
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 4275–4286
December 7-11, 2022 ©2022 Association for Computational Linguistics

Improving Chinese Spelling Check by Character Pronunciation Prediction:
The Effects of Adaptivity and Granularity

Jiahao Li1, Quan Wang2∗, Zhendong Mao1, Junbo Guo3, Yanyan Yang4, Yongdong Zhang1

1University of Science and Technology of China, Hefei, China
2MOE Key Laboratory of Trustworthy Distributed Computing and Service,

Beijing University of Posts and Telecommunications, Beijing, China
3People’s Daily Online Co., Beijing, China

4People’s Public Security University of China, Beijing, China
jiahao66@mail.ustc.edu.cn, wangquan@bupt.edu.cn, zdmao@ustc.edu.cn

guojunbo@people.cn, zhyd73@ustc.edu.cn

Abstract

Chinese spelling check (CSC) is a fundamental
NLP task that detects and corrects spelling er-
rors in Chinese texts. As most of these spelling
errors are caused by phonetic similarity, effec-
tively modeling the pronunciation of Chinese
characters is a key factor for CSC. In this pa-
per, we consider introducing an auxiliary task
of Chinese pronunciation prediction (CPP) to
improve CSC, and, for the first time, systemati-
cally discuss the adaptivity and granularity of
this auxiliary task. We propose SCOPE which
builds on top of a shared encoder two parallel
decoders, one for the primary CSC task and the
other for a fine-grained auxiliary CPP task, with
a novel adaptive weighting scheme to balance
the two tasks. In addition, we design a delicate
iterative correction strategy for further improve-
ments during inference. Empirical evaluation
shows that SCOPE achieves new state-of-the-
art on three CSC benchmarks, demonstrating
the effectiveness and superiority of the auxil-
iary CPP task. Comprehensive ablation studies
further verify the positive effects of adaptivity
and granularity of the task. Code and data used
in this paper are publicly available at https:
//github.com/jiahaozhenbang/SCOPE.

1 Introduction

Chinese Spelling Check (CSC), which aims to de-
tect and correct spelling errors in Chinese texts, is a
fundamental task in Chinese natural language pro-
cessing. Spelling errors mainly originate from hu-
man writing errors and machine recognition errors,
e.g., errors caused by automatic speech recognition
(ASR) and optical character recognition (OCR) sys-
tems (Huang et al., 2021). With the latest develop-
ment of deep neural networks, neural CSC methods,

∗Corresponding author: Quan Wang.

Instance Similarity

Coarse Fine

W: 我觉得你们会好好的完(wan2/w,an,2)。

1 1
I think you will finish well.

R: 我觉得你们会好好的玩(wan2/w,an,2)。
I think you will play well.

W:我以前想要高(gao1/g,ao,1)诉你。

0 2/3
I tried to high you before.

R:我以前想要告(gao4/g,ao,4)诉你。
I tried to tell you before.

W:他收(shou1/sh,ou,1)到山上的时候。

0 1/3
When he received the mountain.

R:他走(zou3/z,ou,3)到山上的时候。
When he walked up the mountain.

W:行为都被蓝(lan2/l,an,2)控设备录影。

0 0
Actions are recorded by blue control devices.

R:行为都被监(jian1/j,ian,1)控设备录影。
Actions are recorded by surveillance devices.

Table 1: Instances from SIGHAN15 (Tseng et al., 2015).
For each instance, coarse-/fine-grained pinyin of the mis-
spelled (red) and correct (blue) characters are provided,
along with their phonological similarity degree (the frac-
tion of identical components) in terms of these two types
of pinyin.

in particular those based on encoder-decoder archi-
tectures, have become the mainstream of research
in recent years (Xu et al., 2021; Liu et al., 2021).
Encoder-decoder models regard CSC as a special
sequence-to-sequence (Seq2Seq) problem, where a
sentence with spelling errors is given as the input
and a corrected sentence of the same length will be
generated as the output.

Previous research has shown that about 76% of
Chinese spelling errors are induced by phonologi-
cal similarity (Liu et al., 2011). Hence, it is a cru-
cial factor to effectively model the pronunciation of
Chinese characters for the CSC task. In fact, almost

4275

https://github.com/jiahaozhenbang/SCOPE
https://github.com/jiahaozhenbang/SCOPE


all current advanced CSC approaches have actually
exploited, either explicitly or implicitly, character
pronunciation. The implicit use takes into account
phonological similarities between pairs of charac-
ters, e.g., by increasing the decoding probability
of characters with similar pronunciation (Cheng
et al., 2020) or integrating such similarities into
the encoding process via graph convolutional net-
works (GCNs) (Cheng et al., 2020). The explicit
use considers directly the pronunciation, or more
specifically, pinyin1, of individual characters, en-
coding the pinyin of input characters to produce
extra phonetic features (Xu et al., 2021; Huang
et al., 2021) or decoding the pinyin of target cor-
rect characters to serve as an auxiliary prediction
task (Liu et al., 2021; Ji et al., 2021).

This paper also considers improving CSC with
auxiliary character pronunciation prediction (CPP),
but focuses specifically on the adaptivity and gran-
ularity of the auxiliary task, which have never been
systematically studied before. First, all the prior at-
tempts in similar spirit simply assigned a universal
trade-off between the primary and auxiliary tasks
for all instances during training, while ignoring the
fact that the auxiliary task might provide different
levels of benefits given different instances. Take for
example the instances shown in Table 1. Compared
to the misspelled character “蓝” and its correction
“监” in the 4th instance, the two characters “完”
and “玩” in the 1st instance are much more similar
in pronunciation, suggesting that the spelling error
there is more likely to be caused by phonological
similarity, to which the pronunciation-related auxil-
iary task might provide greater benefits and hence
should be assigned a larger weight. Second, prior
efforts mainly explored predicting the whole pinyin
of a character, e.g., “gao1” for “高”. Nevertheless,
a syllable in Chinese is inherently composed of an
initial, a final, and a tone, e.g., “g”, “ao”, and “1”
for “高”. This fine-grained phonetic representation
can better reflect not only the intrinsic regularities
of Chinese pronunciation, but also the phonological
similarities between Chinese characters. Consider
for example the “高” and “告” case from the 2nd
instance in Table 1. These two characters show no
similarity in terms of their whole pinyin, but actu-
ally they share the same initial and final, differing
solely in their tones.

Based on the above intuitions we devise SCOPE

1Pinyin is the official phonetic system of Mandarin Chi-
nese, which literally means “spelled sounds”.

(i.e., Spelling Check by prOnunciation PrEdiction),
which introduces a fine-grained CPP task with an
adaptive task weighting scheme to improve CSC.
Figure 1 provides an overview of SCOPE. Given a
sentence with spelling errors as input, we encode it
using ChineseBERT (Sun et al., 2021) to produce
semantic and phonetic features. Then we build
on top of the encoder two parallel decoders, one
to generate target correct characters, i.e., the pri-
mary CSC task, and the other to predict the initial,
final and tone of the pinyin of each target charac-
ter, i.e., the auxiliary fine-grained CPP task. The
trade-off between the two tasks can be further ad-
justed adaptively for each instance, according to
the phonological similarity between input and tar-
get characters therein. In addition, we design an
iterative correction strategy during inference to ad-
dress the over-correction issue and tackle difficult
instances with consecutive errors.

We empirically evaluate SCOPE on three shared
benchmarks, and achieve substantial and consistent
improvements over previous state-of-the-art on all
three benchmarks, demonstrating the effectiveness
and superiority of our auxiliary CPP task. Compre-
hensive ablation studies further verify the positive
effects of adaptivity and granularity of the task.

The main contributions of this paper are summa-
rized as follows: (1) We investigate the possibility
of introducing an auxiliary CPP task to improve
CSC and, for the first time, systematically discuss
the adaptivity and granularity of this auxiliary task.
(2) We propose SCOPE, which builds two parallel
decoders upon a shared encoder for CSC and CPP,
with a novel adaptive weighting scheme to balance
the two tasks. (3) We establish new state-of-the-art
on three benchmarking CSC datasets.

2 Related Work

CSC is a fundamental NLP task that has received
wide attention over the past decades. Early work on
this topic was mainly based on manually designed
rules (Mangu and Brill, 1997; Jiang et al., 2012).
After that, statistical language models became the
mainstream for CSC (Chen et al., 2013; Yu and Li,
2014; Tseng et al., 2015). Methods of this kind in
general followed a pipeline of error detection, can-
didate generation, and candidate selection. Given
a sentence, the error positions are first detected by
the perplexity of a language model. The candidates
for corrections can then be generated according to
similarity between characters, typically by using

4276



Figure 1: Overview of SCOPE. Top: The one-encoder-two-decoder structure for CSC and CPP. The input sentence
X is fed into the encoder and then, after character-/pronunciation-specific feature projection, two parallel decoders,
one to predict the characters, the other to predict the initial, final, and tone of each character in the target sentence.
Bottom: Adaptive task weighting between CSC and CPP (detached in the backward pass). The target sentence Y is
fed into the encoder and the pronunciation-specific feature projection layer. Then the similarities between input and
target sentences on character level are calculated and the adaptive weights are accordingly defined. Note: Only the
CSC decoder branch (along with the encoder) will be used at inference time.

a confusion set. And the final corrections can be
determined by scoring the sentence replaced by
the candidates with the language model (Liu et al.,
2013; Xie et al., 2015).

In the era of deep learning, especially after Trans-
former (Vaswani et al., 2017) and pre-trained lan-
guage models like BERT (Devlin et al., 2019) were
proposed, a large number of neural CSC methods
have emerged. Hong et al. (2019) used Transformer
as an encoder to produce candidates and designed
a confidence-similarity decoder to filter these can-
didates. Zhang et al. (2020) designed a detection
network based on Bi-GRU to predict the error prob-
ability of each character and passed the probabili-
ties to a BERT-based correction network via a soft
masking mechanism. Cheng et al. (2020) employed
GCNs combined with BERT to further model inter-
dependences between characters. Recent work of
(Xu et al., 2021; Liu et al., 2021; Huang et al., 2021)
proposed to encode phonetic and glyph informa-
tion in addition to semantic information, and then
combine phonetic, glyph and semantic features to
make final predictions.

As we could see, modeling pronunciation infor-
mation is prevailing in CSC research (Zhang et al.,
2021), typically via an encoding process to extract
phonetic features. Liu et al. (2021) proposed the
first work that considered predicting the pronuncia-
tion of target characters as an auxiliary task. Their

work, however, employed pronunciation prediction
in a coarse-grained, non-adaptive manner, which is
quite different to ours.

3 Our Approach

This section presents our approach SCOPE for the
CSC task. Below, we first define the problem for-
mulation and then describe our approach in detail.

3.1 Problem Formulation

The Chinese spelling check (CSC) task is to detect
and correct spelling errors in Chinese texts. Given a
misspelled sentence X = {x1, x2, · · · , xn} with n
characters, a CSC model takes X as input, detects
potential spelling errors on character level, and out-
puts a corresponding correct sentence Y = {y1, y2,
· · · , yn} of equal length. This task can be viewed
as a conditional sequence generation problem that
models the probability of p(Y |X). We are further
given the fine-grained pinyin of each character yi
in the correct sentence Y , represented as a triplet
in the form of (αi, βi, γi), where αi, βi, and γi in-
dicate the initial, final, and tone, respectively. Note
that such kind of pinyin of the output sentence is
required and provided solely during training.2

2In fact, we also use the pinyin of each character xi in the
input sentence X during the ChineseBERT encoding process
(detailed later), and this kind of pinyin of the input sentence is
required and provided during both training and inference.

4277



3.2 SCOPE Architecture

The key idea of SCOPE is to employ a fine-grained
character pronunciation prediction (CPP) task with
an adaptive task weighting scheme to improve CSC.
In achieving this SCOPE builds upon a shared en-
coder two parallel decoders, one for the primary
CSC task and the other for the auxiliary CPP task.
The trade-off between the two tasks is further deter-
mined adaptively based on the phonological simi-
larity between input and target characters. Figure 1
summarizes the overall architecture of SCOPE.

Encoder Similar to recent CSC approaches that
leverage multimodal information (Liu et al., 2021;
Xu et al., 2021), we use ChineseBERT (Sun et al.,
2021) as the encoder to extract semantic, phonetic,
and morphologic features as well for the CSC task.
ChineseBERT is a pre-trained language model that
incorporates both the pinyin and glyph information
of Chinese characters. Specifically, for each char-
acter xi in the input sentence X , the encoder first
produces its char embedding, pinyin embedding,
and glyph embedding, all with embedding size D.
These three embeddings are then concatenated and
mapped to a D-dimensional fused embedding via
a fully connected layer. After that, just like in most
other pre-trained language models, the fused em-
bedding is added with a position embedding, and
fed into a stack of successive Transformer layers to
generate a contextualized representation hi ∈ RD

for the input character xi. We denote the character
representations after this encoding process as H =
{h1,h2, · · · ,hn}. As the encoder is not the main
concern of this paper, we just provide a brief sketch
of the encoder and refer readers to (Vaswani et al.,
2017; Sun et al., 2021) for details.

Decoder for CSC This decoder is to predict the
characters in the correct sentence Y based on the
encoding output H . Specifically, given each input
character xi, we first project its encoding output hi

into a character-specific feature space:

h
(c)
i = GeLU

(
W (c)hi + b(c)

)
, (1)

and then predict the corresponding correct charac-
ter ŷi based on the projection output:

p(ŷi|X) = softmax
(
W (y)h

(c)
i + b(y)

)
. (2)

Here W (c) ∈ RD×D, b(c) ∈ RD are learnable pa-
rameters of the character-specific feature projection

layer; W (y) ∈ RV×D, b(y) ∈ RV are learnable pa-
rameters of the character prediction layer; V is the
vocabulary size.

Decoder for CPP This decoder is to predict the
fine-grained pinyin, i.e., the initial, final, and tone,
of each character in the correct sentence Y based
on the encoding output H . Again, given each input
character xi and its encoding output hi, we project
hi into a pronunciation-specific feature space:

h
(p)
i = GeLU

(
W (p)hi + b(p)

)
, (3)

and predict the initial α̂i, final β̂i, and tone γ̂i of
the corresponding correct character based on the
projection output:

p(α̂i|X) = softmax
(
W (α)h

(p)
i + b(α)

)
, (4)

p(β̂i|X) = softmax
(
W (β)h

(p)
i + b(β)

)
, (5)

p(γ̂i|X) = softmax
(
W (γ)h

(p)
i + b(γ)

)
. (6)

Here W (p) ∈ RD×D and b(p) ∈ RD are learnable
parameters of the pronunciation-specific feature
projection layer; W (δ) ∈ RU×D, b(δ) ∈ RU with
δ ∈ {α, β, γ} are learnable parameters of the pro-
nunciation prediction layers; U is the total number
of pronunciation units (initials, finals, and tones).

Adaptive Task Weighting We devise an adaptive
task weighting scheme to balance the primary CSC
and auxiliary CPP tasks during training. Given
an input sentence X , the CSC task aims to match
the predicted characters {ŷi}ni=1 with the ground
truth {yi}ni=1, while the CPP task aims to match
the predicted fine-grained pinyin {(α̂i, β̂i, γ̂i)}ni=1

with the ground truth {(αi, βi, γi)}ni=1. Their loss
functions are respectively defined as:

L(c)
i = − log p(ŷi = yi|X), (7)

L(p)
i = −1

3

∑

δ∈{α,β,γ}
log p(δ̂i = δi|X), (8)

where L(c)
i , L(p)

i are the character and pronuncia-
tion prediction losses associated with the i-th char-
acter in the sentence, and the pronunciation predic-
tion loss L(p)

i is averaged over the initial, final, and
tone prediction.

Then as we have discussed earlier in the introduc-
tion, the auxiliary CPP task might provide different
levels of benefits given different input characters.
The more similar the input and target characters are

4278



in their pronunciation, the more likely there would
be a spelling error caused by phonetic similarity.
And to this case the CPP task might provide greater
benefits and should be assigned a larger weight. To
calculate such adaptive weights, we feed the target
correct sentence Y to the encoder and the followup
pronunciation-specific projection layer. Then we
calculate for each input character xi and its tar-
get character yi a cosine similarity cos(h

(p)
xi ,h

(p)
yi )

based on their pronunciation-specific feature repre-
sentations h(p)

xi , h(p)
yi (see Eq. (3)), and accordingly

define the adaptive weight at the i-th position as:

wi = e−(cos(h
(p)
xi

,h
(p)
yi

)−1)2 . (9)

The higher the cosine similarity cos(h
(p)
xi ,h

(p)
yi ) is,

the larger the weight wi will be. Finally, the overall
loss is defined as the CSC loss with an adaptively
weighted CPP loss:

L =
1

n

n∑

i=1

(
L(c)
i + wiL(p)

i

)
, (10)

where L(c)
i and L(p)

i are the character-specific CSC
and CPP losses defined in Eq. (7) and Eq. (8), re-
spectively. There are two points worth noting here:
(1) The branch of encoding and mapping the target
sentence Y is employed solely in the forward pass
to calculate adaptive weights, and will be detached
in the backward pass. (2) The auxiliary CPP task,
as well as the adaptive weighting scheme, is intro-
duced solely during training. At inference time, we
use the CSC decoder alone for prediction.

3.3 Constrained Iterative Correction
As pointed out by Liu et al. (2022), advanced CSC
models based on pre-trained language models (e.g.,
BERT (Devlin et al., 2019) and ChineseBERT (Sun
et al., 2021)) typically have poor performance on
multi-typo texts, and tend to overcorrect valid ex-
pressions to more frequent expressions. To address
these deficiencies, we devise a simple yet effective
constrained iterative correction strategy during in-
ference. Specifically, at inference time, for each
input sentence we detect and correct spelling errors
in an iterative fashion. During each iteration, only
the corrections that appear in a specified window
around each correction position in the previous iter-
ation are allowed. After the iterations, if a position
is modified every iteration, we restore this position
to its original character without any correction. We
empirically set the iteration number to 2 and the

window size to 3 (i.e., one position on the left and
one on the right of the current position). As we will
see later in our case study in Section 4.5, this itera-
tive correction strategy can effectively address the
overcorrection issue and tackle difficult instances
with multiple, in particular, consecutive errors.

3.4 Further Pre-training with Confusion Set

To obtain better initialization for SCOPE, we per-
form further pre-training by using a confusion set,
as commonly practiced in most recently proposed
CSC models (Xu et al., 2021; Liu et al., 2021). We
consider wiki2019zh3 that consists of one million
Chinese Wikipedia articles, split these articles into
paragraphs, and regard each paragraph as a target
sequence with no spelling errors. We further col-
lect easily confused character pairs from a mixture
of three publicly available confusion sets (Wu et al.,
2013; Lee et al., 2019; Wang et al., 2018), and re-
tain only the pairs where both characters appear fre-
quently (top 40%) in the wiki2019zh corpus. Then,
for each target sequence, we create a potentially
misspelled input sequence by randomly selecting
and replacing 15% of the characters. Each selected
character is replaced with an easily confused char-
acter (if any) 80% of the time, a random character
from the vocabulary 10% of the time, and remained
unchanged 10% of the time. After that, we pre-train
SCOPE on these misspelled and correct sequence
pairs before adapting it to target datasets.

4 Experiments and Results

In this section, we introduce our experiments and
results on SIGHAN benchmarks (Wu et al., 2013;
Yu et al., 2014; Tseng et al., 2015). We then verify
the effectiveness of our model design, in particular
the adaptivity and granularity of the auxiliary CPP
task, via extensive ablation studies and analyses.

4.1 Experimental Setups

Datasets and Evaluation Metrics As in previ-
ous work (Cheng et al., 2020; Liu et al., 2021; Xu
et al., 2021), our training data is a combination
of (1) manually annotated training examples from
SIGHAN13 (Wu et al., 2013), SIGHAN14 (Yu
et al., 2014), SIGHAN15 (Tseng et al., 2015), and
(2) 271K training examples from Wang et al. (2018)
automatically generated by ASR- and OCR-based
methods. We employ the test sets of SIGHAN13,

3https://github.com/brightmart/nlp_chinese_
corpus

4279

https://github.com/brightmart/nlp_chinese_corpus
https://github.com/brightmart/nlp_chinese_corpus


Training Set #Sent Avg. Length #Errors

SIGHAN15 2,338 31.1 3,037
SIGHAN14 3,437 49.6 5,122
SIGHAN13 700 41.8 343
Wang271K 271,329 42.6 381,962

Test Set #Sent Avg. Length #Errors

SIGHAN15 1,100 30.6 703
SIGHAN14 1,062 50.0 771
SIGHAN13 1,000 74.3 1,224

Table 2: Statistics of the datasets, including the number
of sentences, the average length of sentences in tokens,
and the number of errors in characters. We train on a
combination of the training sets, and evaluate separately
on each test set.

SIGHAN14, SIGHAN15 for evaluation. The statis-
tics of the used datasets are shown in Table 2. The
original SIGHAN datasets are in traditional Chi-
nese. We follow previous work (Cheng et al., 2020;
Xu et al., 2021) to convert them to simplified Chi-
nese using OpenCC4. We further use pypinyin5 to
obtain the pinyin of each character, and segment it
into the initial, final, and tone using a pre-defined
vocabulary of initials and finals provided by Xu
et al. (2021).6

We use the widely adopted sentence-level preci-
sion, recall and F1 as our main evaluation metrics.
Sentence-level metrics are stricter than character-
level metrics since a sentence is considered to be
correct if and only if all errors in the sentence are
successfully detected and corrected. Metrics are
reported on the detection and correction sub-tasks.
Besides sentence-level evaluation, we also consider
character-level evaluation and the official SIGHAN
evaluation. We leave their results to Appendix A

Baseline Methods We compare SCOPE against
the following baseline methods. All these methods
have employed character phonetic information in
some manner, and represent current state-of-the-art
on the SIGHAN benchmarks.

• FASpell (Hong et al., 2019) employs BERT to
generate candidates for corrections and filters
visually/phonologically irrelevant candidates
by a confidence-similarity decoder.

• SpellGCN (Cheng et al., 2020) learns pronun-
ciation/shape similarities between characters

4https://github.com/BYVoid/OpenCC
5https://pypi.org/project/pypinyin
6https://github.com/DaDaMrX/ReaLiSe

via GCNs, and combines the graph represen-
tations with BERT output for final prediction.

• MLM-phonetics (Zhang et al., 2021) jointly
fine-tunes a detection module and a correction
module on the basis of a pre-trained language
model with phonetic features.

• REALISE (Xu et al., 2021) models semantic,
phonetic and visual information of input char-
acters, and selectively mixes information in
these modalities to predict final corrections.

• PLOME (Liu et al., 2021) extracts phonetic
and visual features of characters using GRU. It
also predicts the pronunciation of target char-
acters, but in a coarse-grained, non-adaptive
manner.

Implementation Details In SCOPE, the encoder
is initialized from ChineseBERT-base7, while the
decoders are randomly initialized. We then conduct
further pre-training on wiki2019zh for 1 epoch with
a batch size of 512 and a learning rate of 10−4. The
other hyperparameters are set to their default values
as in ChineseBERT (Sun et al., 2021). During this
pre-training stage, we do not use the adaptive task
weighting scheme, and simply set the auxiliary CPP
task weight to 1 for all characters for computational
efficiency. After that, we fine-tune on the combined
training set. We set the maximum sequence length
to 192 and the learning rate to 5×10−5. The optimal
models on SIGHAN13/SIGHAN14/SIGHAN15
are obtained by training with batch sizes of 96/96/
64 for 20/30/30 epochs, respectively. Other hyper-
parameters are again set to their default values as
in ChineseBERT. All experiments are conducted
on 2 GeForce RTX 3090 with 24G memory.

4.2 Main Results
Table 3 presents the sentence-level performance of
SCOPE and its baseline methods on the test sets of
SIGHAN13, SIGHAN14, and SIGHAN15. We can
see that SCOPE consistently outperforms all the
baselines on all the datasets in almost all metrics,
verifying its effectiveness and superiority for CSC.
The improvements, in most cases, are rather sub-
stantial, e.g., +2.5/+2.9 detection/correction F1 on
SIGHAN15 and +1.8/+1.4 detection/correction F1
on SIGHAN14. Note that on SIGHAN13, although
the improvements over the best performing base-
line REALISE are somehow limited, SCOPE still

7https://github.com/ShannonAI/ChineseBert

4280

https://github.com/BYVoid/OpenCC
https://pypi.org/project/pypinyin
https://github.com/DaDaMrX/ReaLiSe
https://github.com/ShannonAI/ChineseBert


Dataset Model Detection-level Correction-level

D-P D-R D-F C-P C-R C-F

SIGHAN15

FASpell (Hong et al., 2019) 67.6 60.0 63.5 66.6 59.1 62.6
SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 72.1 77.7 75.9

MLM-phonetics (Zhang et al., 2021) 77.5 83.1 80.2 74.9 80.2 77.5
REALISE (Xu et al., 2021) 77.3 81.3 79.3 75.9 79.9 77.8
PLOME (Liu et al., 2021) 77.4 81.5 79.4 75.3 79.3 77.2

SCOPE (ours) 81.1 84.3 82.7 79.2 82.3 80.7

SIGHAN14

FASpell (Hong et al., 2019) 61.0 53.5 57.0 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) 65.1 69.5 67.2 63.1 67.2 65.3

MLM-phonetics (Zhang et al., 2021) 66.2 73.8 69.8 64.2 73.8 68.7
REALISE (Xu et al., 2021) 67.8 71.5 69.6 66.3 70.0 68.1

SCOPE (ours) 70.1 73.1 71.6 68.6 71.5 70.1

SIGHAN13

FASpell (Hong et al., 2019) 76.2 63.2 69.1 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) 80.1 74.4 77.2 78.3 72.7 75.4

MLM-phonetics (Zhang et al., 2021) 82.0 78.3 80.1 79.5 77.0 78.2
REALISE (Xu et al., 2021)† 88.6 82.5 85.4 87.2 81.2 84.1

SCOPE (ours)† 87.4 83.4 85.4 86.3 82.4 84.3

Table 3: Sentence-level performance on the test sets of SIGHAN13, SIGHAN14, SIGHAN15, where precision (P),
recall (R), F1 (F) for detection (D) and correction (C) are reported (%). Baseline results are directly taken from their
respective literatures. Results marked by “†” are obtained by applying a post-processing step on SIGHAN13 which
removes all detected and corrected “的”, “地”, “得” from the model output before evaluation, due to the relatively
poor annotation quality about “的”, “地”, “得” on SIGHAN13 as observed and suggested by Xu et al. (2021).

outperforms the second best performing baseline
MLM-phonetics by large margins (+5.3/+6.1 detec-
tion/correction F1). We attribute this phenomenon
to the fact that the annotation quality is relatively
poor on SIGHAN13, with a lot of mixed usage of
“的”, “地”, “得” not annotated (Cheng et al., 2020).
We hence follow REALISE (Xu et al., 2021) and
remove all detected and corrected “的”, “地”, “得”
from the model output before evaluation. This post-
processing trick is extremely useful on SIGHAN13,
and it might even conceal improvements from other
strategies on this dataset.

Besides sentence-level metrics, we also consider
character-level evaluation and the official SIGHAN
evaluation, and make further comparison to some
other methods that have their results reported in
these settings (Ji et al., 2021; Liu et al., 2022). We
leave the results to Appendix A, which reveal that
SCOPE still performs the best in these new settings.

4.3 Eliminating Encoder Differences

As SCOPE uses a different and potentially more
powerful encoder (i.e., ChineseBERT) compared
to the baselines, we further conduct experiments to
eliminate the effects of different encoders and focus
solely on the auxiliary CPP task, which is the main
contribution of this work. To do so, we initialize the
encoder from a well-trained REALISE model (one
of the best performing baselines with its code and

Detection-level Correction-level

D-P D-R D-F C-P C-R C-F

SIGHAN15
REALISE 77.3 81.3 79.3 75.9 79.9 77.8
SCOPE (REALISE) 78.7 84.7 81.6 76.8 82.6 79.6

SIGHAN14
REALISE 67.8 71.5 69.6 66.3 70.0 68.1
SCOPE (REALISE) 69.0 75.0 71.9 67.1 72.9 69.9

SIGHAN13
REALISE 88.6 82.5 85.4 87.2 81.2 84.1
SCOPE (REALISE) 87.5 83.2 85.3 86.4 82.3 84.3

Table 4: Performance of SCOPE with the same encoder
as REALISE on test sets of SIGHAN13, SIGHAN14,
and SIGHAN15.

model released to the public). Then, we perform
further pre-training on wiki2019zh and fine-tune on
the combination of SIGHAN benchmarks with our
adaptively-weighted, fine-grained CPP task. The
pre-training and fine-tuning configurations are the
same as those introduced above in Section 4.1. The
constrained iterative correction (CIC) strategy is
also applied during inference. We call this setting
SCOPE (REALISE).

Table 4 presents the sentence-level performance
of this new setting on the test sets of SIGHAN13,
SIGHAN14, and SIGHAN15. We can observe that
SCOPE (REALISE) consistently outperforms its

4281



direct opponent REALISE on all the datasets. The
improvements, in most cases, are rather substantial,
except for those on the relatively poorly annotated
SIGHAN13. These results verify the effectiveness
of our approach irrespective of the encoder.

4.4 Effects of Adaptivity and Granularity
This section then investigates the effects of adap-
tivity and granularity of the auxiliary CPP task on
the overall CSC performance.

Adaptivity As for adaptivity, we make compari-
son among the following three diverse task weight-
ing schemes that balance the CSC and CPP tasks.

• Fully-adaptive (Full-adapt) is the scheme we
used in SCOPE. It determines the CPP task
weights according to phonological similarities
between input and target characters, and the
similarities are further adjusted dynamically
during model training (see Eq. (9)).

• Partially-adaptive (Part-adapt) also decides
the CPP task weights according to phonologi-
cal similarities, but the similarities are static,
defined as wi = 1 − norm(edit_distancei),
where edit_distancei is the Levenshtein edit
distance (Levenshtein et al., 1966) between
the pinyin sequences of the i input and tar-
get characters and norm(·) is a normalization
function. The smaller the edit distance is, the
larger the weight will be.

• Non-adaptive (Non-adapt) considers no adap-
tivity and simply sets the CPP task weight to
1 for all characters (wi = 1 for all i).

We compare the three settings in the SIGHAN fine-
tuning stage, starting from the same checkpoint af-
ter pre-training on wiki2019zh with a non-adaptive
task weighting scheme. Here Full-adapt is equiva-
lent to SCOPE.

Granularity As for granularity, we consider and
make comparison between two types of CPP tasks.

• Fine-grained (Fine) is the task we employed
in SCOPE that predicts the initial, final, and
tone of the pinyin of each target character.

• Coarse-grained (Coarse) is a task that predicts
the whole pinyin of each target character.

For fair comparison, we also introduce further pre-
training on wiki2019zh with a coarse-grained CPP

SIGHAN15 Detection-level Correction-level

D-P D-R D-F C-P C-R C-F

REALISE 77.3 81.3 79.3 75.9 79.9 77.8
w/o CPP 79.1 82.4 80.7 76.8 80.0 78.4

Effects of Adaptivity

Non-adapt 79.0 83.5 81.2 76.6 81.0 78.7
Part-adapt 80.1 83.5 81.8 78.0 81.3 79.6
Full-adapt 81.1 84.3 82.7 79.2 82.3 80.7

Effects of Granularity

Coarse 79.9 83.7 81.8 77.4 81.1 79.2
Fine 81.1 84.3 82.7 79.2 82.3 80.7

Table 5: Performance of SCOPE with different levels of
adaptivity and granularity of the auxiliary CPP task on
the test set of SIGHAN15.

task, and use this checkpoint to initialize the Coarse
setting during SIGHAN fine-tuning. In both two
settings the CPP task is adaptively weighted as in
Eq. (9), and Fine is equivalent to SCOPE.

Results Table 5 presents the sentence-level per-
formance of these SCOPE variants on the test set
of SIGHAN15. The scores of our best performing
baseline REALISE as well as SCOPE without the
CPP task (denoted as w/o CPP) are also provided
for reference. We can see that introducing an aux-
iliary CPP task always brings benefits to CSC, no
matter what level of adaptivity and granularity the
task is. As for the adaptivity of task weighting, the
Full-adapt scheme that considers dynamic adaptiv-
ity performs better than Part-adapt that considers
static adaptivity, which in turn performs better than
Non-adapt that considers no adaptivity. As for the
granularity, a fine-grained CPP task performs better
than a coarse-grained one. These results verify the
rationality of introducing a fine-grained CPP task
with adaptive task weighting to improve CSC.

4.5 Ablation and Case Study

Ablation Study We conduct ablation studies on
SIGHAN15 with the following settings: (1) remov-
ing the auxiliary CPP task (w/o CPP); (2) removing
further pre-training on wiki2019zh (w/o FPT); and
(3) removing the constrained iterative correction
strategy at inference time (w/o CIC). The results
are presented in Table 6. We can see that no matter
which component we remove, the performance of
SCOPE drops. This fully demonstrates the effec-
tiveness of each component in our method.

4282



SIGHAN15 Detection-level Correction-level

D-P D-R D-F C-P C-R C-F

SCOPE 81.1 84.3 82.7 79.2 82.3 80.7
w/o CPP 79.1 82.4 80.7 76.8 80.0 78.4
w/o FPT 80.2 83.2 81.7 77.5 80.4 78.9
w/o CIC 78.3 82.6 80.4 76.5 80.8 78.6

Table 6: Ablation results on the test set of SIGHAN15.
The following changes are applied to SCOPE: removing
the CPP task (w/o CPP), removing further pre-training
(w/o FPT), and removing constrained iterative correc-
tion (w/o CIC).

Case Study Table 7 further shows several cases
from the SIGHAN15 test set to illustrate how the
constrained iterative correction strategy (see Sec-
tion 3.3) can effectively tackle consecutive spelling
errors and address the over-correction issue. For
consecutive errors, e.g., “户秃” in the first case,
this strategy is able to correct them iteratively, one
character at a time, e.g., by modifying “秃” to “涂”
in the first round and then “户” to “糊” in the sec-
ond round. For over-correction where the model
makes unnecessary modifications, e.g., “他” to “她”
in the third case and “隔” to “葛” in the fourth case,
the iterative correction strategy can always change
them back most of the time.

5 Conclusions

This paper proposes SCOPE, which employs a fine-
grained Chinese pronunciation prediction (CPP)
task with adaptive task weighting to improve the
performance of Chinese spelling check (CSC). Our
method builds upon a shared encoder two parallel
decoders, one to predict target characters i.e., CSC,
and the other to predict initials, finals, and tones of
target characters, i.e., fine-grained CPP. The two
decoders are then balanced adaptively according
to the phonetic similarity between input and target
characters. An iterative correction strategy is fur-
ther designed during inference. SCOPE establishes
new state-of-the-art on three SIGHAN benchmarks,
verifying the effectiveness and superiority of intro-
ducing an auxiliary CPP task to improve CSC. Ex-
tensive ablation studies further verify the positive
effects of dynamic adaptivity and fine granularity
of this auxiliary task.

Limitations

SCOPE introduces an auxiliary CPP task alongside
the primary CSC task in the training phase. This
auxiliary CPP task causes 28% extra overhead of

Tackle Consecutive Errors

Input: 我以前想要高诉你，可我忘了。我真户秃。
I tried to high you before, but I forgot. I’m really
house bald.

Iteration 1: 我以前想要告诉你，可我忘了。我真户涂。
I tried to tell you before, but I forgot. I’m really
house painted.

Iteration 2: 我以前想要告诉你，可我忘了。我真糊涂。
I tried to tell you before, but I forgot. I’m really
muddled.

Input: 可是福物生对我们很客气。
But the fortune object man was polite to us.

Iteration 1: 可是福务生对我们很客气。
But the fortune business man was polite to us.

Iteration 2: 可是服务生对我们很客气。
But the waiter was very polite to us.

Address Over-correction Issue

Input: 他再也不会撤扬。
He will never withdraw raise again.

Iteration 1: 她再也不会撤样。
She will never withdraw appearance again.

Iteration 2: 他再也不会这样。
He will never do this again.

Input: 幸运地，隔天她带着辞典来学校。
Fortunately, she came to school the next day
with a thesaurus.

Iteration 1: 幸运地，葛天她带着辞典来学校。
Fortunately, Ge Tian she came to school with
a thesaurus.

Iteration 2: 幸运地，隔天她带着辞典来学校。
Fortunately, she came to school the next day
with a thesaurus.

Table 7: Cases from the SIGHAN15 test set to show how
the iterative correction strategy can tackle consecutive
errors and address the over-correction issue. Erroneous
characters are in red, and their SCOPE corrections are
in blue and underlined.

computation, with the runtime per epoch increasing
from 19.32 minutes to 24.68 minutes. But the extra
overhead of GPU memory is almost negligible, as
the CPP decoder contains only 1M out of the total
148M parameters of the whole model (to which the
encoder contributes 146M parameters). Note that
the additional overhead caused by CPP is required
only in the training phase, but not at inference time.

Acknowledgements

We would like to thank all the reviewers for their
insightful and valuable suggestions, which signifi-
cantly improve the quality of this paper. This work
is supported by National Natural Science Funda-
tion of China under Grants 61876223, 62222212
and U19A2057, and Science Fund for Creative Re-
search Groups under Grant 62121002.

4283



References
Kuan-Yu Chen, Hung-Shin Lee, Chung-Han Lee, Hsin-

Min Wang, and Hsin-Hsi Chen. 2013. A study of
language modeling for chinese spelling check. In
Proceedings of the Seventh SIGHAN Workshop on
Chinese Language Processing, SIGHAN@IJCNLP
2013, Nagoya, Japan, October 14-18, 2013, pages
79–83. Asian Federation of Natural Language Pro-
cessing.

Xingyi Cheng, Weidi Xu, Kunlong Chen, Shaohua
Jiang, Feng Wang, Taifeng Wang, Wei Chu, and Yuan
Qi. 2020. Spellgcn: Incorporating phonological and
visual similarities into language models for chinese
spelling check. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
871–881. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Zhao Guo, Yuan Ni, Keqiang Wang, Wei Zhu, and Guo-
tong Xie. 2021. Global attention decoder for chinese
spelling error correction. In Findings of the Associa-
tion for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 1419–
1428. Association for Computational Linguistics.

Yuzhong Hong, Xianguo Yu, Neng He, Nan Liu, and
Junhui Liu. 2019. Faspell: A fast, adaptable, simple,
powerful chinese spell checker based on dae-decoder
paradigm. In Proceedings of the 5th Workshop on
Noisy User-generated Text, W-NUT@EMNLP 2019,
Hong Kong, China, November 4, 2019, pages 160–
169. Association for Computational Linguistics.

Li Huang, Junjie Li, Weiwei Jiang, Zhiyu Zhang,
Minchuan Chen, Shaojun Wang, and Jing Xiao. 2021.
Phmospell: Phonological and morphological knowl-
edge guided chinese spelling check. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 5958–5967. Associa-
tion for Computational Linguistics.

Tuo Ji, Hang Yan, and Xipeng Qiu. 2021. Spellbert:
A lightweight pretrained model for chinese spelling
check. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 3544–
3551. Association for Computational Linguistics.

Ying Jiang, Tong Wang, Tao Lin, Fangjie Wang, Went-
ing Cheng, Xiaofei Liu, Chenghui Wang, and Weijian
Zhang. 2012. A rule based chinese spelling and gram-
mar detection system utility. In 2012 International
Conference on System Science and Engineering (IC-
SSE), pages 437–440. IEEE.

Lung Hao Lee, Wun Syuan Wu, Jian Hong Li, Yu Chi
Lin, and Yuen Hsien Tseng. 2019. Building a con-
fused character set for chinese spell checking. In
27th International Conference on Computers in Ed-
ucation, ICCE 2019, pages 703–705. Asia-Pacific
Society for Computers in Education.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

C.-L. Liu, M.-H. Lai, Kan-Wen Tien, Y.-H. Chuang,
Shih-Hung Wu, and C.-Y. Lee. 2011. Visually and
phonologically similar characters in incorrect chinese
words: Analyses, identification, and applications.
ACM Trans. Asian Lang. Inf. Process., 10(2):10:1–
10:39.

Shulin Liu, Shengkang Song, Tianchi Yue, Tao Yang,
Huihui Cai, TingHao Yu, and Shengli Sun. 2022.
CRASpell: A contextual typo robust approach to
improve Chinese spelling correction. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 3008–3018, Dublin, Ireland. Association
for Computational Linguistics.

Shulin Liu, Tao Yang, Tianchi Yue, Feng Zhang, and
Di Wang. 2021. PLOME: pre-training with mis-
spelled knowledge for chinese spelling correction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
2991–3000. Association for Computational Linguis-
tics.

Xiaodong Liu, Kevin Cheng, Yanyan Luo, Kevin Duh,
and Yuji Matsumoto. 2013. A hybrid chinese spelling
correction using language model and statistical ma-
chine translation with reranking. In Proceedings
of the Seventh SIGHAN Workshop on Chinese Lan-
guage Processing, SIGHAN@IJCNLP 2013, Nagoya,
Japan, October 14-18, 2013, pages 54–58. Asian
Federation of Natural Language Processing.

Lidia Mangu and Eric Brill. 1997. Automatic rule ac-
quisition for spelling correction. In Proceedings of
the Fourteenth International Conference on Machine
Learning (ICML 1997), Nashville, Tennessee, USA,
July 8-12, 1997, pages 187–194. Morgan Kaufmann.

Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang
Ao, Qing He, Fei Wu, and Jiwei Li. 2021. Chine-
sebert: Chinese pretraining enhanced by glyph and
pinyin information. In Proceedings of the 59th An-
nual Meeting of the Association for Computational

4284

https://aclanthology.org/W13-4414/
https://aclanthology.org/W13-4414/
https://doi.org/10.18653/v1/2020.acl-main.81
https://doi.org/10.18653/v1/2020.acl-main.81
https://doi.org/10.18653/v1/2020.acl-main.81
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.findings-acl.122
https://doi.org/10.18653/v1/2021.findings-acl.122
https://doi.org/10.18653/v1/D19-5522
https://doi.org/10.18653/v1/D19-5522
https://doi.org/10.18653/v1/D19-5522
https://doi.org/10.18653/v1/2021.acl-long.464
https://doi.org/10.18653/v1/2021.acl-long.464
https://doi.org/10.18653/v1/2021.emnlp-main.287
https://doi.org/10.18653/v1/2021.emnlp-main.287
https://doi.org/10.18653/v1/2021.emnlp-main.287
https://ieeexplore.ieee.org/abstract/document/6257223
https://ieeexplore.ieee.org/abstract/document/6257223
https://www.researchgate.net/profile/Lung-Hao-Lee-2/publication/339068842_Building_a_Confused_Character_Set_for_Chinese_Spell_Checking/links/5e3bd25e458515072d831da6/Building-a-Confused-Character-Set-for-Chinese-Spell-Checking.pdf
https://www.researchgate.net/profile/Lung-Hao-Lee-2/publication/339068842_Building_a_Confused_Character_Set_for_Chinese_Spell_Checking/links/5e3bd25e458515072d831da6/Building-a-Confused-Character-Set-for-Chinese-Spell-Checking.pdf
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://doi.org/10.1145/1967293.1967297
https://doi.org/10.1145/1967293.1967297
https://doi.org/10.1145/1967293.1967297
https://doi.org/10.18653/v1/2022.findings-acl.237
https://doi.org/10.18653/v1/2022.findings-acl.237
https://doi.org/10.18653/v1/2021.acl-long.233
https://doi.org/10.18653/v1/2021.acl-long.233
https://aclanthology.org/W13-4409/
https://aclanthology.org/W13-4409/
https://aclanthology.org/W13-4409/
https://doi.org/10.18653/v1/2021.acl-long.161
https://doi.org/10.18653/v1/2021.acl-long.161
https://doi.org/10.18653/v1/2021.acl-long.161


Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 2065–2075. Association for
Computational Linguistics.

Yuen-Hsien Tseng, Lung-Hao Lee, Li-Ping Chang, and
Hsin-Hsi Chen. 2015. Introduction to SIGHAN 2015
bake-off for chinese spelling check. In Proceedings
of the Eighth SIGHAN Workshop on Chinese Lan-
guage Processing, SIGHAN@IJCNLP 2015, Beijing,
China, July 30-31, 2015, pages 32–37. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Dingmin Wang, Yan Song, Jing Li, Jialong Han, and
Haisong Zhang. 2018. A hybrid approach to auto-
matic corpus generation for chinese spelling check.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, Brus-
sels, Belgium, October 31 - November 4, 2018, pages
2517–2527. Association for Computational Linguis-
tics.

Shih-Hung Wu, Chao-Lin Liu, and Lung-Hao Lee.
2013. Chinese spelling check evaluation at SIGHAN
bake-off 2013. In Proceedings of the Seventh
SIGHAN Workshop on Chinese Language Processing,
SIGHAN@IJCNLP 2013, Nagoya, Japan, October
14-18, 2013, pages 35–42. Asian Federation of Natu-
ral Language Processing.

Weijian Xie, Peijie Huang, Xinrui Zhang, Kaiduo
Hong, Qiang Huang, Bingzhou Chen, and Lei
Huang. 2015. Chinese spelling check system based
on n-gram model. In Proceedings of the Eighth
SIGHAN Workshop on Chinese Language Processing,
SIGHAN@IJCNLP 2015, Beijing, China, July 30-31,
2015, pages 128–136. Association for Computational
Linguistics.

Heng-Da Xu, Zhongli Li, Qingyu Zhou, Chao Li,
Zizhen Wang, Yunbo Cao, Heyan Huang, and Xian-
Ling Mao. 2021. Read, listen, and see: Leveraging
multimodal information helps chinese spell checking.
In Findings of the Association for Computational Lin-
guistics: ACL/IJCNLP 2021, Online Event, August
1-6, 2021, volume ACL/IJCNLP 2021 of Findings of
ACL, pages 716–728. Association for Computational
Linguistics.

Junjie Yu and Zhenghua Li. 2014. Chinese spelling er-
ror detection and correction based on language model,
pronunciation, and shape. In Proceedings of The
Third CIPS-SIGHAN Joint Conference on Chinese
Language Processing, Wuhan, China, October 20-21,
2014, pages 220–223. Association for Computational
Linguistics.

Liang-Chih Yu, Lung-Hao Lee, Yuen-Hsien Tseng, and
Hsin-Hsi Chen. 2014. Overview of SIGHAN 2014
bake-off for chinese spelling check. In Proceedings
of The Third CIPS-SIGHAN Joint Conference on Chi-
nese Language Processing, Wuhan, China, October
20-21, 2014, pages 126–132. Association for Com-
putational Linguistics.

Ruiqing Zhang, Chao Pang, Chuanqiang Zhang, Shuo-
huan Wang, Zhongjun He, Yu Sun, Hua Wu, and
Haifeng Wang. 2021. Correcting chinese spelling
errors with phonetic pre-training. In Findings
of the Association for Computational Linguistics:
ACL/IJCNLP 2021, Online Event, August 1-6, 2021,
volume ACL/IJCNLP 2021 of Findings of ACL,
pages 2250–2261. Association for Computational
Linguistics.

Shaohua Zhang, Haoran Huang, Jicong Liu, and Hang
Li. 2020. Spelling error correction with soft-masked
BERT. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 882–890. Asso-
ciation for Computational Linguistics.

A Character-level and Official Evaluation

This section further compares SCOPE to some re-
cently proposed methods that have not been evalu-
ated with sentence-level metrics, but instead with
character-level and/or official evaluation metrics.
These baseline methods include:

• SpellBERT (Ji et al., 2021) uses a lightweight
pre-trained model for CSC, encoding phonetic
and visual features with GNNs.

• GAD (Guo et al., 2021) models the global
dependency between all candidate characters
by a global attention decoder.

• CRASpell (Liu et al., 2022) constructs a noise
modeling module that makes their model ro-
bust to consecutive spelling errors, with a copy
mechanism to handle over-correction.

For reference, we also include two previously com-
pared baselines SpellGCN (Cheng et al., 2020) and
PLOME (Liu et al., 2021) that have their results
reported on these new metrics. We use the code re-
leased by REALISE (Xu et al., 2021)8 for sentence-
level evaluation and the code released by CRASpell
(Liu et al., 2022)9 for character-level evaluation.
The official evaluation scripts are provided along
with the datasets.10,11,12

8https://github.com/DaDaMrX/ReaLiSe
9https://github.com/liushulinle/CRASpell

10http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
11http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
12http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html

4285

https://doi.org/10.18653/v1/W15-3106
https://doi.org/10.18653/v1/W15-3106
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/d18-1273
https://doi.org/10.18653/v1/d18-1273
https://aclanthology.org/W13-4406/
https://aclanthology.org/W13-4406/
https://doi.org/10.18653/v1/W15-3120
https://doi.org/10.18653/v1/W15-3120
https://doi.org/10.18653/v1/2021.findings-acl.64
https://doi.org/10.18653/v1/2021.findings-acl.64
https://doi.org/10.3115/v1/W14-6835
https://doi.org/10.3115/v1/W14-6835
https://doi.org/10.3115/v1/W14-6835
https://doi.org/10.3115/v1/W14-6820
https://doi.org/10.3115/v1/W14-6820
https://doi.org/10.18653/v1/2021.findings-acl.198
https://doi.org/10.18653/v1/2021.findings-acl.198
https://doi.org/10.18653/v1/2020.acl-main.82
https://doi.org/10.18653/v1/2020.acl-main.82
https://github.com/DaDaMrX/ReaLiSe
https://github.com/liushulinle/CRASpell
http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html


Dataset Model
Detection-level Correction-level

D-P D-R D-F C-P C-R C-F

SIGHAN15

SpellGCN (Cheng et al., 2020) 77.7 85.6 81.4 96.9 82.9 89.4
PLOME (Liu et al., 2021) 85.2 86.8 86.0 97.2 85.0 90.7

CRASpell (Liu et al., 2022) 83.5 89.2 86.3 97.1 86.6 91.5
SCOPE (ours) 86.8 88.9 87.8 97.4 86.6 91.7

Table 8: Character-level performance on the whole test set of SIGHAN15, with baseline results directly taken from
their respective literatures.

Dataset Model
Detection-level Correction-level

D-P D-R D-F C-P C-R C-F

SIGHAN15

SpellGCN (Cheng et al., 2020) 85.9 80.6 83.1 85.4 77.6 81.3
PLOME (Liu et al., 2021) 87.9 80.9 84.3 87.6 78.3 82.7
GAD (Guo et al., 2021) 86.0 80.4 83.1 85.6 77.8 81.5

SpellBERT (Ji et al., 2021) 87.5 73.6 80.0 87.1 71.5 78.5
SCOPE (ours) 89.4 84.3 86.3 89.2 82.4 85.7

Table 9: Official evaluation results on the whole test set of SIGHAN15, with baseline results directly taken from
their respective literatures.

The results are shown in Table 8 and Table 9. We
can see that regardless of the evaluation scenarios,
SCOPE consistently outperforms all the baselines
in almost all metrics, verifying its effectiveness and
superiority for CSC.

B Hyperparameter Search

We conduct a hyperparameter search for learning
rate, batch size and epoch. Learning rate is tuned
from {2×10−5, 5×10−5}, batch size from {48, 64,
96} and epoch from {20, 30}. There are 12 hyper-
parameter search trials in total on each dataset. The
optimal configurations are given in Section 4.1.

4286


