model
likelihood p(Glz) = [],cq (v pa(v),z) to de-
compose the overall decision criteria R(G|x) into
that of individual components R(v|x):

R(v|z) = a(v|z) * log p(v| pa(v), z)
+ (1 — a(v|z)) * log po(v), D

and the overall criteria is written as R(G|z) =
> veq R(v|z). Here pa(v) refers to the parents
of v in G, and a(v|z) = sigmoid(—+H (v|z) +
b) is the component-specific trade-off param-
eter driven by model uncertainty H(v|z) =
—log p(v| pa(v), z), and (T, b) are scalar calibra-
tion hyperparameters that can be tuned on the dev
set.

Following previous work (Lin et al., 2022), the
symbolic prior pg for each graph component v is
defined as a Boltzmann distribution based on the
graph output G from the symbolic parser, i.e.,
po(v = s) o< exp(I(s € Gp)), so that it is pro-
portional to the empirical probability of whether
a symbol s appears in GGg. Notice that we have
ignored the normalizing constants since they do
not impact optimization.

'Given a group of candidate graphs {Gk}szl, well-
established algorithm exists to synthesize different graph pre-

dictions into a meta graph G (Cai and Knight, 2013; Hoang
et al., 2021) (see Appendix F for a more detailed review).
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Algorithm 1 summarizes the full algorithm.
As shown, during inference, the method pro-
ceeds by starting from the root node vy
and selects the optimal prediction 99 =
arg MaX, cCandidate(vy) 11(C0|Z), Where cq are dif-
ferent candidates for vy given by the meta graph G.
The algorithm then recursively performs the same
neural-symbolic inference procedure for the chil-
dren of vy (i.e., ch(v)). The algorithm terminates
when the optimal candidates for all graph variables
v € G are determined.

As a result, the algorithm is able to adap-
tively combine subgraph predictions across mul-
tiple beam candidates thanks to the meta graph G,
and appropriately weight between the local neural
and symbolic information thanks to the uncertainty-
aware decision criteria R(v|z). Empirically, this
also gives the algorithm the ability to synthesize
novel graph predictions that are distinct from its
base models (Section 5.4).

Algorithm 1 Compositional Neural-Symbolic Inference

Inputs:
Meta graph G
Graphical model likelihood log p(G|x)
Symbolic prior po
Output:
Neural-symbolic graph prediction G
Initialize:
v =root(Gm); G = Gu.
if G does not contain undecided candidates then return G
else
for ¢, € Candidate(v) do
Compute decision criteria R(c,|z) (Equation 1)
Select optimal candidate ¥ = arg max, R(c|z)
Remove non-optimal candidates of v from G
Recursively perform Algorithm 1 for all v € ch(v)

4.2 Compositional Uncertainty Quantification
with Graph Autogressive Process (GAP)

To properly model the uncertainty p(G|x) from a
seq2seq model, we need an intermediate probabilis-
tic representation to translate the raw token-level
probability to the distribution over graph elements.

To this end, we introduce a simple probabilistic
formalism termed Graph Autoregressive Process
(GAP), which is a probability distribution assigning
seq2seq learned probability to the graph elements
v € (. Specifically, as the seq2seq-predicted graph
adopts both a sequence-based representation g =
s1, ..., s, and a graph representation G = (N, E),
the GAP model adopts both an autoregressive repre-
sentation p(g|z) = [ [, p(si|s<i, x) (Section 4.2.1),
and also a probabilistic graphical model repre-
sentation p(G|z) =[], p(v| pa(v), z) (Section

4.2.2). Both representations share the same set of
underlying probability measures (i.e., the graphical-
model likelihood p(G|z) can be derived from the
autoregressive probabilities p(s;|s<;,x)) (Figure
3), rendering itself a useful medium for princi-
pled compositional neural-symbolic inference us-
ing seq2seq probabilities.

4.2.1 Autoregressive Representation for
Linearized Sequence g

Given an input sequence x and output sequence
Yy = y1y2 - yN, the token-level autoregressive
distribution from a seq2seq model is p(y|x) =
Hf\; 1 P(¥ily<i, z). In the context of graph pars-
ing, the output sequence describes a linearized
graph g = s152-- - sr, where each symbol s; =
{Yi1Yio -~ Yin, } represents either a node n €
N or an edge e € E of the graph and corre-
sponds to a collection of beam-decoded tokens
{Yi,Yiy - - Yiy }» €.8., the node _the_qg in Figure
1(a) is represénted by tokens {_, the, _q}. This
process is illustrated in follows:

Yoo VY, Y, VeVs Vg o
é— | é |
g —
To this end, the Graph Autoregressive

Process (GAP) assigns probability to each
linearized graph g = s182---sp autore-
greesviely as p(glr) = [I&,p(sils<i, ),
and the conditional probability p(s;|s<i,z) is
computed by aggregating the token probability:

N;
p(sils<i, ) = p({yis - vy, Ho<isw) = [ [ p(yi; lyicsy s 5<ir @)
j=1
Marginal and Conditional Probability. Im-
portantly, GAP allows us to compute the
marginal and (non-local) conditional probabil-
ities for graph elements s;. Given the input x,
the marginal probability of s; is computed as

p(silz) = / p(sifscir @)p(scila)ds
S<i

by integrating over the space of all possible sub-
sequences s; prior to the symbol s;. Then, the
(non-local) conditional probability between two
graph elements (s;, s;) with ¢ < j is computed as

p(S]‘ ‘8i7 1:) =
/ D(8i5 8141815 8<i, ©)p(ils<i, T)p(s<ilr)dsisjds<i
Si—jrS<i

by integrating over the space of subsequences s;_, ;
between (s;,s;) and the subsequence s; before
s;. Higher order conditional (e.g., p(s;|(s;, 1), x))
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can be computed analogously. Notice this gives us
the ability to reason about long-range dependencies
between non-adjacent symbols on the sequence.
Furthermore, the conditional probability on the
reverse direction can also be computed using the
Bayes’ rule: p(s;|s;,x) = Bleslseiplsile) I;Ef)‘zgsi‘x)

Efficient Estimation Using Bea]m Outputs. In
practice, we can estimate p(s;|x) and p(s;|s;, x)
efficiently via importance sampling using the
output from the beam decoding {gj }/< , where
K is the beam size (Malinin and Gales, 2020).
The marginal probability can be computed as

Zmp(szlsk <ir ) )
k=1
exp(1 log p(gi|z))

) k=1 exp(§ log p(gk|x)) )
tance weight proportlonal to the beam candidate

gr’s log likelihoods, and ¢ > 0 is the temperature
parameter fixed to a small constant (e.g., ¢ = 0.1,
see Appendix C.1 further discussion) (Malinin and
Gales, 2020). If the symbol s; does not appear in
the k" beam, we set p(s;|sk, <i, z) = 0.

Then, for two symbols (s;,s;) with i < j, we
can estimate the joint probability as

p(silr) =

where m, = is the impor-

K
p(sjlsi, ) = Zﬁp(sﬂsuSk,H]’,Sk,«',l’) 3)
k=1
; ex lo x))*xI(s;€ .
where i = p(3 log p(gr|z))*I (si€g) is the

=1 exp(3 log p(gr|z))+I(si€gr)
importance weight among beam candidates that

contains s;. Notice this is different from Equation
2 where 7, is computed over all beam candidates
regardless of whether it contains s;.

4.2.2 Probabilistic Graphical Model
Representation for GG

So far, we have focused on probability computa-
tion based on the graph’s linearized representation
p(glx) =1, p(si|s<i, z). To conduct the compo-
sitional neural-symbolic inference (Section 4.1),
we also need to consider GAP’s graphical model
representation p(G|x) = [[,cq p(v|pa(v), z).
GAP’s graphical model representation G de-
pends on the meta graph G constructed from K
candidate graphs {G, }£ | (Section 4.1). Figure 3
shows an example, where n; and e; are the candi-
dates for the node and edge predictions collected
from beam sequences. Compared to the sequence-
based representation g, G provides two advantages:
it (1) explicitly enumerates different candidates for
each node and edge prediction (e.g., ng v.s. ng for
predicting the third element), and (2) provides an

explicit account of the parent-child relationships
between variables on the graph (e.g., es is a child
node of n; in the predicted graph, which is not re-
flected in the autoregressive representation). From
the probabilistic learning perspective, G describes
the space of possible graphs (i.e., the support) for
a graph distribution p(G|z) : G — [0, 1].

To this end, GAP assigns proper graph-level
probability p(G|z) to graphs G sampled from the
meta graph G via the graphical model likelihood:

p(Glz) = [ p(v] pa(v), z)
veEG
= ] p(nlpa(n),z) = [ ple| pale
neN ecE

where p(v| pa(v), x) is the conditional probability
for v with respect to their parents pa(v) in
G. Given the candidates graphs {Gj}5 |, we
can express the likelihood for p(v|pa(v),z)
by writing down a multinomial likelihood
enumerating over different values of pa(v)
(Murphy, 2012). This in fact leads to a simple
expression for the model likelihood as a sim-
ple averaging of the beam-sequence log likelihoods:

log p(n| pa(n), w)&*zlogp(nlpa n)=cr) 4

where ¢, is the value of pa(n) in k" beam se-
quence, and the conditional probabilities are
computed using Equation (3). See Appendix D for
a detailed derivation.

Algorithm 2 Graph Autoregressive Process

Inputs:
Beam candidates with probabilities {p(gx |z) i,
Meta graph G
Output:
Marginal probabilities {p(s|z)}
Graph model likelihood log p(G|x)
for v € G do
Compute marginal likelihood:
p(v = s|z) (Equation 2)
Compute graphical model likelihood:
log p(v = s| pa(v), ) (Equation 4)
return {p(v|z)},log p(G|z)) = >, log p(v] pa(v), z)

In summary, for each graph element variable
v € G, GAP allows us to compute the graphical-
model conditional likelihood p(v|pa(v), z) via its
graphical model representation, and also to com-
pute the marginal probability p(v|x) via its autore-
gressive presentation. The conditional likelihood is
crucial for neural-symbolic inference (Section 4.1),
and the marginal probability is useful for sparsity
regularization in global graph structure inference
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Autoregressive Sequential Representation (i.e., Beam Sequences)
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-

Figure 3: Visual illustration of constructing graphical model representation G, from autorepressive representation
{ gk}szl. The example here represents the sentence “The Cathedral and the Bazaar” from the Eric Raymond Essay
dataset. Note that here we have omitted the brackets in g for simplicity (see 1(b)).

(Appendix E). Algorithm 2 summarizes the full
GAP computation.

5 Experiments

5.1 Experiment Setup

Datasets. Consistent with previous ERG works,
we train the neural model on DeepBank v1.1 an-
notation of the Wall Stree Journal (WSJ), sections
00-21 (the same text annotated in the Penn Tree
Bank) that correspond to ERG version 1214.

For OOD evaluation, we select 7 diverse datasets
from the Redwoods Treebank corpus: Wikipedia
(Wiki), the Brown Corpus (Brown), the Eric
Raymond Essay (Essay), customer emails (E-
commerce), meeting/hotel scheduling (Verbmobil),
Norwegian tourism (LOGON) and the Tanaka Cor-
pus (Tanaka) (See Appendix G for more details).
Model. Following Lin et al. (2022), We train a
T51arge using the official T5X finetune pipelinez,
and use beam search with size K = 5 at inference
time. Further details are collected in Appendix H.
Evaluation. we use the standard eval metric
SMATCH (Cai and Knight, 2013), which computes
the maximum F1-score obtainable from an align-
ment between the predicted and gold graphs. We
evaluate the models’ average-case performance on
all the 8 in-domain and OOD datasets, and also
conduct fine-grained evaluation of the models’ tail
generalization performance across 19 important
linguistic subcategories (Appendix J, Table 2).
Baselines. We compare with two recent state-
of-the-art approaches from the neural-symbolic
and ensemble graph parsing literature, respectively.
(see Appendix 6 for a review) (1) Lin et al. (2022)
is uncertainty-aware neural-symbolic framework

Zhttps://github.com/google-research/t5x/blob/
main/t5x/train.py

| #| TS5 ACE Vote Collab. Ours | ACE*
WSJ (in-domain) 1437 [ 96.56 87.14 8822 97.01 9677 | 90.94
Wiki 1,307 | 90.12 80.25 80.55 90.58  90.04 | 90.42
Brown 2,182 | 9205 91.74 8546 93.58 93.11 | 93.20
Essay 5919219 9264 8372 9357 9376 | 93.52
E-commerce 1114 | 9315 9725 87.38 9544 97.37 | 9836
Verbmobil 931 | 90.06 9515 8480 9224 9642 | 97.62
LOGON 1,895 | 87.13 93.58 80.11 92.88 93.33 | 94.17
Tanaka 2,796 | 9524 9838 91.03 9679 98.14 | 98.55

Mean w/ in-domain
Mean w/o in-domain

- 19206 9202 85.16 94.01 94.86 | 94.60
91.50 92.63 84.72 93.64 94.62 | 95.05

Table 1: SMATCH for TS5, ACE, and collabora-
tive/compostional inference. # refers to the number of
sentences in the dataset. ACE* refers to the evaluation
results only for valid parse. Collb. refers to collabo-
rative inference from Lin et al. (2022). Vote refers to
voting strategy from Hoang et al. (2021). The bold and
underlined refer to the best and the second best results.

method attained state-of-the-art performance on the
in-domain DeepBank test set, and (2) Hoang et al.
(2021), a majority-voting-based graph ensemble
method that uses a voting strategy based on beam
sequences from the T5 model and predictions from
the ACE parser 3. It doesn’t exploit uncertainty.

5.2 Results

The results are shown in Table 1. Detailed in-
domain comparision with other previous work is in
Appendix I. As shown, among the base models, the
TS5 and ACE parser achieve similar overall perfor-
mance, with T5 strongly outperforms on in-domain
data but underperforms on the OOD data (see last
row in Table 1). Our approach achieves best re-
sults on overall performance, which is ~ 35% er-
ror reduction in aggregated SMATCH score over the
T5-based and symbolic approaches.

3We have tried several other variants for the voting can-
didates, e.g., top K predictions from the T5 parser and top 1
prediction + ACE prediction. It turns out the best one is using
top K predictions from the TS5 parser and ACE predictions.
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Essay E-commerce Verbmobil
Type # ACE TS Collab.  Ours # ACE T5  Collab. Ours # ACE T5  Collab. Ours
Compound 671 8376 | 73.39 7675  80.26 ‘ 844 9550 | 67.96 8322 9494 ‘ 308 86.36 | 6741 68.13  87.50%
Nominal w/nominalization 15 80.00 | 80.00 7333  80.00 6 100.00 | 77.78 100.00 100.00 - - - - -
Nominal w/noun 521 88.68 | 76.84  80.79  84.56 ‘ 682 95.60 | 72.67 86.93 9545 ‘ 194 9588 | 77.80 83.50  95.15
Verbal 18 7222 | 57.89 73.68* 78.95% - - - - - - - - - -
Named entity 74 67.57 | 71.05% 68.42*% 60.53 ‘ 28 92.86 | 7749 80.00  93.33* ‘ 80 6250 | 56.51 52.50  67.50%
Argument structure | 3,314 87.09 | 82.63 8552 8526 | 5932 9579 | 83.60 8847 9473 | 4206 9529 | 7752 86.57 94.56
Total verb 1,616 83.66 | 81.11  83.78*% 8256 | 4,504 95.12 | 83.48 8736 93.90 | 2330 9519 | 8225 8936 94.35
Basic verb 895 83.35 | 82.01  84.71*% 83.50* | 2910 94.85 | 87.20 90.14  92.77 | 1,206 9436 | 89.15 9148  94.48*
ARGI 694 8890 | 8826  90.61* 88.62 |2494 96.79 | 95.64 97.08* 97.31% | 1,168 96.75 | 9540 9527  96.90*
ARG2 708 8828 | 86.69  89.04* 88.77* | 2,660 97.14 | 91.11 9336  97.20% 876 95.89 | 89.34 9391  95.65
ARG3 69 83.61 | 7857 7857  80.14 382 90.05 | 7091 75.13  78.07 62 9355 | 67.56 87.50  96.88*
Verb-particle 721 84.05 | 79.99 65.15 8141 | 1,592 9561 | 76.94 8231  9595% | 1,124 96.09 | 74.14 87.07  94.22
ARGI 620 87.90 | 8439 86.53 8558 | 1,448 96.27 | 80.77 84.73  96.62* | 1,096 96.53 | 80.20 90.77  96.90*
ARG2 498 86.14 | 8496  86.52* 88.77* 888 96.85 | 71.30 81.33  95.56 424 9434 | 66.73 78.90  92.66
ARG3 62 79.03 | 65.15 65.15 74.24 208 9327 | 69.05 83.02  96.23* 24 8333 | 47.17 5833  58.33
Total noun 189 91.53 | 8290 86.01  86.49 90 100.00 | 76.81 7826  97.83 26 9231 | 69.00 93.33*% 93.33*
Total adjective 1,336 90.64 | 8436  87.13  88.39 ‘ 1,116  97.67 | 84.62 93.07 97.34 ‘ 1,838 9543 | 72.54 8275 94.81
Reentrancy 850 80.59 | 78.39  81.26% 77.01 | 1,686 95.73 | 75.83 81.59  84.76 800 9325 | 60.23 7277  89.20
passive 173 86.71 | 83.33  88.89* 86.71 222 9820 | 8556 92.11  97.37 12 100.00 | 79.10 100.00 100.00

Table 2: Comparing ACE, Collab. (Lin et al., 2022) and our parsers on fine-grained linguistic categories. All scores
are reported in accuracy. The gray colored row means long-tail phenomenon (< 500 cases in the training set). The
bold indicates the best results among neural approaches (TS5, Collab. and Ours). * indicates the result is better than

ACE parser.

We now compare with the previous state-of-the-
art methods. Though in-domain performance is not
the focus of this work, our approach is still compa-
rable to Collab, i.e., the neural-symbolic method
from Lin et al. (2022). However, on the challenging
out-of-domain eval sets (e.g., E-commerce, Verb-
mobil whose topic and style are significantly differ-
ent from WSJ), the performance of Collab starts
to deteriorate. In comparison, our neural-symbolic
approach remains robust out-of-domain. Its perfor-
mance stays competitive with and even sometimes
outperforms the ACE parser on difficult domains,
illustrating the advantage of compositionality.

We also notice that the voting-based ensemble
method Vote (Hoang et al., 2021) performs poorly
in the neural-symbolic setting, despite based a mod-
erate number of beam sequences. This is likely
because the majority-voting approach requires a
large number of diverse predictions from distinct
models. When there are only two models, the abil-
ity of quantifying uncertainty becomes important.

5.3 Fine-grained Linguistic Evaluation

ERG provides different levels of linguistic informa-
tion that can benefit many NLP tasks, e.g., named
entity recognition and semantic role labeling. This
rich linguistic annotation provides an oppurtunity
to evaluate model performance in meaningful pop-
ulation subgroups. Detailed description of those
linguistic phenomena is in Appendix J.

Result is in Table 2. As shown, on OOD datasets,

the T5 parser underperforms the ACE parser on
most of the linguistic categories. Our approach
outperforms both the neural model and the non-
compositional neural-symbolic method especially
on long-tail categories (the gray colored rows in the
table), attaining an > 14% average absolute gain
compared to the base model. In some categories,
our method even outperforms the ACE parser while
all base model underperforms, e.g., ARG3 of basic
verb on Verbmobil and ARG3 of verb-particle on
E-commerce.

5.4 Case Study: Synthesizing Novel Graphs

To test if our methods can generate optimal graph
solution which the base models fail to obtain, we
further explore the percentage of novel graphs
(graphs that are not identical to any of the can-
didate predictions of the neural or symbolic model)
for each dataset, and compare the corresponding
SMATCH scores on those novel cases. The results
are shown in Table 3. We see that our method syn-
thesize novel graph parses that are in general of
higher quality than that of the base models, thanks
to the calibrated uncertainty (Section 4.2). This
indicates the compositional neural-symbolic infer-
ence can synthesize evidence across neural and
symbolic results and produce novel graphs that are
closer to ground truth.

6 Related Work

In this section we introduce related work for neural-
symbolic and ensemble learning for graph semantic
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| % |Topl Top2 Top3 Top4 Top5 Collab. ACE Ours
In-domain | 31.25 | 9495 93.01 9191 89.92 89.58 9510 82.80 98.44
Wiki 3229 | 87.55 86.54 8556 86.00 83.90 88.77 82.67 92.24
Brown 46.84 | 90.54 89.34 8857 88.10 87.11 9253 96.15 96.56
Essay 50.93 | 90.71 90.02 8931 89.02 87.60 9241 9573 96.08
E-commerce | 34.65 | 90.03 88.34 86.61 8556 8291 9282 9896 97.54
Verbmobil | 39.96 | 85.45 83.06 81.54 7930 7827 8842 9778 96.70
LOGON 58.10 | 90.75 89.65 8820 87.90 86.95 9250 96.70 97.06
Tanaka 24.89 | 89.35 87.46 8560 83.55 83.16 9230 98.23 98.27
All | 38.76 | 90.57 89.18 88.01 8724 86.13 9229 9393 96.28

Table 3: SMATCH performance on novel graphs, where the results of our inference process are not identical to any

of the candidates from the base model.

parsing. For a broader context of graph semantic
parsing, please refer to Appendix B.

Neural-Symbolic Graph Semantic Parsing.
Though neural models excel at semantic parsing,
they have been shown to struggle with out-of-
distribution compositional generalization, while
grammar or rule-based approaches work relatively
robustly. This has motivated the work in neural-
symbolic parsing where symbolic approaches are
imported as inductive bias (Shaw et al., 2021; Kim,
2021; Cheng et al., 2019; Cole et al., 2021). For
graph meaning representations, importing induc-
tive bias into neural model was somehow difficult
due to the much more complicated structure com-
pared to pure syntactic rules or logical formalism
(Peng et al., 2015; Peng and Gildea, 2016). To
address this, Lin et al. (2022) proposes a collabora-
tive framework by designing a decision criterion for
beam search that incorporates the prior knowledge
from a symbolic parser and accounts for model un-
certainty, which achieves the state-of-the-art results
on the in-domain test set.

Ensemble Learning for Graph Parsing. Ensem-
ble learning is a popular machine learning approach
that combines predictions from multiple candidates
to create a new one that is more robust and ac-
curate than individual predictions. Previous stud-
ies have explored various ensemble learning ap-
proaches for graph parsing (Green and Zabokrtsky,
2012; Barzdins and Gosko, 2016). Specifically, for
graph semantic parsing at subgraph level, Hoang
et al. (2021) make use of checkpoints from models
of different architectures, and mining the largest
graph that is the most supported by a collection of
graph predictions. They then propose a heuristic
algorithm to approximate the optimal solution.

Compare to the previous ensemble work, our
work differ in three ways: (1) Our decision rule is
based on neural model confidence, so the decision

is driven not by model consensus, but by model
confidence which indicates when the main (neural)
result is untrustworthy and needs to be comple-
mented by symbolic result. Model consensus is
effective when there exists a large number of candi-
date models. However, in the neural-symbolic set-
ting when there are only two models, the ability of
quantifying model uncertainty becomes important.
(2) A secondary contribution of our work is to pro-
duce an parsing approach for the ERG community
that not only exhibits strong average-case perfor-
mance on in-domain and OOD environments, but
also generalizes robustly in important categories of
tail linguistic phenomena. Therefore, our investi-
gation goes beyond average-case performance and
evaluates in tail generalization as well. (3) We re-
veal a more nuance picture of neural models” OOD
performance: a neural model’s top K parses in fact
often contains subgraphs that generalize well to
OOD scenarios, but the vanilla MLE-based infer-
ence fails to select them (see Section 5.4 for more
details).

7 Conclusions

We have shown how to perform accurate and ro-
bust semantic parsing across a diverse range of gen-
res and linguistic categories for English Resource
Grammar. We achieve this by taking the advan-
tage of both the symbolic parser (ACE) and the
neural parser (T5) at a fine-grained subgraph level
using compositional uncertainty, an aspect miss-
ing in the previous neural-symbolic or ensemble
parsing work. Our approach attains the best known
result on the aggregated SMATCH score across
eight evaluation corpus from Redwoods Treebank,
attaining 35.26% and 35.60% error reduction over
the neural and symbolic parser, respectively.
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Limitation

Here we discuss a potential limitations of the cur-
rent study:

Problem domain In this work, we have selected
English Resource Grammar as the target formalism.
This is a deliberate choice based on the availabil-
ity of (1) realistic out-of-distribution evaluation
corpus, and (2) well-established, high-quality sym-
bolic parser. This is a common setting in indus-
trial applications, where an practitioner is tempted
to combine large pre-trained neural model with
expert-developed symbolic rules to improve perfor-
mance for a new domain. Unfortunately, we are not
aware of another popular meaning representation
for which both resources are available. To over-
come this challenge, we may consider studying
collaborative inference between a standard seq2seq
model and some indirect symbolic supervision, e.g.,
syntactic parser or CCG parser (Steedman, 2001),
which is an interesting direction for future work.

Uncertainty estimation techniques The vanilla
seq2seq model is known to under-estimate the true
probability of the high-likelihood output sequences,
wasting a considerable amount of probability mass
towards the space of improbable outputs (Ott et al.,
2018; LeBrun et al., 2022). This systematic un-
derestimation of neural likelihood may lead to a
conservative neural-symbolic procedure that im-
plicitly favors the information from the symbolic
prior. It may also negatively impact calibration
quality, leading the model to under-detect wrong
predictions. To this end, it is interesting to ask
if a more advanced seq2seq uncertainty method
(e.g., Monte Carlo dropout or Gaussian process

(Gal and Ghahramani, 2016; Liu et al., 2020)) can
provide systematically better uncertainty quantifi-
cation, and consequently improved downstream
performance.

Graphical model specification The GAP model
presented in this work considers a classi-
cal graphical model likelihood p(Glz) =
[I,ecp(v|pa(v),z) , which leads to a clean fac-
torization between graph elements v and fast prob-
ability computation. However, it also assumes a
local Markov property that v is conditional inde-
pendent to its ancestors given the parent pa(v). In
theory, the probability learned by a seq2seq model
is capable of modeling higher order conditionals
between arbitrary elements on the graph. Therefore
it is interesting to ask if a more sophisticated graph-
ical model with higher-order dependency structure
can lead to better performance in practice while
maintaining reasonable computational complexity.

Understanding different types of uncertainty
There exists many different types of uncertainties
occur in a machine learning system (Hiillermeier
and Waegeman, 2021). This includes data uncer-
tainty (e.g., erroneously annotated training labels,
ill-formedness of the input sentence, or inherent
ambiguity in the example-to-label mapping), and
also model uncertainty which occurs the test ex-
ample not containing familiar patterns the model
learned from the training data. In this work, we
quantifies uncertainty using mean log likelihood,
which broadly captures both types of uncertainty
and does not make a distinction between these dif-
ferent subtypes. As different source of uncertainty
may lead to different strategy in neural-symbolic
parsing, the future work should look into more
fine-grained uncertainty signal that can decompose
these different sources of error and uncertainty, and
propose adaptive strategy to handle different sce-
narios.

Ethical Consideration

This paper focused on neural-symbolic semantic
parsing for the English Resource Grammar (ERG).
Our architecture are built based on open-source
models and datasets (all available online). We do
not anticipate any major ethical concerns.
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A Graph-based Meaning Representation

Considerable NLP research has been devoted to
the transformation of natural language utterances
into a desired linguistically motivated semantic rep-
resentation. Such a representation can be under-
stood as a class of discrete structures that describe
lexical, syntactic, semantic, pragmatic, as well as
many other aspects of the phenomenon of human
language. In this domain, graph-based representa-
tions provide a light-weight yet effective way to en-
code rich semantic information of natural language
sentences and have been receiving heightened at-
tention in recent years. Popular frameworks un-
der this umbrella includes Bi-lexical Semantic De-
pendency Graphs (SDG; Bos et al., 2004; Ivanova
et al., 2012; Oepen et al., 2015), Abstract Mean-
ing Representation (AMR; Banarescu et al., 2013),

Graph-based Representations for English Resource
Grammar (ERG; Oepen and Lgnning, 2006; Copes-
take, 2009), and Universal Conceptual Cognitive
Annotation (UCCA; Abend and Rappoport, 2013).

B Literature Review on Graph Semantic
Parsing

In this section, we present a summary of different
parsing technologies for graph-based meaning rep-
resentations in addition to the ones discussed in
2.2, with a focus on English Resource Grammar
(ERG).

Grammar-based approach In this type of ap-
proach, a semantic graph is derived according to
a set of lexical and syntactico-semantic rules. For
ERG parsing, sentences are parsed to HPSG deriva-
tions consistent with ERG. The nodes in the deriva-
tion trees are feature structures, from which MRS
is extracted through unification. The parser has a
default parse ranking procedure trained on a tree-
bank, where maximum entropy models are used
to score the derivations in order to find the most
likely parse. However, this approach fails to parse
sentences for which no valid derivation is found
(Toutanova et al., 2005). There are two main exist-
ing grammar-based parsers for ERG parsing: the
PET system (Callmeier, 2000) and the ACE system
(Crysmann and Packard, 2012). The core algo-
rithms implemented by both systems are the same,
but ACE is faster in certain common configurations.
We choose ACE as the symbolic parser in our work.

Factorization-based approach This type of ap-
proach is inspired by graph-based dependency tree
parsing (McDonald, 2006). A factorization-based
parser explicitly models the target semantic struc-
tures by defining a score function that can eval-
uate the probability of any candidate graph. For
ERG parsing, Cao et al. (2021) implemented a two-
step pipeline architecture that identifies the concept
nodes and dependencies by solving two optimiza-
tion problems, where prediction of the first step is
utilized as the input for the second step. Chen et al.
(2019) presented a four-stage pipeline to incremen-
tally construct an ERG graph, whose core idea is
similar to previous work.

Transition-based approach In these parsing sys-
tems, the meaning representations graph is gener-
ated via a series of actions, in a process that is
very similar to dependency tree parsing (Yamada
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and Matsumoto, 2003; Nivre, 2008), with the dif-
ference being that the actions for graph parsing
need to allow reentrancies. For ERG parsing, Buys
and Blunsom (2017) proposed a neural encoder-
decoder transition-based parser, which uses stack-
based embedding features to predict graphs jointly
with unlexicalized predicates and their token align-
ments.

Composition-based approach Following a prin-
ciple of compositionality, a semantic graph can
be viewed as the result of a derivation process, in
which a set of lexical and syntactico-semantic rules
are iteratively applied and evaluated. For ERG pars-
ing, based on Chen et al. (2018), Chen et al. (2019)
proposed a composition-based parser whose core
engine is a graph rewriting system that explicitly
explores the syntactico-semantic recursive deriva-
tions that are governed by a synchronous SHRG.

Translation-based approach This type of ap-
proach is inspired by the success of seq2seq mod-
els which are the heart of modern Neural Machine
Translation. A translation-based parser encodes
and views a target semantic graph as a string from
another language. In a broader context of graph
semantic parsing, simply applying seq2seq models
is not successful, in part because effective lineariza-
tion (encoding graphs as linear sequences) and data
sparsity were thought to pose significant challenges
(Konstas et al., 2017). Alternatively, some specifi-
cally designed preprocessing procedures for vocab-
ulary and entities can help to address these issues
(Konstas et al., 2017; Peng et al., 2017). These pre-
processing procedures are very specific to a certain
type of meaning representation and are difficult
to transfer to others. To address this, Lin et al.
(2022) propose a variable-free top-down lineariza-
tion and a compositionality-aware tokenization for
ERG graph preprocessing, and successfully trans-
fer the ERG parsing into a translation problem that
can be solved by a state-of-the-art seq2seq model
T5 (Raffel et al., 2020). The parser achieves the
best known results on the in-domain test set from
the DeepBank benchmark.

C Additional Methods Discussions

C.1 Efficient Probability Estimation Using
Beam Outputs

The marginalized probability p(s;|z) provides a
way to reason about the global importance of s; by
integrating the probabilistic evidence p(s;|sk, <i, x)

over the whole beam-sampled posterior space. It is
able to capture the cases of spurious graph elements
s; with high local probability p(s;|sk, <i, ) but low
global likelihood (i.e., only appear in a few low-
probability beam candidates), which is useful for
inferring sparse global structures for the meta graph
(Appendix E).

In the importance weight 7, the temperature pa-
rameter ¢ controls how evidence for p(s;|z) is ag-
gregated across beam samples { gy }1* . Whent —
0, the above is equivalent to selecting p(s;|sk, <i, Z)
from the most probable subsequence sj ~;; when
t — o0, the above is equivalent to simple averaging
of p(s;|sk,<i, x) from all beam candidates. In the
experiments, we find that the value of ¢ does not
have a significant impact on the final performance.
In general, we recommend fixing it to a small value
(e.g., t = 0.1) to suitably downweighting the con-
tribution from improbable beam candidates.

D Simplified Expression for Graphical
Model Likelihood

Given the candidates graphs {G;}X_ |, we can
express the likelihood for p(v| pa(v), x) by writing
down a multinomial likelihood enumerating over
different values of pa(v) (Murphy, 2012). For
example, say pa(n) = (e, e2) which represents
a subgraph of two edges (ej, e2) pointing into
a node n. Then the conditional probability
p(n|pa(n),z) can be computed by enumer-
ating over the observed values of (e1,ez) pair:

p(n|pa(n), x) = p(n|(e1, e2), x)

~ I
ceCandidate(eq,ez)
where Candidate(e) is the collection of possi-

ble symbols s the variable e can take, and
K. is the number of times (ej,ez) takes a
particular value ¢ € Candidate(ej,ez) =
Candidate(e;) x Candidate(es).

Then, the log likelihood becomes:

p(n|<61, 62) =¢ m)KC

log p(n| pa(n), z)
- Z K. xlogp(n|(e1, e2) = c)

To simplify this above expression, we notice that
log p(n| pa(n), z) can be divided by the constant
beam size K without impacting the inference. As
a result, the log probability can be computed by
simplify averaging the values of log p(v| pa(v) =
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¢k ) across the beam candidates:

log p(n|pa(n), z)
x Z % log p(n|(e1,e2) = ¢)

K
1
= = > logp(nl(er, e2) = i)

k=1

where ¢y, is the value of (e1, e2) in k™ beam candi-
date.

E Extensions and Practical
Implementation

E.1 Infer Sparse Global Structure via
Likelihood-based Pruning

In practice, the meta graphG can contain spuri-
ous elements v that have a high local likelihoods
log p(v| pa(v),x) but very low global probabili-
ties p(v|z). This happens when the element v
only appears in a few low-probability beam se-
quences. These spurious nodes and edges often
adds redundancy to the generated graph (i.e., hurt-
ing precision), and cannot be eliminated by the
neural-symbolic inference procedure, due to their
high local conditional probability p(v| pa(v), x).

Consequently, we find it empirically effective to
perform sparse structure inference forG based on
global probabilities p(v|z) before diving into local
neural-symbolic prediction for graph components.
In this work, we carry out this global structure
inference by considering a simple threshold-and-
project procedure, i.e., pruning out all the graph
elements whose global probability |[p(v|z)||c =
MaX s andidate(v) P(V = 8|2) is lower than a thresh-
old ¢, but will keep v if its removal will lead to an
invalid graph with disconnected subcomponents.
Here ||p(v|z)||~ is the total variation metric that
returns the maximum probability.

Algorithm 3 summarizes this procedure. From a
theoretical perspective, this is equivalent to finding
the most sparse solution with respect to threshold ¢
within the space of valid (i.e., connected) subgraphs

ofG.

E.2 Handle Multi-modality via Mixture
Modeling

In some rare cases where the input sentence is frag-
mented or ill-formed, the neural model may output
multiple beam sequences with drastically differ-
ent high-level structures, creating difficulty for the

Algorithm 3 Likelihood-based Pruning

Inputs:
Meta Graph Gar
Marginal probabilities {p(s|z)}sec
Threshold ¢

Output:

Pruned graph Gy,
Initialize:
Gy = Gum
for v € Gj; do
if ||[p(v|7)]|se < t AND Gj; \ {v} is connected then
Prune v : Gy = Gy \ {v}
return G,

9

g,
9
9,

95 BV-of

Figure 4: Autoregressive Representation (i.e., beam
sequences) for the sentence “Abstract” from the Eric
Raymond Essay dataset. Note that g3 and g4 are actually
the same graph but with different linearization orders.

graph merging procedure (See Figure 4 for an ex-
ample).

We can handle this multi-modality in observed
graph structure by extending p(G|x) to be a mix-
ture of GAP distributions, so that the graphical
model likelihood becomes:

> p(Glm,x)p(m|z)

meM

p(Glr) =

where p(m|x) is a categorical distribution over
the mixture components m & M. Here each
component m induce a meta graph G,,, for graph
Gm = (N, Ep,), such that

p(Glm,z) = p(Gmlz) = [] plv|pa(v), =)
UEGm

= [ p(nlpa(n), )« J] »(elpale),x)
nENy, ecE,

Given beam sequences {gx } & _,, the mixture com-
ponents can be estimated using a standard cluster-
ing algorithm based on an edit distance between
beam candidate gi. Based on our experiments, hier-
archical agglomerative clustering (HAC) combined
with the longest common subsequence (LCS) dis-
tance often leads to the best result. After clustering,
p(m|x) is computed as the empirical probability of
beam sequences belonging the m™" cluster, and the
meta graph G,, is computed by applying the graph
merging procedure to the beam sequences in the
t cluster.
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To conduct neural symbolic inference, we also
need to define the symbolic prior pg for the mixture
distribution:

po(G) = > po(Glm) * po(m)

meM
= Z [ H po(v) * po(m)]
meM veGm
where po(v = s) x exp(l(s € Gy)) as

define previously, and we define po(m) =
exp(—SMATCH(G,y,, Go)) following the previous
work (Lin et al., 2022).

As a result, the decision criteria for neural-
symbolic inference under the mixture model be-
comes:

R(Gmlz) = R(m|z) + Y R(v|z)
veGm

where > - R(v|x) is the component-wise de-
cision criteria as defined in the main text, and
R(m|x) is the additional term for the mixture com-
ponents:

R(m|) = a(mz) *log p(mlz)
+ (1 — a(mlz)) * log po(m)

where a(m|z) = o(—7H (m|z) + b) is the trade-
off parameter driven by the average log likelihood
of beam sequences in the m™ cluster C,,, i.e.,
H(mlz) = 0 3y c0, — log(grl).

During inference, we can again proceed in a
greedy fashion, first select the optimal /1 based on
R(m|x), and then perform compositional neural-
symbolic inference with respect to Gy using
S, Rlvl).

As a result, the complete precedure with all op-
tional extensions are shown in Algorithm 4.

F Graph Matching Algorithm

In general, finding the largest common subgraph
is a well-known computationally intractable prob-
lem in graph theory. However, for graph parsing
problems where graphs have labels and a simple
tree-like structure, some efficient heuristics are
proposed to approximate the best match by a hill-
climbing algorithm (Cai and Knight, 2013). The
initial match is modified iteratively to optimize the
total number of matches with a predefined number
of iterations (default value set to 5). This algorithm
is very efficient and effective, it was also used to
calculate the SMATCH score in Cai and Knight
(2013).

Algorithm 4 Complete Procedure with All Extensions

Inputs:
Beam candidates and associated token-level
probabilities {p(gx|z)} e,
Output:
Neural-symbolic graph prediction G
(Optional) Estimate:
Mixture components {G, }oi—q, {p(m|z)N_,}
from Cluster {p(gx|z) }1—;

Optimal mixture components G = Gy,, where
m = arg max R(m|z)

Estimate:
Marginal probability and graphical model likelihood
(Algorithm 2):
{p(v]z)}vec,log p(Glz) = GAP(G)
Infer:
Global graph structure via likelihood-based pruning
(Algorithm 3)

G’ = ThresholdAndProject(G, {p(v|z)}vec)

Local node / edge prediction via compostitional
neural-symbolic inference (Algorithm 1)

G = NeuralSymbolicInference(G’)

G Details for OOD Datasets

Wikipedia (Wiki) The DeepBank team con-
structed a treebank for 100 Wikipedia articles on
Computational Linguistics and closely related top-
ics. The treebank of 11,558 sentences comprises 16
sets of articles. The corpus contains mostly declar-
ative, relatively long sentences, along with some
fragments.

The Brown Corpus (Brown) The Brown Cor-
pus was a carefully compiled selection of current
American English, totalling about a million words
drawn from a wide variety of sources.

The Eric Raymond Essay (Essay) The treebank
is based on translations of the essay “The Cathedral
and the Bazaar” by Eric Raymond. The average
length and the linguistic complexity of these sen-
tences is markedly higher than the other treebanked
corpora.

E-commerce While the ERG was being used in
a commercial software product developed by the
YY Software Corporation for automated response
to customer emails, a corpus of training and test
data was constructed and made freely available,
consisting of email messages composed by people
pretending to be customers of a fictional consumer
products online store. The messages in the corpus
fall into four roughly equal-sized categories: Prod-
uct Availability, Order Status, Order Cancellation,
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and Product Return.

Meeting/hotel scheduling (Verbmobil) This
dataset is a collection of transcriptions of spoken
dialogues, each of which reflected a negotiation
either to schedule a meeting, or to plan a hotel stay.
One dialogue usually consists of 20-30 turns, with
most of the utterances relatively short, including
greetings and closings, and not surprisingly with
a high frequency of time and date expressions as
well as questions and sentence fragments.

Norwegian tourism (LOGON) The Norwe-
gian/English machine translation research project
LOGON acquired for its development and evalu-
ation corpus a set of tourism brochures originally
written in Norwegian and then professionally trans-
lated into English. The corpus consists almost en-
tirely of declarative sentences and many sentence
fragments, where the average number of tokens
per item is higher than in the Verbmobil and E-
commerce data.

The Tanaka Corpus (Tanaka) This treebank
is based on parallel Japanese-English sentences,
which was adopted to be used with in the
WWWIJDIC dictionary server as a set of example
sentences associated within words in the dictio-
nary.

H Implementation and Hyperparameters

T5 Model We use the open-sourced T5X 4,
which is a new and improved implementation of
T5 codebase in JAX and Flax. Specifically, we
use the official pretrained T5-Large (770 million
parameters), which is the same size as the one used
in Lin et al. (2022), and finetuned it on DeepBank
in-domain training set. Specifically, the total train-
ing step is 1,750,000 including 1,000,000 pretrain
steps. For fine-tuning the TS model on ERG pars-
ing, batch size is set to 128, the output and input
sequence length is set to 512, and dropout rate is
setto 0.1.

Hyperparameters For the trade-off parameter
1

a(vlz) = o(—4H(v|x) + b), we set temperature
T = 0.1 and bias b = 0.25.

I In-domain Evaluation

Table 4 shows the in-domain performance, where
we compare our parser with the grammar-based

4https ://github.com/google-research/t5x

Model Node Edge SMATCH
ACE 89.30 85.05 87.14
ACE* 93.18 88.76 90.94
Buys and Blunsom (2017) 89.06 84.96 87.00
Chen et al. (2018) 94.51 87.29 90.86
Chen et al. (2019) 95.63 9143 93.56
Chen et al. (2019) 97.28 94.03 95.67
Cao et al. (2021) 96.42 93.73 95.05
ACE-TS5 (following Shaw et al. (2021)) | 93.46 89.19 91.30
T5-based (Lin et al., 2022) 97.34  95.80 96.56
+ Hoang et al. (2021) 88.89 87.67 88.22
+ Lin et al. (2022) 97.64 96.41 97.01
+ Ours 97.50 96.07 96.77

Table 4: F1 score for node and edge predictions and the
SMATCH scores on the in-domain test set. ACE* refers
to evaluation results only for valid parse.

ACE parser and other data-driven parsers. The
baseline models also include a similar practice with
(Shaw et al., 2021) and (Hoang et al., 2021). The
former one takes T35 as a backup for grammar-based
parser (ACE), and the latter gets ensembled graph
via a voting strategy based on the candidates from
the T5 parser and ACE parser.

From the table we can see that our methods out-
performs the base model (T5-based) and most of
the previous work. Specifically, we achieves a
SMATCH score of 96.77, which is a 6.11% error
reduction compared to the base TS parser.

J Fine-grained Linguistic Phenomena

Lexical construction ERG uses the abstract
node compound to denote compound words. The
edge labeled with ARG1 refers to the root of the
compound word, and thus can help to further dis-
tinguish the type of the compound into (1) nominal
with normalization, e.g., “flag burning”’; (2) nomi-
nal with noun, e.g., “pilot union”; (3) verbal, e.g.,
“state-owned”; (4) named entities, e.g., “West Ger-
many”.

Argument structure In ERG, there are differ-
ent types of core predicates in argument structures,
specifically, verbs, nouns and adjectives. We also
categorize verb in to basic verb (e.g., _look_v_1)
and verb particle constructions (e.g., _1ook_v_up).
The verb particle construction is handled semanti-
cally by having the verb contribute a relation par-
ticular to the combination.

Coreference ERG resolves sentence-level coref-
erence, i.e., if the sentence referring to the same
entity, the entity will be an argument for all the
nodes that it is an argument of, e.g., in the sen-
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Figure 5: Diagrams for the T5 model’s probabilities verses the TS5 model’s and ACE parser’s accuracies at subgraph
level on the other datasets. Each bin contains the same number of examples. Since at most of the subgraphs, the
model is pretty certain (log P > —1e — 5), we exclude these pretty certain predictions in the figures.

tence, “What we want to do is take a more aggres-
sive stance”, the predicates “want” (_want_v_1)
and “take” (_take_v_1) share the same agent “we”
(pron). Coreference can be presented as reentran-
cies in the ERG graph, we notice that one important
type of reentrancies is the passive construction, so
we also report evaluation on passive construction
in Table 2.

K Calibration Performance on Other
Datasets

The correlations between the subgraph’s probabil-
ity and performance on other datasets are shown in
Figure 5. The conclusions drew from the figure is
similar to the one discussed in Section 3.
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