Continued Pretraining for Better Zero- and Few-Shot Promptability

Zhaofeng Wu®

Pete Walsh® Akshita Bhagia®

Robert L. Logan IV"
Dirk Groeneveld®”

thl;

Sameer Sing Iz Beltagy”

SMIT TDataminr Inc.

2Allen Institute for Artificial Intelligence

zfw@csail.mit.edu

{petew,akshitab,dirkg,beltagy}@allenai.org

Abstract

Recently introduced language model prompt-
ing methods can achieve high accuracy in zero-
and few-shot settings while requiring few to
no learned task-specific parameters. Never-
theless, these methods still often trail behind
full model finetuning. In this work, we investi-
gate if a dedicated continued pretraining stage
could improve “promptability”, i.e., zero-shot
performance with natural language prompts or
few-shot performance with prompt tuning. We
reveal settings where existing continued pre-
training methods lack promptability. We also
identify current methodological gaps, which
we fill with thorough large-scale experiments.
We demonstrate that a simple recipe, contin-
ued pretraining that incorporates a trainable
prompt during multi-task learning, leads to im-
proved promptability in both zero- and few-
shot settings compared to existing methods, up
to 31% relative. On the other hand, we find that
continued pretraining using MAML-style meta-
learning, a method that directly optimizes few-
shot promptability, yields subpar performance.
We validate our findings with two prompt tun-
ing methods, and, based on our results, we
provide concrete recommendations to optimize
promptability for different use cases.

1 Introduction

Conditioning language models (LMs) on manually-
written or learned continuous prompts allows them
to solve tasks with high accuracy and minimal pa-
rameter overhead (Brown et al., 2020; Li and Liang,
2021; Lester et al., 2021, i.a.). However, prompt-
ing performance often still lags behind traditional
full finetuning. Natural language prompts usually
underperform trained models even when manually
curated (Brown et al., 2020; Sanh et al., 2022). Sim-
ilarly, while learned prompts yield higher accuracy,

This work was done when Zhaofeng Wu was at AI2, and
Robert Logan was at UCL

We release our code and models at https://github.
com/allenai/better-promptability.

‘*’University of California, Irvine
rlogan@dataminr.com
sameer@uci.edu

they do not work as well when the training data is
scarce (Gu et al., 2022), when the model is small
or moderately sized (Lester et al., 2021), and when
the tasks are difficult (He et al., 2022).

To reduce the gap between prompt and full
model tuning, past work has shown that continued
pretraining on data that resembles the downstream
prompting setup induces better “promptability”,
i.e., zero-shot performance with natural language
(NL) prompts and few-shot performance of prompt
tuning (Sanh et al., 2022; Gu et al., 2022). However,
in this paper, we identify several shortcomings of
these methods. First, continued pretraining on NL
prompts (Sanh et al., 2022) sometimes causes per-
formance degradation with prompt tuning. Second,
continued pretraining approaches that learn only a
universal prompt initialization (Gu et al., 2022; Vu
et al., 2022) bring only marginal improvement on
the P3 datasets (Bach et al., 2022).

To further improve zero-shot and few-shot
promptability, we investigate gaps in existing meth-
ods with different parameter configurations and
training procedures. First, we explore the effect
of incorporating a learned continuous prompt into
multi-task learning (MTL), and find it to signifi-
cantly improve zero- and few-shot promptability
across the board. In addition, we explore MAML-
style meta-learning (Finn et al., 2017; Nichol et al.,
2018) as an alternative to the standard continued
pretraining paradigm, but find that it underperforms
simple MTL, despite its previous success on few-
shot learning tasks (Li et al., 2017; Gu et al., 2018;
Qian and Yu, 2019, i.a.). We perform an analysis of
this phenomenon and present several explanations.

Through large-scale experiments, each involv-
ing continued pretraining on over 9B tokens (§A),
we make several contributions: (1) we thoroughly
evaluate continued pretraining methods, both ex-
isting and our proposed ones, in many setups; (2)
we demonstrate that a simple continued pretraining
recipe improves over existing methods by up to

4517

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 4517-4531
December 7-11, 2022 ©2022 Association for Computational Linguistics

https://github.com/allenai/better-promptability
https://github.com/allenai/better-promptability

31%; (3) we show that MAML-style meta-learning
underperforms multi-task learning and provide ex-
planations; (4) we provide concrete recommen-
dations to improve promptability in various use
cases.

2 Prompting

We review two types of prompting that we use: nat-
ural language (NL) prompting and prompt tuning.
Traditionally, NLP tasks are solved by task-
specific models that predict label y €) from
input x € X. We can consider LMs as func-
tions that score any source and target text pair,
LM : V* x V* — R with vocabulary V.! Past
work found that large LMs can be repurposed to
solve many tasks by casting x, y into a text format
using a template function f : X U) — V* and tak-
ing as prediction arg max,,cy, LM (f(x), f(v')).
NL prompts, or instructions, are manually
constructed f(-). Without task-specific training,
they have been successfully used to elicit predic-
tions from LMs to perform tasks with high accu-
racy (Brown et al., 2020; Logan IV et al., 2022).
Sharing the motivation, prompt tuning learns
a continuous prompt to condition the model. It
takes the source text embedded by the LM input
embeddings, s € RY*? with length N and di-
mension d, and prepends learnable embeddings
E € RE*4, where L is a hyperparameter, to ob-
tain a new (L + N)-lengthed embedded sequence.
We consider hybrid prompt tuning, where s is the
embedding of the templatized f(x), i.e., prompt
tuning is always performed in addition to NL tem-
plates. This has been widely adopted due to demon-
strated better performance (Gu et al., 2022; Min
et al., 2022). We also study a variant of prompt tun-
ing, sometimes called prefix tuning (Li and Liang,
2021), where the learnable vectors are added not
only to the input but all transformer layers. See
Lester et al. (2021) and Li and Liang (2021) for
more details on these methods. Following the ter-
minology of Liu et al. (2022b), we refer to the
input-level method as shallow prompt tuning and
the layer-specific method as deep prompt tuning.

3 Improving Promptability

In this section, we describe existing methods to
improve promptability and a new paradigm that

"We focus on encoder-decoder LMs based on T5 (Raffel
et al., 2020). Past work considers them to work better than
decoder-only LMs for prompting (Sanh et al., 2022).

combines their advantages.

While prompt tuning sometimes performs close
to full model finetuning (Lester et al., 2021; Liu
et al., 2022b), there is often still a substantial gap,
such as with limited training data (Gu et al., 2022),
non-gigantic models (Lester et al., 2021), or chal-
lenging tasks (He et al., 2022). We therefore study
ways to improve LMs’ “promptability.” We focus
on a low resource setup and consider zero-shot
NL prompts and few-shot learned prompts (which,
again, are in conjunction with NL prompts; §2).
For the former, better promptability increases the
performance when LMs face textual prompts of
new tasks. For the latter, it more effectively lever-
ages limited training examples for higher accuracy.

We investigate if promptability can improve with
a continued pretraining stage after LM pretraining
(or LM adaptation for LM-adapted T5 (Lester et al.,
2021)) and before task-specific finetuning. The
model is trained on a collection of tasks that have
NL prompts and evaluated on unseen tasks. The
methods that we explore below differ in how the
continued pretraining stage is performed. We use
the notation MTL-T_P_ to abbreviate those meth-
ods that are based on multi-task learning, where
the blanks _ specify different configurations of the
transformer (T) and the prompt (P) components
during MTL. Architecturally, a method may con-
tinue to pretrain only the TS model without prompt
parameters, in which case we use to denote
the lack of them; otherwise, both transformer and
prompt parameters exist during MTL. We use &
and '# to denote if the corresponding component is
trained or frozen in MTL, respectively. This nota-
tion describes the continued pretraining stage only:
in the final finetuning stage, all methods include
both the transformer and prompt components, but
only the latter is updated.

Continued pretraining has been studied in lim-
ited settings. Sanh et al. (2022) proposed TO by
multi-task training a TS model (Raffel et al., 2020)
as continued pretraining. They updated TS5 pa-
rameters through learning on continued pretrain-
ing tasks, not including a prompt component, and
showed that this training improves zero-shot NL
promptability. Following our nomenclature, we re-
fer to this paradigm as MTL-T#4” X. Additionally,
Gu et al. (2022) employed a similar stage, incor-
porating and multi-task training a shallow prompt
as continued pretraining, while freezing the trans-
former parameters in this stage. They showed that

4518

this strategy helps few-shot promptability during
finetuning. We refer to this paradigm as MTL-
TP,

In this work, we study the gains of the previous
two continued pretraining approaches, as well as a
model that synthesizes them, MTL-T#P#, which
we are the first to propose. For few-shot down-
stream tuning, the learned prompt can act as a good
initialization compared to MTL-T4 X. In the zero-
shot setup, prior work has discovered that includ-
ing certain text in a prompt, such as “Let’s think
step by step,” can adjust the reasoning of LMs to
yield substantially improved performance across
tasks (Kojima et al., 2022; Askell et al., 2021). The
learned prompt here could function analogously.
Compared to MTL-T #P#&, on the other hand, the
additional capacity brought by more updatable pa-
rameters could further boost model performance.

MAML-style meta-learning (Finn et al., 2017)
directly optimizes for the downstream updates
and can outperform MTL for full model finetun-
ing (Dou et al., 2019; Bansal et al., 2020a). Yet,
it similarly remains unexplored for prompting.
We examine first-order MAML (FOMAML; Finn
etal., 2017), performing " steps of prompt tuning
in the inner loop and updating all parameters in
the outer loop. We also evaluate a version of Rep-
tile (Nichol et al., 2018) adapted for our setting that
performs 7" steps of prompt tuning followed by one
step of full model tuning, and use the resulting Rep-
tile gradient for model updates. They have the same
architecture as MTL-T&P# and all parameters are
trainable too. We provide a detailed description
and theoretical discussion of these processes in §B.
See the original papers for more details.

4 Experimental Setup

We use P3, a collection of NL-templatized exam-
ples for a variety of datasets, for training and evalu-
ation using the standard splits in Sanh et al. (2022).
Not only is there no dataset overlap between train-
ing and evaluation, but no task overlap either (e.g.,
sentiment vs. QA), making it challenging. We re-
port dataset statistics in §A. We perform continued
pretraining for one epoch over all training datasets.
Each dataset has multiple templates, each evaluated
with accuracy. As different datasets have differ-
ent numbers of answer choices and hence different
baseline accuracy, we report Average Relative Gain
(ARG; Ye et al., 2021) as a single summary metric
by averaging across all templates the relative ac-

curacy improvement over a random baseline. We
perform significance testing using bootstrap with
1,000 iterations, in each iteration randomly sam-
pling evaluation examples and comparing the two
models in question. §D reports per-dataset results.
Following Sanh et al. (2022), we initialize the
continued pretraining stage from TS5 finetuned with
an LM objective (Lester et al., 2021), making it
more amenable to prompting. We experiment with
two sizes: T5-Large with 770M parameters and T5-
XL with 3B parameters. We retrain TO (Sanh et al.,
2022), i.e. MTL-T#P X, to eliminate confounding
factors in the training procedure. We also repro-
duce Gu et al. (2022)’s experiment in our setup, i.e.
MTL-T*P#&, pretraining a shallow prompt with
other parameters frozen. During few-shot finetun-
ing, we train on the same 16 examples for 100
epochs. §C reports additional hyperparameters.

5 Results

Table 1 reports our results. From No Cont. Pre-
training, we find that continued pretraining is cru-
cial for prompt tuning with low resources—without
it, only few-shot deep prompt tuning yields slightly
above-random performance. These results contra-
dict previous findings that few-shot prompt tuning
works well without this stage (Min et al., 2022). We
believe this is due to the challenging nature of the
P3 evaluation datasets, compared to the simple sen-
tence classification tasks previously investigated.
This is consistent with what He et al. (2022) ob-
served in the full-data setting where deep prompt
tuning performs sub-optimally on difficult tasks.

Existing methods for continued pretraining have
their drawbacks. In contrast to Gu et al. (2022),
we found that MTL-T #P#& with a shallow prompt
does not substantially perform above random. We
attribute this to (1) their simpler evaluation tasks
which, unlike ours, have decent prompt-tuned per-
formance without continued pretraining; and (2)
their hand-designed pretraining tasks that match
their evaluation tasks, while P3 conversely avoids
training-evaluation task overlap, requiring general-
izability. Vu et al. (2022) also found MTL-T #P#
to be effective, though with high resources. We
also compare with TO, i.e. MTL-T&PX, where
both the official model and our reproduction suffer
from degraded performance when few-shot shallow
prompt tuned (compared to 0-shot), likely because
the prompt added during finetuning is intrusive, and
the limited gradient updates are not sufficient to re-

4519

T5-Large (770M)

T5-XL (3B)

Shallow

Deep Shallow Deep

0-shot 16-shot 0-shot 16-shot (0-shot 16-shot 0-shot 16-shot

No Cont. Pretraining (LM-adapted TS) -1.9* -1.5 -19* 23 -15* -15 -1.5* 3.7
Previous methods

MTL-T*P% (Ours a la Gu et al. (2022)) 2.8 2.9 — — -1.7 -1.6 — —
MTL-T&P X (Sanh et al., 2022) — — — — 25.2* 19.1 25.2* 33.8
MTL-T&P X (Our reproduction) 26.7% 23.1 26.7F 32.6 32.4* 30.0 32.4% 429
Our methods

MTL-TaP% 302 30.2 287 374 335 335 333 432
FOMAML 21.8 21.8 208 328 277 277 245 400
Reptile 184 184 249 330 23.1 232 263 39.7

Table 1: Average Relative Gain (ARG) on the P3 evaluation datasets. Random performance is 0.0 ARG. Each row

in Our methods represents four pretrained models, for Large/XL x Shallow/Deep, while MTL-T®

shares the

pretrained model for Shallow and Deep as it has no pretrained prompt. We bold the highest number in each column.
*: These models have no prompt and hence no Shallow/Deep distinction in 0-shot experiments.

cover from it. We note that the official TO model is
not well-optimized: even without hyperparameter
tuning, our implementation is significantly better
(p < 0.001 for all).

MTL-T&P% significantly outperforms MTL-
TP X, the strongest existing method we examine,
across all settings (p < 0.005 for all) except for
few-shot deep prompt tuning on T5-XL (p = 0.21).
For zero-shot NL promptability, the improvement
could be due to the extra model capacity, or the
multi-task trained prompt adjusting the reasoning
of the LM, analogous to the text-based “Let’s think
step by step” effect (Kojima et al., 2022). For few-
shot shallow prompt tuning, unlike MTL-T&P X,
MTL-T#P# does not degrade in performance, re-
sulting in 31% higher ARG than MTL-T#4” X on
T5-Large. This is likely because of the model’s
familiarity with the prompt, though the limited ca-
pacity of shallow prompt tuning does not yield
benefits either. Nevertheless, with deep prompt tun-
ing, which gives the model sufficient conditioning
capacity, few-shot tuning does lead to performance
increase, again outperforming MTL-T&P x. Here,
MTL-T#P& provides a good prompt initialization
and alleviates its intrusiveness. These results em-
phasize the importance of continued pretraining
being aware of the downstream finetuning process.
Interestingly, however, the gap between these two
models shrinks as the model size increases, no
longer significant at T5-XL (p = 0.21). Also, no-
tably, pretraining with a shallow prompt has better
0-shot performance than a deep prompt. This high-

lights that higher pretraining capacity is not always
beneficial, and matches our motivation from text-
based conditioning which also happens at the input
level.

FOMAML and Reptile surprisingly underper-
form MTL-T&P¢ in few-shot prompt tuning, even
though they specifically optimize for this proce-
dure and have demonstrated success in NLP for
full model finetuning (Dou et al., 2019; Bansal
et al., 2020b, 2021, i.a.) and few-shot learning (Gu
et al., 2018; Qian and Yu, 2019; Mi et al., 2019,
i.a.). While Ye et al. (2021) also found FOMAML
to underperform MTL, they sub-optimally only per-
formed one inner loop update. Here, we show that
this comparison holds for more appropriate hyper-
parameters. This could be due to the fewer number
of gradient updates: to perform one gradient update,
MTL uses one training batch, while FOMAML
with T inner loop steps or Reptile with T prompt
tuning steps use 7" 4 1 batches. Not only might
this be an inefficient use of training examples, but
compute FLOPs too, since each inner loop/prompt
tuning step involves a full forward-backward pass.
We attempt using a 7" + 1 times smaller meta batch
size (see §B for more detail) to pretrain a deep
T5-Large-sized Reptile. When prompt-tuned, it
achieves 22.8 ARG, which is even lower, possibly
due to higher gradient estimation noise. Alterna-
tively, other factors could affect the performance of
meta-learning. It is, for example, well-known that
MAML-style meta-learning can be unstable and

4520

sensitive to architectures and hyperparameters (An-
toniou et al., 2019). This instability is likely am-
plified by our large heterogeneous multi-task setup
and our inability to afford hyperparameter search.
Furthermore, its theoretical foundation has mostly
only been examined through simple optimizers, pre-
dominantly SGD (Finn et al., 2017; Nichol et al.,
2018). How it interacts with optimizers more com-
mon in modern NLP, such as Adafactor (which we
use), remains to be explored.

Recommendations. Based on our findings, we
recommend practitioners to always incorporate
a prompt during continued pretraining and to
train the entire model. Without downstream task-
specific tuning, such as when there is no train-
ing data or sufficient compute, a shallow prompt
yields better accuracy. When few-shot task-specific
prompt tuning is affordable, continued pretraining
with a deep prompt enables the best performance.

6 Conclusion

We demonstrated that the simple recipe of con-
tinued pretraining with a prompt significantly
improves zero-shot NL promptability and few-
shot learned promptability. MAML-based meta-
learning, on the other hand, obtains worse perfor-
mance, for which we provided several explanations.
Nonetheless, we believe future efforts to leverage
their conceptual advantage could be fruitful, per-
haps aided by our observations. We also hope to
study the effect of continued pretraining with other
parameter injection methods (Houlsby et al., 2019;
Hu et al., 2022; Liu et al., 2022a).

Limitations

Due to the expensive nature of our experiments,
each involving continued pretraining on over 9B to-
kens (§A), we could not afford to perform hyperpa-
rameter tuning, and instead took hyperparameters
from prior work. It is, nevertheless, possible that
careful hyperparameter tuning might yield slightly
different trends from what we observed. Further-
more, because of computational constraints, we
were unable to perform experiments on the largest
released TS5 model with 11B parameters. Though
we validated our findings on two model sizes,
it has been found that larger models sometimes
demonstrate qualitatively different results (Srivas-
tava et al., 2022; Lampinen et al., 2022; Wei et al.,
2022). We would be excited to see if our experi-
ments could be reproduced at a larger model scale.

Acknowledgments

We appreciate Victor Sanh, Albert Webson, Colin
Raffel, Zaid Alyafeai, and other members of the
Bigscience project who answered many of our ques-
tions when we reimplemented TO, and Yuxian Gu
when we reimplemented Gu et al. (2022). We also
thank Sébastien M. R. Arnold whose help was cru-
cial for our meta-learning implementation. We are
also grateful for the members at AI2 and UC Irvine,
as well as the anonymous reviewers for their valu-
able feedback.

References

Antreas Antoniou, Harrison Edwards, and Amos
Storkey. 2019. How to train your MAML. In Inter-
national Conference on Learning Representations.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, Nelson El-
hage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment.

Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gun-
jan Chhablani, Han Wang, Jason Fries, Maged Al-
shaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Dragomir Radev, Mike
Tian-jian Jiang, and Alexander Rush. 2022. Prompt-
Source: An integrated development environment and
repository for natural language prompts. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 93—104, Dublin, Ireland. Association for
Computational Linguistics. Accessed from https:
//huggingface.co/datasets/bigscience/P3.

Trapit Bansal, Karthick Prasad Gunasekaran, Tong
Wang, Tsendsuren Munkhdalai, and Andrew McCal-
lum. 2021. Diverse distributions of self-supervised
tasks for meta-learning in NLP. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5812-5824, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Trapit Bansal, Rishikesh Jha, and Andrew McCallum.
2020a. Learning to few-shot learn across diverse nat-
ural language classification tasks. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5108-5123, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

4521

https://openreview.net/forum?id=HJGven05Y7
https://doi.org/10.48550/ARXIV.2112.00861
https://doi.org/10.48550/ARXIV.2112.00861
https://doi.org/10.48550/ARXIV.2112.00861
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://huggingface.co/datasets/bigscience/P3
https://huggingface.co/datasets/bigscience/P3
https://doi.org/10.18653/v1/2021.emnlp-main.469
https://doi.org/10.18653/v1/2021.emnlp-main.469
https://doi.org/10.18653/v1/2020.coling-main.448
https://doi.org/10.18653/v1/2020.coling-main.448

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,
and Andrew McCallum. 2020b. Self-supervised
meta-learning for few-shot natural language classifi-
cation tasks. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 522-534, Online. Association
for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating meta-learning algorithms for
low-resource natural language understanding tasks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 1192—
1197, Hong Kong, China. Association for Computa-
tional Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70

of Proceedings of Machine Learning Research, pages
1126-1135. PMLR.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816-3830, Online. Association for Computa-
tional Linguistics.

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li,
and Kyunghyun Cho. 2018. Meta-learning for low-
resource neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3622-3631,
Brussels, Belgium. Association for Computational
Linguistics.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. PPT: Pre-trained prompt tuning for few-shot
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8410-8423, Dublin,
Ireland. Association for Computational Linguistics.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners.

Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y.
Chan, Kory Matthewson, Michael Henry Tessler, An-
tonia Creswell, James L. McClelland, Jane X. Wang,
and Felix Hill. 2022. Can language models learn
from explanations in context?

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li.
2017. Meta-sgd: Learning to learn quickly for few-
shot learning.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022b. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68,
Dublin, Ireland. Association for Computational Lin-
guistics.

4522

https://doi.org/10.18653/v1/2020.emnlp-main.38
https://doi.org/10.18653/v1/2020.emnlp-main.38
https://doi.org/10.18653/v1/2020.emnlp-main.38
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/D19-1112
https://doi.org/10.18653/v1/D19-1112
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2205.11916
https://doi.org/10.48550/ARXIV.2205.11916
https://doi.org/10.48550/ARXIV.2204.02329
https://doi.org/10.48550/ARXIV.2204.02329
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.48550/ARXIV.1707.09835
https://doi.org/10.48550/ARXIV.1707.09835
https://doi.org/10.48550/ARXIV.2205.05638
https://doi.org/10.48550/ARXIV.2205.05638
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8

Robert Logan 1V, Ivana Balazevic, Eric Wallace, Fabio
Petroni, Sameer Singh, and Sebastian Riedel. 2022.
Cutting down on prompts and parameters: Simple
few-shot learning with language models. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 2824-2835, Dublin, Ireland.
Association for Computational Linguistics.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings.
2019. Meta-learning for low-resource natural lan-
guage generation in task-oriented dialogue systems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,
pages 3151-3157. International Joint Conferences on
Artificial Intelligence Organization.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 53165330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Alex Nichol, Joshua Achiam, and John Schulman. 2018.
On first-order meta-learning algorithms.

Kun Qian and Zhou Yu. 2019. Domain adaptive dialog
generation via meta learning. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 2639-2649, Florence, Italy.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596-4604.
PMLR.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam

4523

Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adria Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ameet Rahane, Anantharaman S.
Iyer, Anders Andreassen, Andrea Santilli, Andreas
Stuhlmiiller, Andrew Dai, Andrew La, Andrew
Lampinen, Andy Zou, Angela Jiang, Angelica Chen,
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto-
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi,
Arfa Tabassum, Arul Menezes, Arun Kirubara-
jan, Asher Mullokandov, Ashish Sabharwal, Austin
Herrick, Avia Efrat, Aykut Erdem, Ayla Karakas,
B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
Barttomiej Bojanowski, Batuhan Ozyurt, Behnam
Hedayatnia, Behnam Neyshabur, Benjamin Inden,
Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake
Howald, Cameron Diao, Cameron Dour, Cather-
ine Stinson, Cedrick Argueta, César Ferri Ramirez,
Chandan Singh, Charles Rathkopf, Chenlin Meng,
Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris
Waites, Christian Voigt, Christopher D. Manning,
Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft,
Cristina Garbacea, Damien Sileo, Dan Garrette, Dan
Hendrycks, Dan Kilman, Dan Roth, Daniel Free-
man, Daniel Khashabi, Daniel Levy, Daniel Mosegui
Gonzélez, Danny Hernandez, Danqi Chen, Daphne
Ippolito, Dar Gilboa, David Dohan, David Drakard,
David Jurgens, Debajyoti Datta, Deep Ganguli, De-
nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen,
Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar
Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho
Lee, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Se-
gal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth
Donoway, Ellie Pavlick, Emanuele Rodola, Emma
Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang,
Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan
Kim, Eunice Engefu Manyasi, Evgenii Zheltonozh-
skii, Fanyue Xia, Fatemeh Siar, Fernando Martinez-
Plumed, Francesca Happé, Francois Chollet, Frieda
Rong, Gaurav Mishra, Genta Indra Winata, Gerard
de Melo, German Kruszewski, Giambattista Paras-
candolo, Giorgio Mariani, Gloria Wang, Gonzalo
Jaimovitch-Lopez, Gregor Betz, Guy Gur-Ari, Hana
Galijasevic, Hannah Kim, Hannah Rashkin, Han-
naneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry
Shevlin, Hinrich Schiitze, Hiromu Yakura, Hong-
ming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble,
Jaap Jumelet, Jack Geissinger, Jackson Kernion, Ja-
cob Hilton, Jachoon Lee, Jaime Fernandez Fisac,
James B. Simon, James Koppel, James Zheng, James
Zou, Jan Kocon, Jana Thompson, Jared Kaplan,
Jarema Radom, Jascha Sohl-Dickstein, Jason Phang,
Jason Wei, Jason Yosinski, Jekaterina Novikova,
Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen
Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Ji-
aming Song, Jillian Tang, Joan Waweru, John Bur-
den, John Miller, John U. Balis, Jonathan Berant,
Jorg Frohberg, Jos Rozen, Jose Hernandez-Orallo,
Joseph Boudeman, Joseph Jones, Joshua B. Tenen-

https://doi.org/10.18653/v1/2022.findings-acl.222
https://doi.org/10.18653/v1/2022.findings-acl.222
https://doi.org/10.24963/ijcai.2019/437
https://doi.org/10.24963/ijcai.2019/437
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.48550/ARXIV.1803.02999
https://doi.org/10.18653/v1/P19-1253
https://doi.org/10.18653/v1/P19-1253
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html

baum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz,
Karen Livescu, Karl Krauth, Karthik Gopalakrish-
nan, Katerina Ignatyeva, Katja Markert, Kaustubh D.
Dhole, Kevin Gimpel, Kevin Omondi, Kory Math-
ewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar
Shridhar, Kyle McDonell, Kyle Richardson, Laria
Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lian-
hui Qin, Lidia Contreras-Ochando, Louis-Philippe
Morency, Luca Moschella, Lucas Lam, Lucy No-
ble, Ludwig Schmidt, Luheng He, Luis Oliveros
Colén, Luke Metz, Liitfi Kerem Senel, Maarten
Bosma, Maarten Sap, Maartje ter Hoeve, Madotto
Andrea, Maheen Farooqi, Manaal Faruqui, Mantas
Mazeika, Marco Baturan, Marco Marelli, Marco
Maru, Maria Jose Ramirez Quintana, Marie Tolkiehn,
Mario Giulianelli, Martha Lewis, Martin Potthast,
Matthew L. Leavitt, Matthias Hagen, Métyas Schu-
bert, Medina Orduna Baitemirova, Melody Arnaud,
Melvin McElrath, Michael A. Yee, Michael Co-
hen, Michael Gu, Michael Ivanitskiy, Michael Star-
ritt, Michael Strube, Michat Swedrowski, Michele
Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike
Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mo-
hit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh
Gheini, Mukund Varma T, Nanyun Peng, Nathan
Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas
Cameron, Nicholas Roberts, Nick Doiron, Nikita
Nangia, Niklas Deckers, Niklas Muennighoff, Ni-
tish Shirish Keskar, Niveditha S. Iyer, Noah Con-
stant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar
Agha, Omar Elbaghdadi, Omer Levy, Owain Evans,
Pablo Antonio Moreno Casares, Parth Doshi, Pascale
Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormo-
labashi, Peiyuan Liao, Percy Liang, Peter Chang,
Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr
Mitkowski, Piyush Patil, Pouya Pezeshkpour, Priti
Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin
Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel
Habacker, Ramén Risco Delgado, Raphaél Milliere,
Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku
Arakawa, Robbe Raymaekers, Robert Frank, Rohan
Sikand, Roman Novak, Roman Sitelew, Ronan Le-
Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Rus-
lan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Sto-
vall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M.
Mohammad, Sajant Anand, Sam Dillavou, Sam
Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R.
Bowman, Samuel S. Schoenholz, Sanghyun Han,
Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian,
Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebas-
tian Gehrmann, Sebastian Schuster, Sepideh Sadeghi,
Shadi Hamdan, Sharon Zhou, Shashank Srivastava,
Sherry Shi, Shikhar Singh, Shima Asaadi, Shixi-
ang Shane Gu, Shubh Pachchigar, Shubham Tosh-
niwal, Shyam Upadhyay, Debnath Shyamolima, Sia-
mak Shakeri, Simon Thormeyer, Simone Melzi,
Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee,
Spencer Torene, Sriharsha Hatwar, Stanislas De-
haene, Stefan Divic, Stefano Ermon, Stella Bider-
man, Stephanie Lin, Stephen Prasad, Steven T. Pi-
antadosi, Stuart M. Shieber, Summer Misherghi, Svet-
lana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal
Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto,

4524

Te-Lin Wu, Théo Desbordes, Theodore Rothschild,
Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo
Schick, Timofei Kornev, Timothy Telleen-Lawton,
Titus Tunduny, Tobias Gerstenberg, Trenton Chang,
Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Sha-
ham, Vedant Misra, Vera Demberg, Victoria Nyamai,
Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu,
Vishakh Padmakumar, Vivek Srikumar, William Fe-
dus, William Saunders, William Zhang, Wout Vossen,
Xiang Ren, Xiaoyu Tong, Xinyi Wu, Xudong Shen,
Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
Yasaman Babhri, Yejin Choi, Yichi Yang, Yiding Hao,
Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou,
Yuntao Bai, Zachary Seid, Zhao Xinran, Zhuoye
Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and
Ziyi Wu. 2022. Beyond the imitation game: Quanti-
fying and extrapolating the capabilities of language
models.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,

and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039-5059, Dublin, Ireland. Association
for Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,

Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.

CrossFit: A few-shot learning challenge for cross-
task generalization in NLP. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 71637189, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.48550/ARXIV.2206.07682
https://doi.org/10.48550/ARXIV.2206.07682
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572

Input: Number of inner loop steps 7', meta
batch size B

Initialize LM-adapted TS5 parameters ¢°"2

global_grad =0

forb«+ 1,---, Bdo

¢ = clone(¢°"2)

fort<1,---,Tdo
data = next_batch() // support
grad = forward_backward(¢, data)
update(¢, grad, prompt_only=True)

data = next_batch() // query
grad = forward_backward(¢, data)
| global_grad += grad

global_grad = global_grad / B

update(¢°2, global_grad, prompt_only=False)
Algorithm 1: The FOMAML algorithm for
prompt tuning.

A Dataset Details

We use P3 as our training and evaluation
datasets (Bach et al., 2022). It contains 35 datasets
grouped into 8 tasks: Multiple-Choice QA, Extrac-
tive QA, Closed-Book QA, Sentiment, Topic Clas-
sification, Structure-To-Text, Summarization, and
Paraphrase Identification. Examples in each dataset
are templatized using multiple human-written tem-
plates. Across the 35 datasets, there are a total of
313 templates. For continued pretraining, we fol-
low Sanh et al. (2022) and only use the training
split of each dataset. Four tasks are held out for
evaluation in P3: Sentence Completion, Natural
Language Inference, Coreference Resolution, and
Word Sense Disambiguation. They consist of 11
evaluation datasets (considering the three splits of
ANLI as separate datasets) and 116 templates in
total. We use the training split of each dataset for
few-shot experiments, and, following Sanh et al.
(2022), evaluate on the validation splits. The only
exception is StoryCloze which does not have a
training split, so we use its validation split for train-
ing and evaluate on its test split. Unlike TO, we do
not evaluate on the BIG-Bench datasets (Srivastava
et al., 2022) as they had not stabilized as a collec-
tion of datasets at the time of this work. All the
prompts in P3 are collected in English.

To make training more efficient, we right-
truncate all source sequences to 768 tokens and
target sequences to 192 tokens. For the continued
pretraining stage, this affects 2% of all training

Input: Number of inner loop steps 7', meta
batch size B, inner loop learning rate o
Initialize LM-adapted TS5 parameters ¢°"i¢
global_grad =0
forb<1,---, Bdo
¢ = clone(¢°2)
fort<1,---,Tdo
data = next_batch() // support
grad = forward_backward(¢, data)
update(¢, grad, prompt_only=True)
data = next_batch() // query
grad = forward_backward(¢, data)
update(¢, grad, prompt_only=False)
global_grad = ¢
global_grad = global_grad / (aB) + ¢°1¢
update(¢°2, global_grad, prompt_only=False)

Algorithm 2: The Reptile algorithm for prompt
tuning.

examples, and among the 313 templates, 24 have
more than 1% examples truncated. Also, following
Sanh et al. (2022), we cap all datasets to have a
maximum of 500k examples. This results in 31.6M
training examples across all datasets and templates,
totaling 5.7B tokens on the source side and 3.5B
tokens on the target side.

B Meta-Learning Details

In this section, we elaborate on our meta-learning
training procedures. Algorithm 1 contains pseudo-
code for our first-order MAML (FOMAML) pro-
cedure. In the inner loop, we perform 7" steps of
prompt tuning on a cloned model using support
data. In the outer loop, we use query data to evalu-
ate the prompt-tuned model and compute gradients.
We use the first-order approximation where the gra-
dient is not taken with respect to the entire prompt
tuning process but only the forward pass with query
data because it is computationally more tractable,
and past work has shown that this first-order ap-
proximation does not hurt performance much, if at
all (Finn et al., 2017; Dou et al., 2019). Theoreti-
cally, to perfectly simulate the downstream prompt
tuning procedure, we should use the same batch
of support data for the 7" steps of update. Never-
theless, this would traverse the training data much
more slowly, so we use different support batches.
Our theoretical analysis through the perspective of
Reptile below also justifies this.

In preliminary experiments, we found a naive

4525

adoption of Reptile (Nichol et al., 2018) to yield
subpar performance. As there is no inner- and
outer-loop distinction in Reptile, doing prompt tun-
ing leads to only the prompt parameter being up-
dated throughout the entire continued pretraining
stage, likely causing the performance degradation.
This effect is also seen in our multi-task learning
setup with the MTL-T P& model. Thus, we pro-
pose to adapt Reptile to better suit prompt tuning,
which we illustrate in Algorithm 2. It is similar
to FOMAML, but instead of considering the outer
loop’s gradient as the meta-learning gradient, it
uses - S8 (¢ — ¢b) where b is the cloned
model’s final parameter for meta-batch b.

Now we theoretically justify our proposed Rep-
tile version, mostly following the original proof
structure in Nichol et al. (2018), in the context of
prompt tuning. We can think of the downstream
finetuning stage as starting from the initial model
parameters ¢y and performing 71" steps of prompt
tuning on the same batch of training data which
produces a loss function Liin(¢) for some model
parameters ¢. Then this model is evaluated on
some test data that similarly produces a loss func-
tion Lt (¢r) for the final trained model ¢7. Let
us first abbreviate some gradients and Hessians:

0
tram (¢l) = P sz = Lrain (¢z)
H; = Lgam (¢l)
test (¢0>
=L {/est (¢0)

Then we can write each step of the prompt tuning
process as an update function:

U(¢) =¢—amo Ltrdln(¢)
U (¢) =I-aMo Lgdll’l((ﬁ)

where « is the learning rate and m and M are
boolean masks that contain 1 for the prompt pa-
rameters. o indicates element-wise multiplication,
which we prescribe to take the highest precedence
in the equations below.

With T iterations of U, we have:

T-1

¢r=¢o—amo Y g; ()

J=0

Plugging in Equation 1, by Taylor’s theorem:

9i = Lirain(¢i)
= L;raln(¢0) + Ltram(¢0)(¢i -

= go + Ho(¢; — do) + O(a?)
i1

=go — aHymo Zgj + 0(a?)
=0

¢0) + O(a?)

= go — aiHom oo gy + O(a?)
)

where the last step can be seen by induction, itera-
tively applying the second-to-last line.

With a similar process, we can derive:

The FOMAML gradient is the same as L. (¢7).
Plugging in Equation 2 but sweeping its non-
leading terms into O(a?):

JFOMAML = test(¢T)
- Lies (¢) + L{ést(d)o)((bT - ¢0)
O(a?)

—9+H(¢T—¢o)+0()
T—1

zg—aﬁmoZgj—i-(’)(oﬂ)
=0

=g —alTHmo gy + O(a?)

The full MAML gradient takes the derivative
throughout the entire prompt tuning process. Plug-
ging in Equation 3 and gromamL = Lieg (¢7) and
sweeping terms into O(a?) when possible:

4526

0
IMAML = % Lyt (¢T)

0
= %Ltm(U(U(. o U(¢0))))
= U/(¢0)U/(¢l) e UI(QSTfl)Léest(qST)

T-—1
= H (I —aMo Lgain(¢j))> L'iest((bT)
j=0

T-1
= H (I —aMo H])) L(est((bT)
=0

T-1
=|1l—-aMo Z Hj) L{est((bT)
=0

+0(a?)
T—1
= (IaMo ZH]) (gfozTFmogo)
§=0
+0(a?)
= —aTMo Hy) (g— aTHmo gp)
+0(a?)
=g—aTMo Hyg—aTHmo g
+0(a?)

The Reptile gradient, in our adaptation, takes
the prompt’s gradient during the 7' steps and the
entire model’s gradient for one step. Taking the
Reptile gradient from Algorithm 2 and using ¢741
to represent the parameters after the outer loop full-
finetuning update:

1
IReptile = E(Gbo — or+1)
T—1
=mo Z gj + groMAML
=0
T—1
=mo Z (90 — ajHom o go)
=0
+ gromamL + O(a?)
(T -1
= Tm O go — a(Z)m O (Homogo)
+ gromamL + O(a?)
=g+Tmog
(T —1
— 06(2)1'1'1 (¢] (H(]m o go)

—aTHmo gy + O(a?)

We can see that all three meta-learning gradi-
ents have a similar effect: they only contain a

mixture of lone gradients terms (g, gg), which act
as a pure multi-task learning objective, and terms
that are Hessian times gradient, which Nichol et al.
(2018) termed “AvgGradlnner” and showed to en-
courage the expected similarity between different
data batches, improving generalization.

Back to our use of different data batches in FO-
MAML’s inner loop and Reptile’s prompt tuning
steps. If the inner loop uses the same support (i.e.,
training) data, as in the derivation above, the “Avg-
GradInner” terms become somewhat degenerate,
with the same term scaled 7" or w times. With
different inner loop batches, on the other hand,
there would be more diverse Hessian-gradient in-
teractions between different batches of data and
hence encouraging generalization between more
tasks.

C Training Details

Due to the expensiveness of our experiments, we
did not perform any hyperparameter tuning. For
all continued pretraining runs, we follow Raffel
et al. (2020) and Sanh et al. (2022) and use Adafac-
tor (Shazeer and Stern, 2018) with a 0.001 learning
rate. We use a batch size of 4,096 which we calcu-
lated to be close to what Sanh et al. (2022) used.?
We clip gradients to unit norm. For shallow prompt
tuning, we follow Min et al. (2022) and use L = 20
prompt tokens, each with the same dimension as
the word embedding size, on the source side only.
For deep prompt tuning, we similarly use 20 hid-
den vectors that are prepended in every transformer
layer, on both the source and target side for added
capacity. For meta-learning, we use a batch size of
16, simulating our 16-shot evaluation (see below),
and a meta batch size of 128. We perform 7 steps
of inner loop updates (FOMAML) / prompt tun-
ing (Reptile), following Bansal et al. (2020b) and
Bansal et al. (2021), and similarly using Adafactor
with learning rate 0.001. All continued pretraining
experiments run for one epoch over the training
datasets with no checkpoint selection. In few-shot
finetuning, we train on one batch of 16 randomly
selected examples for 100 epochs (the same batch
throughout training), following Min et al. (2022).
Like Min et al. (2022), we do not manually balance
the label distribution in these examples, unlike in
prior work (Gao et al., 2021; Logan IV et al., 2022).

They used example packing by putting multiple examples
in one sequence to better suit TPUs, which we didn’t use, so
the batch sizes are not perfectly comparable.

4527

We perform all experiments on 80GB A100
GPUs. Each continued pretraining run takes four
(sometimes eight) of them. The largest MTL model
takes 10 days to pretrain with four GPUs, while the
largest meta-learning model takes 14 days.

D Per-Dataset Results

In Figures 1 to 3, we compare the per-dataset ac-
curacy of MTL-T&P X (our reproduction), MTL-
TaPs, FOMAML, and Reptile. We omit MTL-
T#P& due to its near-random performance.

4528

ANLIR1

0.42 | EE MTLTL-PX -
[MTLTL-PL
0.40{ T FOMAML _
[Reptile
—-- Random
0.38 v *
0.36 ¢
>
9
i
3 034
g - P SRS S e —— P . - — - -
0.32 4
0.30 4 -+
L] + +
0.28 M
+
0.26 1 T T T T T T T T
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-0Shot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot
ANLI R2
0.42 1 .
0.401 L]
* (]
L] L]
L]
0.38 1 +
0.36
>
o
i
g 034
2 i T o B o s inlny pinieil L -
0.32 1
" " 0 MTLTL-PX
0.30 . [MTLTL-Po
[FOMAML
0.28 [Reptile
—=- Random
T T T T T T T T
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-0Shot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot
ANLIR3
0 MTLTL-PX
0.42] 1 MILTe-PL
[FOMAML
0.40] 1 Reptile
—=- Random
0.38
o 4
2 0.36
jid
=
S 034
. F-Tp-—-
0.32 1
*
0.30 4
L] L]
0.28
L]
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-OShot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot
CB
0.90 A
0.80 A
0.70 4
¢ +
0.60 —
L]
>
&
£ 0501 —_
o
B
0.40 4
__ s T e
.30 * L]
030 - [MTLTe-PX
¢ ¢ 0 MTLTo-Pa
0201 [FOMAML
1 Reptile
0107 4 & & # D e e D A [I S [) -=- Random
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-OShot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot

Figure 1: Per-dataset accuracy of MTL-T#P X (our reproduction), MTL-T&P#, FOMAML, Reptile, and the
random baseline (part 1).

4529

COPA

0.90 A
o i$
>
@
g ot R ¢ M
£ ¢ ¢
', . + ’ + ¢
+
0.60 4 ¢ ¢ [MTLTe-PX
¢ [MTLTS-Pe
1 FOMAML
[Reptile
050 +- - —-_— - Random +
T T T T T T T T
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-0Shot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot
HellaSwag
0.31 1 [MTL-Ta-PX
0 MTILTL-PL
0.30 4 [FOMAML
(] ¢] [Reptile
=== Random
0.29 L]
.. 028
o
B + é%
g
0.27 4
< L] +
+])
0.26 = ?;
+
b
R S v) s e T ORI = s SV == oy IO P == R
T
T T T T T T T T
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-0Shot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot
RTE
0.85
" i
. t
0.75 4
0.70
>
o
c *
S 0.65
%
+
0.60
+ L]
+
0.554 ¢ L]
+
0,50 fr === === mm e e e e e e
+
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-OShot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot
StoryCloze
= =
0g0{ = =
= === =
—
— = -t
0.80
: T B
g =|. %
o
c
2 070 | ¢ + 0
g
0.60
0.50 -

Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-OShot

Figure 2: Per-dataset accuracy of MTL-T#
random baseline (part 2).

Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot

(our reproduction), MTL-T#P#, FOMAML, Reptile, and the

4530

WiC

0 MTL-Ta-PX
O MTLTL-PL
[FOMAML
—

Reptile .
=== Random
0.56
' 3
+

. +

Tééé '
.. - - a- = = I J_ I i

l = '
+

0.58

-

0 . ¢ ¢ +
T T T T T T T T
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-0Shot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot
Winogrande
0 MTLTe-PX
MTLTL-PL '

=
[FOMAML
0.56 —

Reptile

.
—-- Random .
054 1 D =
* . ¢
0.52 ¢ !
.

Accuracy
-

050 f=========f==f===———en --é— ——— = E

I
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-OShot Large-Deep-FewShot AL-Shallow-0Shot AL-Shallow-FewShot XL-Deep-0Shot AL-Deep-FewShot
WsC
*
0.70 4
L]
* L]
L] +
MTLT4-PX
MTL-To-Po
(0 FOMAML
1 Reptile :
0.35 1 —=-=- Random
Large-Shallow-0Shot Large-Shallow-FewShot Large-Deep-OShot Large-Deep-FewShot XL-Shallow-0Shot XL-Shallow-FewShot XL-Deep-0Shot XL-Deep-FewShot

Figure 3: Per-dataset accuracy of MTL-T#P X (our reproduction), MTL-T&P#, FOMAML, Reptile, and the
random baseline (part 3).

4531

