
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 4635–4648
December 7-11, 2022 ©2022 Association for Computational Linguistics

Context-Situated Pun Generation
Jiao Sun1∗ Anjali Narayan-Chen2 Shereen Oraby2 Shuyang Gao2†

Tagyoung Chung2 Jing Huang2 Yang Liu2 Nanyun Peng2,3

1University of Southern California
2Amazon Alexa AI

3University of California, Los Angeles
jiaosun@usc.edu

{naraanja,orabys,shuyag,tagyoung,jhuangz,yangliud}@amazon.com
violetpeng@cs.ucla.edu

Abstract

Previous work on pun generation commonly
begins with a given pun word (a pair of homo-
phones for heterographic pun generation and a
polyseme for homographic pun generation) and
seeks to generate an appropriate pun. While
this may enable efficient pun generation, we
believe that a pun is most entertaining if it fits
appropriately within a given context, e.g., a
given situation or dialogue. In this work, we
propose a new task, context-situated pun gen-
eration, where a specific context represented
by a set of keywords is provided, and the task
is to first identify suitable pun words that are
appropriate for the context, then generate puns
based on the context keywords and the identi-
fied pun words. We collect X CUP (Context-
sitUated Pun), containing 4.5k tuples of con-
text words and pun pairs. Based on the new
data and setup, we propose a pipeline system
for context-situated pun generation, including
a pun word retrieval module that identifies suit-
able pun words for a given context, and a gener-
ation module that generates puns from context
keywords and pun words. Human evaluation
shows that 69% of our top retrieved pun words
can be used to generate context-situated puns,
and our generation module yields successful
puns 31% of the time given a plausible tuple of
context words and pun pair, almost tripling the
yield of a state-of-the-art pun generation model.
With an end-to-end evaluation, our pipeline sys-
tem with the top-1 retrieved pun pair for a given
context can generate successful puns 40% of
the time, better than all other modeling varia-
tions but 32% lower than the human success
rate. This highlights the difficulty of the task,
and encourages more research in this direction.

1 Introduction

Pun generation is a challenging creative genera-
tion task that has attracted some recent attention in
the research community (He et al., 2019; Yu et al.,

∗Work done during Jiao’s internship at Amazon.
†Work done while Shuyang was at Amazon.

Figure 1: Context-situated pun generation aims to find
relevant pun words to generate puns within a given
context. We propose a unified framework to generate
both homographic and heterographic puns; examples
shown here are human-written puns from our corpus.

2018, 2020; Mittal et al., 2022; Horri, 2011). As
one of the most important ways to communicate
humor (Abbas and Dhiaa, 2016), puns can help
relieve anxiety, avoid painful feelings and facilitate
learning (Buxman, 2008). At the same time, spon-
taneity is the twin concept of creativity (Moreno,
1955), which means the context matters greatly for
making an appropriate and funny pun.

Existing work on pun generation mainly focuses
on generating puns given a pair of pun-alternative
words or senses (we call it a pun pair). Specif-
ically, in heterographic pun generation, systems
generate puns using a pair of homophones involv-
ing a pun word and an alternative word (He et al.,
2019; Yu et al., 2020; Mittal et al., 2022). Alter-
natively, in homographic pun generation, systems
generate puns that must support both given senses
of a single polysemous word (Yu et al., 2018; Luo
et al., 2019; Tian et al., 2022). Despite the great
progress that has been made under such experimen-
tal settings, real-world applications for pun gener-
ation (e.g., in dialogue systems or creative slogan

4635

Type Pun pw/aw Context C Spw Saw

het.

Two construction workers
had a staring contest.

stair/
stare

construction
workers

support consisting of a place
to rest the foot while ascending
or descending a stairway

look at with fixed eyes

“I’ve stuck a pin through my
nose”, said Tom punctually.

punctually/
puncture pin, nose at the expected or proper time a small hole made

by a sharp object

hom.

A new type of broom came
out, it is sweeping the country.

sweep/
sweep

broom,
nation

sweep with a broom or as if
with a broom

win an overwhelming
victory in or on

If you sight a whale, it could
be a fluke.

fluke/
fluke whale a stroke of luck either of the two lobes

of the tail of a cetacean

Table 1: Two examples each of heterographic puns and homographic puns in the SemEval 2017 Task 7 dataset. We
construct context C by extracting keywords from the pun and excluding the pun word pw. Word sense information
Spw

and Saw
are retrieved from WordNet from SemEval annotated senses.

generation) rarely have these pun pairs provided.
Instead, puns need to be generated given a more
naturally-occurring conversational or creative con-
text, requiring the identification of a pun pair that is
relevant and appropriate for that context. For exam-
ple, given a conversation turn “How was the magic
show?”, a context-situated pun response might be,

“The magician got so mad he pulled his hare out.”
Motivated by real-world applications and the

theory that the funniness of a pun heavily relies
on the context, we formally define and introduce
a new setting for pun generation, which we call
context-situated pun generation: given a context
represented by a set of keywords, the task is to
generate puns that fit the given context (Figure 1).
Our contributions are as follows:

• We introduce a new setting of context situated
pun generation.

• To facilitate research in this direction, we
collect a large-scale corpus called X CUP
(Context-sitUated Pun), which contains 4,551
tuples of context keywords and an associated
pun pair, each labelled with whether they are
compatible for composing a pun. If a tuple is
compatible, we additionally collect a human-
written pun that incorporates both the context
keywords and the pun word.1

• We build a pipeline system with a retrieval
module to predict proper pun words given the
current context, and a generation module to
incorporate both the context keywords and the
pun word to generate puns. Our system serves

1Resources will be available at:
https://github.com/amazon-research/
context-situated-pun-generation

as a strong baseline for context situated pun
generation.

2 Task Formulation

Preliminaries. Ambiguity is the key to pun gen-
eration (Ritchie, 2005). First, we define the term
pun pair in our work. For heterographic pun gen-
eration, there exists a pair of homophones, which
we call pun word (pw) and alternative word (aw).
While only pw appears in the pun, both the mean-
ing of pw and aw are supported in the pun sentence.
Therefore, the input of heterographic pun genera-
tion can be written as (pw, Spw , aw, Saw), where
Spw and Saw are the senses of the pun word and
alternative word, respectively. We refer to these
as pun pairs, and use the shorthand (pw, aw) for
simplicity. For homographic pun generation, the
pun word is a polyseme that has two meanings;
here, we can use the same representation, where
pw = aw for homographic puns.

Formulation. Given the unified representation
for heterographic and homographic puns, we de-
fine the task of context-situated pun generation as:
Given a context C, which can be a sentence or
a list of keywords, find a pun pair (pw, Spw , aw,
Saw) that is suitable to generate a pun, then gen-
erate a pun using the chosen pun pair situated in
the given context. In this work, we assume we are
given a fixed set of pun pair candidates (Pw, Aw)
from which (pw, aw) are retrieved. The unified
format between heterographic and heterographic
puns makes it possible for us to propose a unified
framework for pun generation.

4636

https://github.com/amazon-research/context-situated-pun-generation
https://github.com/amazon-research/context-situated-pun-generation

pw / aw L Context-Situated Pun for hunts, deer

hedges/
edges 1 Why is the hunter so good at hunting deer?

Because he hunts life on the hedges

husky/husk 0 -

catch/
catch 1 He hunts deer but the catch is that they

rarely show up.

pine/
pine 1 Hunting deer in the forest always makes

him pine for the loss.

boar/
bore 1 He is so mundane about hunting deer,

but it is hardly a boar.

jerky/
jerky 1 What do you call an erratic deer that is

being hunted? Jerky

Table 2: Example annotations from the X CUP dataset.
Labels L indicate whether the annotator was able to
write a pun given the context and pun pair.

3 X CUP Dataset

Motivation. The largest and most commonly-
used dataset in the pun generation community is the
SemEval 2017 Task 7 dataset (Miller et al., 2017).2

Under our setting of context-situated pun genera-
tion, we can utilize keywords from the puns them-
selves as context. However, the majority of pun
pairs only occur once in the the SemEval dataset,
while one given context could have been compati-
ble with many other pun pairs. For example, given
the context beauty school, class, the original pun in
the SemEval dataset uses the homographic pun pair
(makeup, makeup) and says: “If you miss a class at
beauty school you’ll need a makeup session.” At
the same time, a creative human can use the hetero-
graphic pun pair (dyed, die) to instead generate “I
inhaled so much ash from the eye shadow palette at
the beauty school class – I might have dyed a little
inside.” Because of the limitation of the SemEval
dataset, we need a dataset that has a diverse set of
pun pairs combined with given contexts. Further-
more, the dataset should be annotated to indicate
whether the context words and pun pair combina-
tion is suitable to make context-situated puns.

Data Preparation. We sample puns that contain
both sense annotations and pun word annotations
from SemEval Task 7. We show two examples
of heterographic puns and homographic puns and
their annotations from the SemEval dataset in Ta-
ble 1. From this set, we sample from the 500 most
frequent (pw, aw) pairs and randomly sample 100

2https://alt.qcri.org/semeval2017/
task7/. The data is released under CC BY-NC 4.0 license
(https://creativecommons.org/licenses/
by-nc/4.0/legalcode).

unique context words C. 3 Combining the sampled
pun pairs and context words, we construct 4,552
(C, pw, aw) instances for annotation.

Annotation. For our annotation task, we asked
annotators to indicate whether they can come up
with a pun, using pun pair (pw, aw), that is situated
in a given context C and supports both senses Spw

and Saw . If an annotator indicated that they could
create such a pun, we then asked the annotator to
write down the pun they came up with. Meanwhile,
we asked annotators how difficult it is for them to
come up with the pun from a scale of 1 to 5, where 1
means very easy and 5 means very hard. 4 To aid in
writing puns, we also provided four T5-generated
puns as references. 5

We deployed our annotation task on Amazon Me-
chanical Turk using a pool of 250 annotators with
whom we have collaborated in the past, and have
been previously identified as good annotators. Each
HIT contained three (C, pw, aw) tuples and we paid
one US dollar per HIT.6 To ensure dataset quality,
we manually checked the annotations and accepted
HITs from annotators who tended not to skip all
the annotations (i.e., did not mark everything as
“cannot come up with a pun”). After iterative com-
munication and manual examination, we narrowed
down and selected three annotators that we marked
as highly creative to work on the annotation. To
check inter-annotator agreement, we collected mul-
tiple annotations for 150 instances and measured
agreement using Fleiss’ kappa (Fleiss and Cohen,
1973) (κ = 0.43), suggesting moderate agreement.

Statistics. After annotation, we ended up with
2,753 (C, pw, aw) tuples that are annotated as
compatible and 1,798 as incompatible. For the
2,753 compatible tuples, we additionally collected
human-written puns from annotators. The number
of puns we collected exceeds the number of an-
notated puns in SemEval 2017 Task 7 which have
annotated pun word and alternative word sense an-
notations (2,396 puns). The binary compatibility
labels and human-written puns comprise our re-
sulting dataset, X CUP (Context SitUated Puns).
Table 2 shows examples of annotations in CUP.

3We sample a limited number of context words to keep the
scale of data annotation feasible.

4Full annotation guidelines in Appendix D.
5Annotators find it extremely hard to come up with puns

from scratch. Generated texts greatly ease the pain.
6This translates to be well over $15/hr.

4637

https://alt.qcri.org/semeval2017/task7/
https://alt.qcri.org/semeval2017/task7/
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode

encoder

(charge, charge) 1 0.98

(brail, bail) 0

(premise, premise) 0

(4th, force) 1 0.93

(yuan, yawn) 0

Retrieval
Component

decoder

context words

...

context-situated pun

Pun Words Label Confidence

Connect
with Sense
Information

charge (pw): pay with a credit card
charge (aw): energize a battery by passing a current
through it in the direction opposite to discharge

4th (pw):: following the third position
force (aw): a powerful effect or influence

(pw, Spw, aw, Saw)

Generation
Component

Generate a pun that situates in …, using pun word {pw}, {pw} means {Spw } and {aw} means {Saw }

Pretraining on BookCorpus

Finetuning on SemEval

(pw, Spw, aw, Saw)

Input Context It is so hard to make even 25 cent profit 25 cent, profitContext Words

Figure 2: Our framework contains two components: (i) a retrieval component (top) that identifies relevant pun
words for a given context, and (ii) a generation component (bottom) that takes the context and retrieved pun words
and generates context-situated puns.

4 Context-Situated Pun Generation

We propose a pipeline framework to generate
context-situated puns, shown in Figure 2. It con-
sists of: (i) a retrieval-based module that selects a
set of relevant pun word pairs, and (ii) a generation
module that takes the context words and retrieved
pun word pairs as input to generate puns. In this
section, we briefly describe each component.

Pun Word Pair Retrieval. We propose a
retrieve-and-rank strategy to select k relevant pun
word pairs (pw, aw) from a large, fixed set of pun
word pairs (Pw, Aw) for a given context C. C
should be a list of keywords describing the con-
text. If the context is given as a sentence, we use
RAKE (Rose et al., 2010) to automatically extract
a list of keywords from the context to construct
C. For each context C, we apply a classifier to
all available pun word pairs in our data (Pw, Aw)
and retrieve pairs classified as suitable. Then, we
rank the suitable instances according to the model’s
confidence and take the top k instances as the final
retrieved (pw, aw) pun word pairs. We experiment
with both supervised and unsupervised approaches
to build the retrieval module in Section 5.1.

Pun Generation. Given pun word pair (pw, aw),
pun word senses Spw and Saw , and context C, the
pun generation module generates puns that relate
to C, incorporate pun word pw, and embody the

meanings Spw and Saw of the pun word pair. Since
there are limited pun datasets available for model
training, we adopt a two-stage strategy that involves
pretraining a T5-base (Raffel et al., 2020) model on
non-pun text to learn to incorporate words and their
senses in generations, then finetuning the model on
pun data to learn the structure of puns. We describe
our pun generation models in Section 5.2.

5 Experiments

We design our experiments to answer the following
three research questions:

Q1. What is the performance of the pun word
pair retrieval module? (Section 5.1)

Q2. What is the performance of the pun genera-
tion module? Is the pretraining stage necessary?
(Section 5.2)

Q3. How well does the pipeline system perform
in an end-to-end evaluation? Is the context-situated
pun generation task plausible for humans? (Sec-
tion 5.3)

5.1 Pun Word Pair Retrieval

In this task, for a given context C of keywords, the
goal is to select k relevant pun word pairs (pw, aw)
from a large, fixed set of pun word pairs (Pw, Aw).

4638

Approaches. We experiment with two ap-
proaches to building pun word pair retrieval sys-
tems, including supervised neural modeling and
unsupervised embedding-based approaches.

Neural. We finetune BERT-base (Devlin et al.,
2019), RoBERTa-base (Liu et al., 2019) and
DeBERTa-base (He et al., 2021) models on the
CUP dataset for pun word pair classification. The
input is formatted as sentence matching, where,
given the context C as sentence 1 and the pun word
pair as sentence 2, the output label indicates if the
two sentences are compatible. Additionally, we
experiment with finetuning natural language infer-
ence (NLI) models, RoBERTa-large-NLI (Liu et al.,
2019) and BART-large-MNLI (Lewis et al., 2020).
We use the context words as premise and the pun
word pair as hypothesis, with entailment and con-
tradiction labels as outputs. For each context, we
retrieve all pun pairs classified as suitable by the
model, then rank the instances according to the
model’s confidence (i.e., output from the last layer
after softmax) to retrieve the top-k pun pairs.

Unsupervised. The key idea behind the compati-
bility classification is to find pun word pairs that
are semantically close to the context. Therefore,
a natural question to ask is, “Can an unsuper-
vised method that measures semantic similarity
can perform as well as the neural method?” Here,
we use Euclidean distance between Glove embed-
dings (Pennington et al., 2014) of pun and con-
text words to measure the semantic similarity. For-
mally, for a context C consisting of a list of context
words c1, c2, ..., cn, we calculate the average Eu-
clidean distance between the Glove representation
of pw, aw and the embedding of each of context
word ci:

n∑

i=1

d(p⃗w, c⃗i) +
n∑

i=1

d(a⃗w, c⃗i). (1)

Then we rank all 500 possible (pw, aw) candidates
using the distance score above, retrieving the k
pairs with the smallest distance as the top-k re-
trieved pun word pairs.

Experiment Setup. We split CUP into 70% train-
ing, 10% validation and 20% test data. Table 3
shows the distribution of pun word compatibility
labels in our data splits. For each context word, we
use our models to retrieve pun word pairs from 500
candidate pairs for making context-situated puns. 7

7Further experimental details in Appendix A.

train dev test total

pos 1,873 290 590 2,753

neg 1,282 175 341 1,798

all 3,155 465 931 4,551

Table 3: X CUP data splits for the pun word pair re-
trieval task. We show the distribution of (C, pw, aw)
tuples labeled as suitable or unsuitable in each split.

Evaluation Metrics. For neural models, we first
benchmark the accuracy, precision, recall, and F1
of the model’s predictions for the pun word pair
classification task on the CUP dataset. Additionally,
for both approaches, we use the True Positive rate
(TP@N) to evaluate the performance of our pun
word retrieval module. It measures the percentage
of top-k retrieved pun word pairs that can be used
to generate puns for a given context. The higher
the TP@N is, the stronger the retrieval module is
in terms of retrieving appropriate pun word pairs.

Results. We show results of our supervised pun
word classifiers in Table 4. Our results show that
the task of classifying whether a context word
is compatible with a pun word pair is challeng-
ing for current pretrained LMs, with a best F1 of
64.72 from RoBERTa-large-NLI. Table 5 shows the
TP@N evaluation of pun word pairs retrieved by
our best neural model, finetuned RoBERTa-large-
NLI, and our unsupervised method. In general, the
supervised neural model outperforms the unsuper-
vised method. TP@1 shows that 69% of pun word
pairs retrieved by the neural model are compatible
with their given context, showcasing the effective-
ness of our retrieval module. We provide additional
qualitative analysis in Appendix C, Table 9.

5.2 Pun Generation
Given pun word pair (pw, aw), pun word senses
Spw and Saw , and context C, the task is to generate
a pun that relates to C, incorporates pun word pw,
and utilizes both pun word senses Spw and Saw .

Approach. For the novel task of context-situated
pun generation, we establish a baseline model that
uses a combination of pretraining on non-pun text
and finetuning on pun text to generate both ho-
mographic and heterographic puns. Our unified
framework for homographic and heterographic pun
generation is also new to the community. We eval-
uate the following model variants:

AmbiPun (Mittal et al., 2022). Previous systems

4639

dev test

F1 Precision Recall Acc F1 Precision Recall Acc

bert-base (Devlin et al., 2019) 62.291.18 62.231.16 62.581.28 64.020.96 62.390.34 62.300.31 62.560.38 64.700.28

roberta-base (Liu et al., 2019) 63.910.79 63.880.72 64.570.71 65.090.90 61.850.17 61.730.17 62.140.09 63.910.32

deberta-base (He et al., 2021) 63.930.62 63.840.58 64.140.70 65.730.54 62.551.49 62.481.47 62.701.59 64.911.28

roberta-large-nli (Liu et al., 2019) 67.250.69 67.130.70 67.450.65 68.960.71 64.720.42 64.960.63 64.600.30 67.600.73

bart-large-nli (Lewis et al., 2020) 67.330.74 67.280.82 67.540.52 69.031.05 63.810.39 63.830.53 63.870.20 66.310.79

Table 4: Pun word classification performance of neural models on CUP, showing that our task is challenging for
pretrained LMs. We report models’ performance across three random seeds with standard deviation as subscripts.

TP@1 TP@5 TP@10 TP@20

Unsupervised 64.0 59.4 60.2 61.5

� Neural 69.0 63.2 61.7 59.3

Table 5: TP@N results for supervised (neural) and unsu-
pervised approaches for pun word retrieval. TP stands
for True Positive rates.

for heterographic pun generation explicitly require
homophones, making it hard to adapt them to ho-
mographic puns (Yu et al., 2020; He et al., 2019).
Therefore, we use AmbiPun, a the state-of-the-art
homographic pun generation model, to generate
both homographic and heterographic puns without
further finetuning. Following their prompt format,
we use “generate sentence: {C}, {pw}, {aw}” for
homographic puns and “generate sentence: {C},
{pw}” for heterographic puns.

Finetuned T5 (T5FT). We finetune T5-base (Raf-
fel et al., 2020) on the SemEval 2017 Task 7
dataset (Miller et al., 2017), in which puns are an-
notated with pun word pairs pw and aw along with
their sense information Spw and Saw . We construct
C using the RAKE (Rose et al., 2010) keyword ex-
traction algorithm on the pun text, and further ver-
ify them against human-annotated keywords from
an augmentation of the SemEval dataset we de-
signed to enable keyword-conditioned pun genera-
tion (Sun et al., 2022). During finetuning, we use
the input prompt: “generate a pun that situates in
{C}, using the word {pw}, {pw} means {Spw} and
{aw} means {Saw}”. The goal of finetuning is to
teach the model to incorporate both word senses in
the final generated puns.

Finetuned T5 with pretraining (T5PT+FT). Here,
we investigate whether the model can learn to in-
corporate words and their senses into the gener-
ated sentences by pretraining on non-pun text. To
this end, we automatically construct a pretrain-

ing dataset from BookCorpus (Zhu et al., 2015).
For each word w ∈ {pw, aw} in a given pun
word pair, 8 we mine 200 sentences that contain
w from BookCorpus. 9 We extract keywords from
a given BookCorpus sentence containing w using
RAKE to construct context C. We retain noun
and verb keywords, as they are more likely to have
significant impact at the sentence level (Kim and
Thompson, 2000; Cutler and Foss, 1977), and ex-
clude pun word w from the keyword list. Using
these automatically-constructed samples, we fine-
tune T5 (Raffel et al., 2020) to generate sentences
situated in C that incorporate w, using the input
prompt: “generate a sentence that situates in {C},
using the word {w}, {w} means {Sw} and {w}
means {Sw}”, the output of which is the retrieved
sentence from BookCorpus that uses C and w.

Experiment Setup. We finetune our T5 models
on 1,382 training samples from SemEval Task 7
that contain both pun word and sense annotations.
For testing, we randomly sample 200 (C, pw, aw)
tuples from CUP that annotators marked as com-
patible. We use each model to generate puns for
this set and compare their performance. 10

Evaluation Metrics. We report pun word incor-
poration rate as the automatic evaluation metric
to measure the model’s ability to incorporate pun
words in the final generation. We also conduct hu-
man evaluation on Amazon Mechanical Turk to
judge whether the generated puns are successful. 11

8We select heterographic pun pairs (pw ̸= aw) to avoid
introducing polysemic ambiguity in the pretraining stage.

9We lemmatize w and the sentence using Spacy (https:
//spacy.io/) so grammatical features will not have impact
on our mining.

10Further experimental details in Appendix B.
11Turkers had to pass a qualifier by correctly labeling >=

80% of 20 samples that we manually annotated. Success
is defined as whether the text supports both senses of the
pun word. We measure inter-annotator agreement among 3
annotators using Fleiss’ kappa (κ = 0.49), showing moderate
agreement.

4640

https://spacy.io/
https://spacy.io/

Model pw Incorp. % Success %

AmbiPun 97.22 11.11

T5FT 96.67 23.89

� T5PT+FT 97.22 31.11

Table 6: Pun generation results using automatic (pun
word incorporation) and human (success rate) evalua-
tion. We compare our finetuned T5 models to a state-
of-the-art baseline, AmbiPun (Mittal et al., 2022). PT
stands for Pre-Training and FT stands for Fine-Tuning.

Results. Pun generation results are shown in Ta-
ble 6. We find that: (1) adding the pretraining stage
helps our model better incorporate pun words, and
(2) our generation module can generate successful
puns at almost triple the rate of the current state-of-
the-art framework AmbiPun (examples in Table 7).
We hypothesize that this is because AmbiPun is
a completely unsupervised approach in which the
pun generator is not finetuned on any pun data, and
because our models additionally benefit from rich
word sense information in the input.

5.3 End-to-end Evaluation

Finally, we evaluate how well our pipeline retrieves
relevant pun word pairs and generates novel puns
given a context of keywords in an end-to-end fash-
ion, and compare our pipeline’s performance to
human-standard annotations from CUP.

Experiment Setup. We randomly choose 60 con-
text words to conduct the end-to-end evaluation.
For each context, we use both unsupervised and
neural pun word retrieval modules from Section 5.1
to retrieve the top-1 predicted pun word pair, then
use each of the pun generation modules from Sec-
tion 5.2 to generate puns using the retrieved pun
word pair. We also compare with human perfor-
mance. For each context, we find the human-
written pun in CUP that annotators indicated was
least difficult to write, randomly sampling one pun
in case of ties. We use annotation difficulty as
a proxy for ranking human context-situated puns,
assuming more natural puns are easier to write.

Evaluation Metrics. We measure the incorpo-
ration rate of context words C and pun words pw
as automatic evaluation metrics. In addition, sim-
ilar to standalone pun generation evaluation, we
conduct human evaluation to judge whether the
generated puns are successful.

Results. We report results of combinations of our
retrieval and generation modules in Table 8. We
show that: (i) our pretraining step is helpful in
terms of both improving the keyword incorporation
rate and pun success rate of the generation module,
despite using retrieved pun words as input. (ii) Our
pipeline system performs the best among all model
variations, yielding a success rate of pun genera-
tion of 40%. This success rate improves over the
best reported in Section 5.2 (31%), showcasing the
benefit of using our neural pun word retrieval mod-
ule over randomly sampling pun word pairs for a
given context. However, (iii) the best model per-
formance is still about 32% lower than the human
success rate, indicating that humans can complete
the context-situated pun generation task plausibly
and much more successfully, indicating large room
for improvement.

6 Related Work

Our work proposes an approach for conditional
generation of humor using a retrieve-and-generate
framework. More specifically, our work enables
a constrained type of pun generation. We briefly
summarize existing work in these directions.

Humor generation. With the recent advent of
diverse datasets (Hasan et al., 2019; Mittal et al.,
2021; Yang et al., 2021), it has become easier
to detect and generate humor. While large pre-
trained models have been fairly successful at hu-
mor detection, humor generation still remains an
unsolved problem, and is usually studied in specific
settings. Petrović and Matthews (2013) generate
jokes of the type ‘I like my X like I like my Y,
Z’. Garimella et al. (2020) develop a model to fill
blanks in a Mad Libs format to generate humorous
sentences, and Yang et al. (2020) edit headlines to
make them funny. More research is required to gen-
erate humorous sentences that are not constrained
by semantic structure.

Retrieve and generate. Our work proposes a
retrieval and generation pipeline for generating
context-situated puns. The retrieval component
finds proper pun word pairs for the current con-
text, and the generation component generates puns
utilizing context words and pun word pairs. Simi-
larly, Yu et al. (2020) adopt a pair of homophones,
retrieve sentences that contain either word from
a large corpus then edit the sentence into a pun
sentence. Sun et al. (2021) first retrieve syntac-

4641

Context pw/aw Generated Pun

scientist, liquid assay/ Ours: A scientist who is a liquid chemical expert can’t assay the problem.
chemicals, problem say Ambi.: What do you call a scientist with a liquid chemicals problem? an assay-ist.

fruit vendor, yammered/ Ours: She was only a Fruit Vendor’s daughter, but she yammered.
daughter yam Ambi.: My daughter yammered at the fruit vender... she said i’m not a fruit vender.

opera, orchestra
conductors

pitch/
pitch

Ours: Conductors of the opera had to make a good pitch.
Ambi.: Why do opera and orchestra conductors pitch their voices?

because they can’t sing.

company football
team, meeting,
get together

kickoff/
kickoff

Ours: A football team’s meeting was about to kick off.
Ambi.: I’m going to get together for a company football team meeting

before kickoff.

Table 7: Examples of generated context-situated puns from our system and AmbiPun (Mittal et al., 2022).

Retrieval Generation Incorp. % Success %
Sec 5.1 Sec 5.2 C pw

Human 81.94 75.67 71.67

Unsup.
AmbiPun 100.00 92.66 10.00
T5FT 91.67 80.76 26.67
T5PT+FT 97.22 80.74 26.67

Neural
AmbiPun 98.51 97.34 21.67
T5FT 91.04 78.08 23.33
T5PT+FT 97.01 79.83 40.00

Table 8: End-to-end evaluation of our system against
AmbiPun and human baselines.

tic parses and then generate paraphrases that keep
the semantic meaning while conforming to the re-
trieved syntactic parses.

Pun generation. Previous work on pun genera-
tion has focused on heterographic pun generation or
homographic pun generation (Miller and Gurevych,
2015; Hong and Ong, 2009; Petrović and Matthews,
2013; Valitutti et al., 2013). At the same time, all
of them require an input of pun words and assume
pun words are given. Heterographic pun generation
requires a pair of homophones, and homographic
pun generation requires a polyseme, i.e., a pun
word that has more than one meaning. He et al.
(2019) make use of local-global surprisal principle
to generate heterographic puns and Yu et al. (2020)
use constrained lexical rewriting for the same task.
Hashimoto et al. (2018) use a retrieve and edit ap-
proach to generate homographic puns and Yu et al.
(2018); Luo et al. (2019) propose complex neural
model architectures such as constrained language
model and GAN. Mittal et al. (2022) generate ho-
mographic puns given a polyseme and try to incor-
porate the multiple senses of the polyseme. Tian
et al. (2022) proposed a unified framework to gener-
ate both homographic and homophonic puns. Our

setting is different from all previous work, first ask-
ing what pun words we should use for generating a
pun in a given context. Meanwhile, our work finds
the connection between heterographic pun genera-
tion and homographic pun generation: both types
must utilize the two meanings of a pair of words.
For heterographic pun generation, the two mean-
ings come from the pair of homophones, while for
homographic pun generation, the two meanings
come from the polyseme itself. Motivated by this,
we propose a unified framework that can generate
both heterographic puns and homographic puns
adaptively.

7 Conclusion and Future Work

We propose a new setting for pun generation:
context-situated pun generation. As a pioneer-
ing work, to facilitate future research in this direc-
tion, we first collect a large-scale corpus, X CUP,
which contains 4,551 annotated context and pun
word pairs annotated for compatibility, along with
2,753 human-written puns for the compatible pairs,
which is of an even larger size than the current most
commonly-used pun dataset, SemEval 2017 Task
7 (Miller et al., 2017). To benchmark the perfor-
mance of the state-of-the-art NLG techniques on
the proposed task, we build a pipeline system com-
posed of a pun pair retrieval module that identifies
suitable pun pairs for a given context, and a gener-
ation module that generates context-situated puns
given the context and compatible pun pairs. Hu-
man evaluation shows that the best model achieves
40% success rate in end-to-end evaluation, trailing
behind human performance by almost 32%, high-
lighting the challenge of the task and encouraging
more future work in this direction.

Our work introduces the concept of situating
in context to pun generation. However, future

4642

work can easily extend the idea and framework to
other areas of creative generation, such as metaphor
generation, lyric generation, and others. Another
promising future direction is to integrate the gen-
erated puns into the original conversational or situ-
ational context to improve the interestingness and
engagingness of the downstream applications. We
hope our work can inspire more innovations on
context-situated creative generation.

Acknowledgements

We thank PlusLab members for the discussion and
early feedback about this new setup. We also thank
anonymous reviewers for their constructive feed-
back and suggestions that helped improve the draft.

Limitations

In this work, we focus on the task of pun generation,
a specific area of creative language and humor gen-
eration. We acknowledge that humor is a highly
subjective area, i.e., what might be perceived as
humorous may differ greatly from one person to
another depending on their unique backgrounds
and experiences. We hope this work and dataset
can be used more broadly to give insight into how
humor can differ based on contextual nuances and
personal characterizations.

Ethics

We hereby acknowledge that all of the co-authors
of this work are aware of the provided ACL Code
of Ethics and honor the code of conduct.

Since we use pretrained language models for
our generation tasks, we note that this makes our
models susceptible to generating biased or sensi-
tive content. While we do not explicitly address
concerns around bias/sensitive content within our
framework to date, we aim to incorporate these con-
siderations into pun generation as we develop new
models, including methods to filter our inputs and
generated data for toxicity and biased references
that may be deemed offensive.

References
Nawal Abbas and Sura Dhiaa. 2016. Pun and (un) in-

tentional humor. Journal of American Academic re-
search, 4:1–18.

Karyn Buxman. 2008. Humor in the OR: A stitch in
time? AORN journal, 88(1):67–77.

Anne Cutler and Donald J Foss. 1977. On the role of
sentence stress in sentence processing. Language
and speech, 20(1):1–10.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Joseph L. Fleiss and Jacob Cohen. 1973. The equiva-
lence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educational
and Psychological Measurement, 33:613 – 619.

Aparna Garimella, Carmen Banea, Nabil Hossain, and
Rada Mihalcea. 2020. “judge me by my size (noun),
do you?” YodaLib: A demographic-aware humor
generation framework. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 2814–2825, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Md Kamrul Hasan, Wasifur Rahman, AmirAli
Bagher Zadeh, Jianyuan Zhong, Md Iftekhar Tanveer,
Louis-Philippe Morency, and Mohammed (Ehsan)
Hoque. 2019. UR-FUNNY: A multimodal language
dataset for understanding humor. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2046–2056, Hong Kong,
China. Association for Computational Linguistics.

Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and
Percy S. Liang. 2018. A retrieve-and-edit framework
for predicting structured outputs. In NeurIPS, pages
10073–10083.

He He, Nanyun Peng, and Percy Liang. 2019. Pun
generation with surprise. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1734–1744, Minneapolis, Minnesota.
Association for Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In International
Conference on Learning Representations.

Bryan Anthony Hong and Ethel Ong. 2009. Automati-
cally extracting word relationships as templates for
pun generation. In Proceedings of the Workshop
on Computational Approaches to Linguistic Creativ-
ity, pages 24–31, Boulder, Colorado. Association for
Computational Linguistics.

4643

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/D19-1211
https://doi.org/10.18653/v1/D19-1211
http://papers.nips.cc/paper/8209-a-retrieve-and-edit-framework-for-predicting-structured-outputs
http://papers.nips.cc/paper/8209-a-retrieve-and-edit-framework-for-predicting-structured-outputs
https://doi.org/10.18653/v1/N19-1172
https://doi.org/10.18653/v1/N19-1172
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://aclanthology.org/W09-2004
https://aclanthology.org/W09-2004
https://aclanthology.org/W09-2004

Abolfazl Horri. 2011. Linguistic mechanisms of humor:
Pun and/or ambiguity. Language Related Research,
2(2):19–40.

Mikyong Kim and Cynthia K Thompson. 2000. Pat-
terns of comprehension and production of nouns and
verbs in agrammatism: Implications for lexical orga-
nization. Brain and language, 74(1):1–25.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Fuli Luo, Shunyao Li, Pengcheng Yang, Lei Li, Baobao
Chang, Zhifang Sui, and Xu Sun. 2019. Pun-GAN:
Generative adversarial network for pun generation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3388–
3393, Hong Kong, China. Association for Computa-
tional Linguistics.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of English puns. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 719–729, Beijing, China.
Association for Computational Linguistics.

Tristan Miller, Christian Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 task 7: Detection
and interpretation of English puns. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 58–68, Vancouver,
Canada. Association for Computational Linguistics.

Anirudh Mittal, Pranav Jeevan P, Prerak Gandhi,
Diptesh Kanojia, and Pushpak Bhattacharyya. 2021.
“so you think you’re funny?”: Rating the humour
quotient in standup comedy. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10073–10079, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Anirudh Mittal, Yufei Tian, and Nanyun Peng. 2022.
AmbiPun: Generating humorous puns with ambigu-
ous context. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1053–1062, Seattle, United States.
Association for Computational Linguistics.

Jacob L Moreno. 1955. Theory of spontaneity-creativity.
Sociometry, 18(4):105–118.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Saša Petrović and David Matthews. 2013. Unsupervised
joke generation from big data. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
228–232, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Graeme Ritchie. 2005. Computational mechanisms
for pun generation. In Proceedings of the Tenth
European Workshop on Natural Language Gener-
ation (ENLG-05), Aberdeen, Scotland. Association
for Computational Linguistics.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications and
theory, 1(1-20):10–1002.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AESOP:
Paraphrase generation with adaptive syntactic control.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5176–5189, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jiao Sun, Anjali Narayan-Chen, Shereen Oraby,
Alessandra Cervone, Tagyoung Chung, Jing Huang,
Yang Liu, and Nanyun Peng. 2022. ExPUNations:
Augmenting puns with keywords and explanations.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Yufei Tian, Divyanshu Arun Sheth, and Nanyun Peng.
2022. A unified framework for pun generation with
humor principles. In Proceedings of the Findings of
ACL at 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP-findings).

Alessandro Valitutti, Hannu Toivonen, Antoine Doucet,
and Jukka Toivanen. 2013. "let everything turn well
in your wife": Generation of adult humor using lexi-
cal constraints. volume 2.

4644

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/D19-1336
https://doi.org/10.18653/v1/D19-1336
https://doi.org/10.3115/v1/P15-1070
https://doi.org/10.3115/v1/P15-1070
https://doi.org/10.18653/v1/S17-2005
https://doi.org/10.18653/v1/S17-2005
https://doi.org/10.18653/v1/2021.emnlp-main.789
https://doi.org/10.18653/v1/2021.emnlp-main.789
https://doi.org/10.18653/v1/2022.naacl-main.77
https://doi.org/10.18653/v1/2022.naacl-main.77
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/P13-2041
https://aclanthology.org/P13-2041
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/W05-1614
https://aclanthology.org/W05-1614
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://doi.org/10.18653/v1/2021.emnlp-main.420

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang
Che, Ting Liu, Shijin Wang, and Guoping Hu. 2020.
TextBrewer: An Open-Source Knowledge Distilla-
tion Toolkit for Natural Language Processing. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demon-
strations, pages 9–16, Online. Association for Com-
putational Linguistics.

Zixiaofan Yang, Shayan Hooshmand, and Julia
Hirschberg. 2021. CHoRaL: Collecting humor re-
action labels from millions of social media users.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4429–4435, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A neural
approach to pun generation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1650–1660, Melbourne, Australia. Association for
Computational Linguistics.

Zhiwei Yu, Hongyu Zang, and Xiaojun Wan. 2020. Ho-
mophonic pun generation with lexically constrained
rewriting. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2870–2876, Online. Association for
Computational Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

4645

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-demos.2
https://doi.org/10.18653/v1/2020.acl-demos.2
https://doi.org/10.18653/v1/2021.emnlp-main.364
https://doi.org/10.18653/v1/2021.emnlp-main.364
https://doi.org/10.18653/v1/P18-1153
https://doi.org/10.18653/v1/P18-1153
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.229

A Classifier Implementation Details

We finetune five pretrained language models for
classifying whether context words and pun word
pairs are compatible in Table 4, and we use Hug-
gingFace (Wolf et al., 2020) throughout our im-
plementation for accessing model checkpoints and
modeling. For hyper-parameter search, we tried the
combinations of learning rate {1e−4, 3e−4, 1e−5,
3e−5} * training epoch {3, 10, 20}. The final hyper-
parameters for bert-base, roberta-base and deberta-
base are: learning rate 1e−5, training epoch 20
and training batch size 32. For roberta-large-mnli
and bart-large-mnli models, we reduce the training
epochs to 3 and training batch size to 8. We choose
the checkpoint with the best accuracy on the dev
set for inference.

B T5 Implementation Details

We finetune multiple T5 models (Raffel et al., 2020)
in our work, and we use T5-base from SimpleT5 12

throughout our implementation. We use 512 and
256 for the maximum source length and the maxi-
mum target length respectively. As the optimizer,
we use AdamW (Loshchilov and Hutter, 2019) with
a learning rate of 0.0001. For the pretraining stage,
we finetune T5 for 3 epochs on retrieved Book-
Corpus data. During the finetuning stage, we train
each model on a Tesla V100 with a batch size of
8 for 30 epochs. During inference, we use beam
search as the decoding method with a beam size of
2. We terminate decoding when the EOS token is
generated or the maximum target length is reached.

C Retrieved Pun Word Pair Examples

Table 9 shows examples of retrieved pun word pairs
from both the unsupervised and neural methods.

D Annotation Guidelines

Figure 3 shows our annotation interface for collect-
ing the CUP dataset.

12https://github.com/Shivanandroy/
simpleT5

4646

https://github.com/Shivanandroy/simpleT5
https://github.com/Shivanandroy/simpleT5

Context SemEval Annot. Modeling Retrieved Pun Word Pairs

einstein, parents relatively, relativity Unsupervised (kid, kid), (father, feather), (allow, aloud), (census, sense), (throng, wrong)

neural (relatively, relativity), (pinch, pinch), (pupil, pupil), (father, feather), (kid, kid)

bright star seriously, sirius Unsupervised (bright, bright), (guess, guest), (limelight, lime), (father, feather), (mist, miss)

neural (bright, bright), (light, light), (constellation, consolation), (seriously, sirius),
(serious, sirius)

interpreters, die sign, sign Unsupervised (go, go), (turn, turn), (dye, die), (throng, wrong), (get, get)

neural (connection, connection), (dye, die), (sign, sign), (sentence, sentence),
(fluently, flue)

Table 9: Examples of retrieved pun word pairs from both the unsupervised and the neural method. We highlight the
annotated pun word pairs from the SemEval dataset in the prediction list in bold. However, using the annotated pun
word pairs as the only ground truth underestimates the pun word retrieval module. As shown here, both methods
can retrieve pun word pairs that are related to the context. However, these (context words, pw, aw) combinations are
missing from the original SemEval annotations. This again highlights the importance of collecting X CUP that
includes (context words, pw, aw) pairs to facilitate future studies in the context-situated pun generation domain.

4647

Figure 3: The annotation interface for collecting CUP dataset.

4648

