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Abstract

Semi-parametric models, which augment gen-
eration with retrieval, have led to impressive re-
sults in language modeling and machine transla-
tion, due to their ability to retrieve fine-grained
information from a datastore of examples. One
of the most prominent approaches, kNN-MT,
exhibits strong domain adaptation capabilities
by retrieving tokens from domain-specific data-
stores (Khandelwal et al., 2021). However,
kNN-MT requires an expensive retrieval opera-
tion for every single generated token, leading
to a very low decoding speed (around 8 times
slower than a parametric model). In this paper,
we introduce a chunk-based kNN-MT model
which retrieves chunks of tokens from the data-
store, instead of a single token. We propose
several strategies for incorporating the retrieved
chunks into the generation process, and for se-
lecting the steps at which the model needs to
search for neighbors in the datastore. Experi-
ments on machine translation in two settings,
static and “on-the-fly” domain adaptation, show
that the chunk-based kNN-MT model leads to
significant speed-ups (up to 4 times) with only
a small drop in translation quality.1

1 Introduction

Machine translation has seen remarkable ad-
vances due to increasingly powerful neural mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). Most deployed systems are
fully-parametric (the training data is fully com-
pressed into the parameters of a neural model), but
they often struggle when translating rare words
or out-of-domain sentences (Koehn and Knowles,
2017), commonly requiring several stages of fine-
tuning to adapt to data drift or to new domains.
Recently, semi-parametric methods have shown
great promise, by combining the strengths of para-
metric models with external databases of parallel

1The code is available at https://github.com/
deep-spin/chunk-based_knn-mt.

sentences, such as translation memories (Gu et al.,
2018; Zhang et al., 2018; Bapna and Firat, 2019a;
Meng et al., 2021; Zheng et al., 2021a; Jiang et al.,
2021; Martins et al., 2022).

One of the most prominent semi-parametric mod-
els for machine translation is the k-Nearest Neigh-
bor Machine Translation model (kNN-MT) (Khan-
delwal et al., 2021), which has led to impressive
results, particularly in domain adaptation settings,
without requiring fine-tuning. The kNN-MT model
constructs domain-specific datastores of parallel
sentences and, at inference time, it retrieves similar
examples from these datastores, which are used
to improve the generation process, through the in-
terpolation of probability distributions. However,
kNN-MT only retrieves single tokens—this is inef-
ficient, since the model needs to consult the datas-
tore at every generation step, an expensive opera-
tion. Consequently, its decoding speed is around 8
times slower than that of a fully-parametric model.

Recent work has introduced several techniques
to speed up kNN-MT. Meng et al. (2021) proposed
Fast kNN-MT, which constructs a different data-
store for each example, by first searching for the
nearest neighbors of the source tokens. Wang et al.
(2021) introduced Faster kNN-MT, similar to Fast
kNN-MT but with reduced memory requirements.
Martins et al. (2022) proposed pruning the data-
store, reducing the keys’ representation size, and
using a cache of retrieval distributions. However,
despite leading to some decoding speedups, these
methods are limited as they still retrieve a single
token at each time step.

In this paper, we propose a simple and efficient
chunk-based kNN-MT model. Inspired by RETRO
(Borgeaud et al., 2021), the chunk-based kNN-MT
model retrieves chunks of tokens, instead of sin-
gle tokens. But, similarly to kNN-MT and unlike
RETRO, it does not require any training or fine-
tuning of the parametric component: it simply
uses a combination of caching and interpolation
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of probability distributions to incorporate the re-
trieved tokens. By doing this, the model leads to a
similar translation quality while having to search
for neighbors in the datastore less often. This leads
to decoding speeds up to 4 times faster than the
ones achieved using the vanilla kNN-MT model
and only twice as slow as a fully-parametric model,
but with considerably higher translation quality.

In sum, our main contributions are:

• We introduce a chunk-based kNN-MT model,
which retrieves chunks of tokens from a data-
store of examples.

• We propose and compare several approaches
to deal with the retrieved chunks’ tokens and
to select the steps in which the model per-
forms retrieval from the datastore.

• We compare the translation quality and decod-
ing efficiency on domain adaptation, which
shows the benefits of chunk-based kNN-MT.

• We propose using chunk-based kNN-MT for
on-the-fly adaptation.

2 Background

In machine translation, a model is given a sen-
tence or document in a source language, x =
[x1, . . . , xL], and the goal is to output a transla-
tion in a target language, y = [y1, . . . , yN ]. This
is commonly done using a parametric sequence-to-
sequence model (Sutskever et al., 2014; Bahdanau
et al., 2015; Vaswani et al., 2017), in which the
encoder receives the source sentence as input and
outputs a set of hidden states. Then, at each step
t, the decoder attends to these hidden states and
outputs a probability distribution over the vocab-
ulary, pNMT(yt|y<t,x). Finally, these probability
distributions are used in a search procedure to gen-
erate the translation, typically using beam search
(Reddy, 1977).

2.1 k-Nearest Neighbor Machine Translation

Khandelwal et al. (2021) introduced a semi-
parametric model called k-nearest neighbor ma-
chine translation (kNN-MT). kNN-MT is com-
posed of a parametric component that outputs
a probability distribution over the vocabulary as
above, pNMT(yt|y<t,x), enhanced with an approx-
imate nearest neighbor retrieval mechanism, which
allows direct access to a datastore of examples.

The kNN-MT’s datastore D consists of a key-
value memory, where each key is the decoder’s
output representation, f(x,y<t) ∈ Rd, and the
value is the corresponding target token yt ∈ V:

D = {(f(x,y<t) , yt) ∀ t | (x,y) ∈ S} , (1)

where S denotes a set of parallel sentences. Then,
at inference time, the model searches the data-
store to (approximately) retrieve the set of k
nearest neighbors N . The retrieval distribution,
pkNN(yt|y<t,x), is computed, using the neighbors’
distance to the current decoder’s output representa-
tion, d(f(x,y<t), ·):
pkNN(yt|y<t,x) = (2)∑

(kj ,vj)∈N 1yt=vj exp (−d (kj ,f(x,y<t)) /T )∑
(kj ,vj)∈N exp (−d (kj ,f(x,y<t)) /T )

,

where T is the softmax temperature, kj denotes
the key of the jth neighbor and vj its value. Fi-
nally, the two distributions, pNMT(yt|y<t,x) and
pkNN(yt|y<t,x), are combined, by performing in-
terpolation, to obtain the final distribution, which
is used to generate the translation through beam
search:

p(yt|y<t,x) = (1− λ) pNMT(yt|y<t,x) (3)

+ λ pkNN(yt|y<t,x),

where λ ∈ [0, 1] is a hyperparameter that controls
the weight given to the two distributions.

3 Chunk-based kNN-MT

We now describe our chunk-based kNN-MT
model, illustrated in Figure 1. We first describe the
datastore creation (§3.1) and how we can retrieve
chunks of tokens from it (§3.2), describing how
they are used by the model (§3.2.2). Finally, we
describe how to select the steps in which the model
performs retrieval (§3.3).

3.1 Building the datastore
For the model to retrieve a chunk of tokens of size
c instead of a single token, we first need to build
a datastore D which also consists of a key-value
memory, where each entry key is the decoder’s
output representation f(x,y<t), but the value is
now a chunk of target tokens yt:(t+c−1): 2

D ={(f(x,y<t) , yt:(t+c−1)) ∀ t | (x,y) ∈ S}.
(4)

2When the chunk size c is larger than the number of the
remaining tokens in the sentence, N−(t−1), we add padding
tokens to complete the chunk.
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Figure 1: Chunk-based kNN-MT scheme. Top left: model procedure when retrieving neighbors from the datastore.
Top right: procedure when not performing retrieval. Bottom: retrieval schedule scheme.

Note that the chunks are sliding windows, i.e., they
overlap.

3.2 Retrieving chunks of tokens

At inference time, when performing retrieval, the
model searches the datastore and retrieves the set of
k nearest neighbors N , for each beam hypothesis
and example in the current batch. We now de-
scribe several strategies to manipulate the retrieved
chunks of tokens during generation.

3.2.1 Maintaining the chunk order
Since in the original sentences used to build the
datastore each chunk is composed of an ordered
sequence of tokens, the simplest way for the model
to use the retrieved tokens is to consider them in the
same order. For this, we simply need to compute
a retrieval distribution for each token in the chunk,
always using the same retrieval distances but align-
ing the chunk tokens with the corresponding time
step, i.e. at the retrieval step we consider the first
token of each neighbor chunk, at the following step
we consider the second token, and so on. We can
compute this retrieval distribution as it is done for
the kNN-MT, in Eq. 2, just modifying the token
indices according to the step. However, by doing
this, we are ignoring the remaining tokens in the
chunk, which can also contain relevant information
for the current prediction. Also, the tokens that

are generated in the previous steps t, . . . , t+ j − 1
might not be well “aligned” with the next tokens in
the jth position of the chunk for all neighbors.

3.2.2 Neighbors’ Cache
To avoid the limitation stated above, we propose us-
ing a neighbors’ cache instead. We keep the tokens
of the retrieved chunks in this cache, so that the
model has a higher flexibility about which tokens
to select for the current step: it has access to all the
tokens present in the retrieved chunks. The neigh-
bors’ cache, M, consists of a key-value memory,
where a key is the decoder’s output representation,
f(x,y<t), and a value is the corresponding target
token yt, as in the datastore:

M ={(f(x,y<t+i) , yt+i) ∀ 0 ≤ i < c ∀ yt |
yt:(t+c−1) ∈ N}. (5)

Note, however, that this cache requires having
the decoder state for every token in the chunk, not
just for the first one. Therefore, we need to have
this information available in the datastore:3

D = {(f(x,y<t) , yt:(t+c−1),

[f(x,y<t), . . . ,f(x,y<t+c−1)])

∀ t | (x,y) ∈ S}. (6)

3To avoid having the same decoder states in several entries,
we just store pointers to an array of decoder states.
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Then, as shown in the diagram of Figure 1, at the re-
trieval steps, the model first searches for the nearest
neighbors in the datastore, then builds the neigh-
bors’ cache with the tokens of the retrieved chunks,
then finally uses the first token of each chunk to
compute the current retrieval distribution. In con-
trast, at the non-retrieval steps, the model searches
for the nearest neighbors in the neighbors’ cache
instead of retrieving from the datastore. Then, to
compute the retrieval distribution it also uses the
softmax, as in Eq. 2, but with a different softmax
temperature, T ′. To incorporate the retrieved to-
kens, it performs interpolation as before, Eq. 3,
replacing the hyperparameter λ by λ′.4

Considering batch-beam-level neighbors. By
building this neighbors’ cache, the model can use
all the tokens in the retrieved chunks that corre-
spond to each beam hypothesis of the sentence be-
ing translated. However, it still ignores the chunks
of tokens corresponding to the other beam hypothe-
ses, which are often quite similar, and the other
sentences being translated in the same batch, which
can contain relevant contextual information if they
belong to the same document.

To also leverage these, we propose increasing
the number of tokens that the model has access to,
by combining the chunks retrieved for the different
beam hypotheses and the different examples of the
same batch. To do so, we simply need to build a
single neighbors’ cache for the current batch, to
which we feed all the retrieved chunks’ tokens.

Considering sentence-level neighbors. To also
consider the chunks of tokens retrieved in previous
steps of the generation of the current sentences,
we propose to keep these in the neighbors’ cache,
instead of resetting the cache at each retrieval step.

We empirically compare these different pro-
posed approaches in §4.1.3.

3.3 Retrieval Steps Schedule

As the need to perform retrieval slows down de-
coding considerably, having an efficient retrieval
schedule is key to achieve decoding speedups. The
simplest scheduling option corresponds to perform-
ing retrieval every i steps. However, we noticed
empirically that it is beneficial to perform retrieval

4We use a different temperature and interpolation coeffi-
cient at the non-retrieval steps because the number of entries
in the neighbors’ cache is much smaller than in the datastore,
hence the neighbors might be less similar.

steps more frequently at the beginning of the sen-
tence, as we will see in Table 3 of §4.1.4. To lever-
age this, we introduce the following schedule.

Having k ∈ {1, 2, . . .} as the retrieval step’s in-
dex and tk as the corresponding time step, (i.e. tk is
the position of the token generated after the kth re-
trieval step), we propose using a geometric progres-
sion to compute the interval (in tokens) between
the kth and (k+1)th retrieval steps, ik = tk+1− tk:

ik = ⌊min
(
imax, imin × 2 r tk

)
⌋, (7)

where imax and imin are hyperparameters that de-
fine the maximum and minimum interval between
retrieval steps, the rate at which the interval in-
creases is defined as r = 1

2 imax/|x| where |x| is
the source sentence size, and ⌊·⌋ denotes the floor
function.5 By using this progression, the frequency
with which the model performs retrieval decays
along the generation, until the interval between
retrieval steps reaches imax. For example, with
imin = 2, imax = 16, and |x| = 20 the model per-
forms retrieval at steps: {1, 3, 7, 20, 36, 52, . . . }.
Note that the chunk size, c, is independent of the
interval between retrieval steps.

4 Experiments

To understand if the chunk-based kNN-MT is able
to maintain the translation quality while speeding-
up decoding, we performed experiments on domain
adaptation (§4.1) and on-the-fly adaptation (§4.2).

4.1 Domain Adaptation
Dataset and metrics. For domain adaptation, we
perform experiments on the Medical, Law, IT, and
Koran domain data of the multi-domains dataset
introduced by Koehn and Knowles (2017) using the
splits redefined by Aharoni and Goldberg (2020).
To build the datastores, we use the training sets
that have 6,903,141, 19,061,382, 3,602,862, and
524,374 tokens, respectively. The validation and
test sets have 2,000 examples for each domain. For
evaluation, we use BLEU (Papineni et al., 2002;
Post, 2018) and COMET (Rei et al., 2020).

Models. As a baseline, we consider the fully para-
metric base MT model: the winning system from
the WMT’19 German-English news translation task
(Ng et al., 2019) (with 269M parameters), avail-
able in Fairseq (Ott et al., 2019). We also com-
pare our chunk-based kNN-MT model with other

5We always consider that the first retrieval step occurs at
the first step of the generation (t0=1).
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BLEU COMET
Medical Law IT Koran Average Medical Law IT Koran Average

Base MT 40.01 45.64 37.91 16.35 34.98 .4702 .5770 .3942 -.0097 .3579
Fine-tuned 50.47 56.56 43.82 21.54 43.10 .5871 .6906 .5856 .0484 .4779

kNN-MT 54.47 61.23 45.96 21.02 45.67 .5760 .6781 .5163 .0480 .4546
Efficient kNN-MT 51.90 57.82 44.44 20.11 43.57 .5513 .6260 .4909 -.0052 .4158
Chunk-based kNN-MT (ours) 53.16 59.65 44.18 19.33 44.08 .5551 .6257 .4854 .0039 .4175

Table 1: BLEU and COMET scores on the multi-domains test set, for a batch size of 8.
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Figure 2: Plots of the decoding speed (tokens per second) for the different models on the medical, law, IT, and
Koran domains, for different batch sizes (1,8,16). The generation speed (y-axis) is in log scale.

models that have access to the domain-specific
training data: the base model above fine-tuned on
the domain-specific datasets, the vanilla kNN-MT
model (Khandelwal et al., 2021), and the Efficient
kNN-MT model from Martins et al. (2022).

Settings. For all models that perform retrieval,
we retrieve k = 8 neighbors and select the hyper-
parameter λ for each method and each domain by
performing grid search on λ ∈ {0.5, 0.6, 0.7, 0.8}.
For the chunk-based kNN-MT, we also perform
grid search on λ′ ∈ {0.4, 0.5, 0.6} and T ′ ∈
{1, 2, 3}. The selected values for the hyperparame-
ters for each model for each domain, validated on
the validation set, are stated in Table 10 of App.
D. We use the softmax temperatures proposed by
Khandelwal et al. (2021) and for the efficient kNN-
MT, we use the efficiency methods’ parameters pro-
posed by Martins et al. (2022). Where not stated
otherwise, we use the chunk-based kNN-MT with
chunks of size c = 16, with a sentence-level neigh-
bors’ cache, and use the geometric progression
heuristic, in Eq. 7, to select the retrieval steps, with
imin = 2 and imax = 16, since this is the setting
that leads to the best trade-off between translation
quality and decoding speed on the validation set.
We also follow Martins et al. (2022) and use PCA
to reduce the datastore keys’ dimension to 256 and
the neighbors’ cache keys’ size to 64. To perform
search in the datastore and in the neighbors’ cache,
we use FAISS (Johnson et al., 2019).

For the fine-tuned model, we perform fine-tuning

for a maximum of 20 epochs on each domain. We
perform grid search on the validation set, using dif-
ferent learning rates, η ∈ {5×10−6, 1×10−5, 5×
10−5, 1 × 10−4} and two different learning rate
schedules (reducing learning rate on plateau and by
the inverse square root) with and without warmup
during 1 epoch. The selected hyperparameters are
stated in Table 11 of App. D.

Computational infrastructure. All experiments
were performed on a server with 3 RTX 2080 Ti (11
GB), 12 AMD Ryzen 2920X CPUs (24 cores), and
128 Gb of RAM. For the decoding speed measure-
ments, we ran each model on a single GPU while
no other process was running on the server, to have
a controlled environment. The nearest neighbor
search in the datastore is performed on the CPUs,
since not all datastores fit into GPU memory.

4.1.1 Results

The translation scores are reported in Table 1. We
can see that the decrease of translation quality
when comparing the chunk-based kNN-MT model
with the vanilla kNN-MT model is not substantial
in terms of BLEU (-1.5 points on average) and
COMET (-.04 points on average). It can also be
seen that the chunk-based kNN-MT model leads to
considerably better translation scores than the base
MT model (+9.1 BLEU and +.06 COMET points
on average) and to slightly better results than the
efficient kNN-MT model in terms of BLEU. When
comparing fine-tuning the base model with the use
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Medical Law IT Koran Average

Maintain order 45.17 51.48 40.11 17.87 38.66

Neighbors’ Cache
Single chunk 48.01 53.81 42.09 18.49 40.60
Beam-batch-level 51.77 58.80 42.91 19.46 43.24
Sentence-level 51.86 58.68 43.44 19.79 43.44

Table 2: BLEU scores on the multi-domains test set, for
a batch size of 8, with c = 6 and i = 6.

of semi-parametric models, the results are not con-
clusive: in terms of BLEU, the semi-parametric
models lead to better translations, but according to
COMET this is not the case. We present translation
examples for the different domains in App. F.

4.1.2 Decoding speed
As can be seen in Figure 2, the chunk-based kNN-
MT model leads to a decoding speed up to two
times higher than the decoding speed of the effi-
cient kNN-MT model of Martins et al. (2022) and
up to four times higher than that of the vanilla
kNN-MT model of Khandelwal et al. (2021). The
chunk-based kNN-MT model is also able to reduce
the decoding speed gap to the base MT model to a
factor of two, compared to a factor of four from pre-
vious work. Moreover, according to the results on
Table 1 this speed-up comes without substantially
harming the model’s translation quality.

4.1.3 What is the best way to incorporate the
retrieved tokens?

To understand which chunk incorporation strategy
works best, we perform a comparison using chunks
of size c = 6 and performed retrieval every 6 steps
(i = 6). The results reported in Table 2 show
that using a neighbors’ cache leads to substantially
better BLEU scores. We can also see that hav-
ing a beam-batch-level cache improves the BLEU
score and that keeping the tokens from the previous
retrieved chunks in the neighbors’ cache further
improves the translation quality.

4.1.4 When to perform retrieval?
To understand how we should select the retrieval
steps, we compare performing retrieval every i = 6
or i = 8 steps against using the proposed geomet-
ric progression (GP), Eq. 7, with imin = 2 and
imax = 8, imax = 16, or imax = 32, to com-
pute the interval between retrieval steps. For this
comparison, we used the model with a sentence-
level neighbors’ cache and considered c = i or
c = imax if using the geometric progression. We

Medical Law IT Koran Average

i = 6 51.86 58.68 43.44 19.79 43.44
i = 8 51.36 58.28 43.04 19.25 42.98
GP (imax = 8) 53.38 59.87 44.41 19.74 44.35
GP (imax = 16) 53.16 59.65 44.18 19.33 44.08
GP (imax = 32) 52.81 58.96 43.51 19.22 43.63

Table 3: BLEU scores on the multi-domains test set, for
a batch size of 8. When using the geometric progression
heuristic (GP) the average interval with imax = 16 is
5.97 and with imax = 32 is 6.85.

Medical Law IT Koran Average

i = 6 374 328 398 441 385
i = 8 421 374 429 470 424
GP (imax = 8) 354 307 358 405 356
GP (imax = 16) 397 368 393 445 401
GP (imax = 32) 436 423 418 481 440

Table 4: Decoding speed (tokens per second) on the
multi-domains test set, for a batch size of 8, with c =
imax.

report the BLEU scores in Table 3 and the corre-
sponding decoding speeds in Table 4. This compar-
ison shows that performing retrieval steps more fre-
quently at the beginning of the translation, by using
the the proposed geometric progression heuristic
(GP), leads to better BLEU scores while having a
higher decoding speed.

4.2 On-the-fly Adaptation
To understand how the chunk-based kNN-MT
model behaves in a realistic scenario where the
data arrives in streams, we performed experiments
where the model is continuously adapted on the fly.

Base model

Source sentence

Translation

Correct translation

Datastore

Fine-tuning
data

Figure 3: On-the-fly adaptation scheme. After the model
translates an example, a human translator (e.g., a post-
editor) corrects the generated translation which is added
to the fine-tuning data or the domain-specific datastore.
We use the references to simulate human translations.

Task description. In this task, we attempt to
simulate a real scenario, described in Figure 3, in
which we have a model that translates sentences
and a human translator (e.g., a post-editor) who
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Figure 4: Analysis of the on-the-fly adaptation experiments on the medical domain. Top left: BLEU scores measured
every 4,000 examples. Top right: Time (in minutes) spent by each model on training / creating and updating the
datastore and the corresponding BLEU score. Bottom left: Inference time (in minutes) spent by each model to
translate the whole set of examples and its BLEU score. Bottom right: Total time (training + inference) spent by
each model to translate the set of examples and its BLEU score. For the time plots, the lower right corner is better.

corrects the generated translations. Our goal is to
understand whether it is better to use the corrected
translations to repeatedly fine-tune the base model
or to add the corrected translations to the datastore
without touching the base model. To do so, we
consider that, before starting translation, we have
access to 10% of the dataset (we use the training
sets of the medical and law domains) and the goal is
to translate the remaining 90% examples. To simu-
late the existence of human translators who correct
the generated translations, we consider that, after
the model translates a block of sentences, it has
access to the corresponding reference sentences.

Models. As baselines, we use the base MT model
and the base model fine-tuned on the initially avail-
able 10% of data (fine-tune (once)). We also
compare fine-tuning the base model on the ini-
tially available data and then finetuning after every
32,000 and every 64,000 examples, with all the
available data at the time. In all cases, we fine-
tuned the model for a maximum of 5 epochs with a
learning rate of 5× 10−5 using the inverse square
root scheduler. Concerning the semi-parametric
models, we compare the kNN-MT model and the

chunk-based kNN-MT model, building the ini-
tial datastore with the initially available data and
adding new examples to the datastore after every
250 or 1,000 sentences. We used the same con-
figurations for the chunk-based kNN-MT model,
as in §4.1: chunks of size c = 16, sentence-level
neighbors’ cache, and the geometric progression
heuristic to select when to perform retrieval, with
imin = 2 and imax = 16. We also use the same
hyperparameters, stated on Table 10 of App. D.

4.2.1 Results
Figure 4 contains the results of the on-the-fly adap-
tation experiments on the medical domain. On the
top left plot, we see that both the kNN-MT and the
chunk-based kNN-MT lead to higher BLEU scores
than the fine-tuned models. Also, on the top right,
we see that the time needed to add examples to the
datastore is much shorter than the time needed to
fine-tune the model. This comes at the cost of a
higher inference time (bottom left). However, we
can see that the chunk-based kNN-MT model is
able to substantially reduce the inference time gap
to the fully-parametric models. Also, the bottom
right plot shows that the chunk-based kNN-MT has
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a shorter total time than kNN-MT and the models
fine-tuned every 32,000 and 64,000 steps. Concern-
ing the fine-tuned models, there is a BLEU increase
when the model is fine-tuned more often. However,
this leads to a substantially higher training time.
On the other hand, increasing the datastore updates
frequency leads to small BLEU improvements and
small increases in training time. The results on the
law domain show similar results (App. E).

5 Related Work

Semi-parametric models. Semi-parametric
models, which augment a parametric model with a
retrieval component, have been shown to be effec-
tive on several text generation tasks. For language
modeling, Khandelwal et al. (2019) proposed the
k-nearest neighbor language (kNN-LM), in which
a language model is augmented with token-based
retrieval and uses probability interpolation to
incorporate these tokens. Yogatama et al. (2021)
proposed to integrate the retrieved tokens with a
gating mechanism. Borgeaud et al. (2021) pro-
posed to retrieve chunks of tokens and incorporate
them with cross-attention, using datastores with
trillions of tokens. To increase the kNN-LM’s
decoding speed, He et al. (2021) proposed a
range of techniques, such as datastore pruning,
dimension reduction, and adaptive retrieval. Alon
et al. (2022) proposed adding pointers to the next
token on the original corpus to the datastore entries,
so that the model can consider the pointed entries
instead of performing retrieval. Similarly to our
approach, this saves retrieval steps by leveraging
the original corpus sequences, but in our case,
we do not limit the candidate tokens to be the
following ones and consider the succeeding tokens
even if the model has not generated the same prefix
token(s).

For machine translation, Gu et al. (2018) intro-
duced a semi-parametric model which uses an out-
of-the-box search engine to retrieve similar sen-
tence pairs, and incorporate them with shallow and
deep fusion. Zhang et al. (2018) proposed to re-
trieve n-grams and use them to up-weight token
probabilities. Bapna and Firat (2019a) proposed to
retrieve sentences similar to the source’s n-grams,
and incorporate them with attention. More recently,
Khandelwal et al. (2021) proposed the kNN-MT
model which Zheng et al. (2021a) extended with
a network that determines the number of retrieved
tokens to consider and Zheng et al. (2021b) pro-

posed building the datastore using monolingual
sentences. As kNN-MT can be up to two orders of
magnitude slower than a fully-parametric model,
methods that improve its efficiency have been pro-
posed. Meng et al. (2021) and Wang et al. (2021)
proposed the Fast and Faster kNN-MT, in which
the model has a higher decoding speed, by creating
a different datastore, based on the source sentence,
for each example. Martins et al. (2022) propose ef-
ficient kNN-MT, which we use as baseline (§4.1),
by adapting the methods introduced by He et al.
(2021) to machine translation and introducing a re-
trieval distributions cache to speed-up decoding. In
this paper, we show that the chunk-based kNN-MT
model can further speed-up decoding, by retrieving
chunks of tokens instead of a single token.

Semi-parametric models have also been applied
to other tasks as question answering (Lewis et al.,
2020; Izacard and Grave, 2021a,b) and dialogue
generation (Weston et al., 2014; Fan et al., 2021).

Domain adaptation for machine translation.
Domain adaptation consists of adapting generic
models to domain-specific data. The most common
method for domain adaptation in machine trans-
lation is fine-tuning the model on each domain,
but this can be expensive and often leads to catas-
trophic forgetting (Saunders, 2021). To simplify
this, some work has proposed fine-tuning only part
of the model (Wuebker et al., 2018; Bapna and
Firat, 2019b; Lin et al., 2021; Liang et al., 2021).
Farajian et al. (2017) performed on-the-fly adapta-
tion, by fine-tuning the model on a set of retrieved
examples for each source sentence. However, this
still requires fine-tuning model parameters.

Several works have introduced domain adap-
tation methods without the need to fine-tune the
model. Eidelman et al. (2012), Hasler et al. (2014),
and Su et al. (2015) proposed using topic models
while Bertoldi et al. (2014) proposed leveraging
post-editing information. More recently, Khandel-
wal et al. (2021) proposed using semi-parametric
models which retrieve from domain-specific data-
stores. The aim of our chunk-based kNN-MT
method is to speed up kNN-MT’s decoding, while
maintaining its high translation quality.

6 Conclusions

In this paper, we propose a chunk-based kNN-MT
model, which retrieves chunks of tokens from a
datastore, instead of a single token. To do so,
we proposed several alternatives to explore the re-
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trieved chunks’ tokens: keeping the original order
or building a neighbors’ cache. We also analyzed
two approaches to select the retrieval steps: every
i steps or using a geometric progression heuris-
tic to define the interval between retrieval steps.
Through experiments on domain adaptation, we
showed that chunk-based kNN-MT leads to a con-
siderable speed-up without substantially compro-
mising the translation quality. Experiments on on-
the-fly adaptation showed that chunk-based kNN-
MT leads to high quality translations while being
more efficient than previously proposed methods.

Limitations

The scope of this paper is limited to the usage of
small to medium size datastores, due to the mem-
ory requirements needed for big size datastores, for
which the proposed model could be even more ben-
eficial. Additionally, we use the decoding speed
(tokens per second), training time (in minutes), and
inference time (in minutes) to compare the effi-
ciency of the different models. However, these
metrics depend on the computational infrastructure
used, and, consequently, the speed-up gains can
vary when using different hardware.
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A Varying the Chunk Size along the
Generation

When using the geometric progression to com-
pute the interval between retrieval steps (§3.3), the
model performs retrieval more frequently at the
beginning of the generation of the translation. Be-
cause of this, we compare having a fixed chunk size
equal to the maximum interval between retrieval
steps (c = imax) with having the chunk size vary
along the generation (ck = ik). For this compari-
son, we compute the retrieval steps using the geo-
metric progression with imin = 2 and imax = 16,
and use a sentence-level cache.

Medical Law IT Koran Average

c = imax 53.16 59.65 44.18 19.33 44.08
ck = ik 52.70 59.40 43.96 19.10 43.79

Table 5: BLEU scores on the multi-domains test set, for
a batch size of 8.

The results, in Table 5, indicate that keeping the
chunk size fixed leads to slightly better translation
quality.

B Using Different Values for k.

In order to understand how the number of retrieved
chunks (k) affects the translation quality and the
decoding speed, we compare using different values
of k. For this comparison, we compute the retrieval
steps using the geometric progression with imin =
2 and imax = 16, and use a sentence-level cache.

Medical Law IT Koran Average

k = 2 50.55 56.30 41.42 18.32 41.65
k = 4 51.46 58.28 43.55 19.07 43.09
k = 8 53.16 59.65 44.18 19.33 44.08
k = 16 53.75 60.64 45.37 19.99 44.94

Table 6: BLEU scores on the multi-domains test set, for
a batch size of 8.

Medical Law IT Koran Average

k = 2 452 392 452 494 448
k = 4 433 386 428 486 433
k = 8 397 368 393 445 401
k = 16 343 323 329 380 344

Table 7: Decoding speed (tokens per second) on the
multi-domains test set, for a batch size of 8.

We report the BLEU score and decoding speed
for different values of k in Tables 6 and 7, respec-

tively. These results show that there is a trade-off
between the translation quality and the decoding
speed, when varying the number of retrieved neigh-
bors (k).

C Experiments on ES-FR and ET-IT.

To understand if the proposed model, chunk-based
kNN-MT, performs well on language pairs and
datasets other than the ones used in the main ex-
periments (§4.1.1), we perform experiments on
Spanish-French (es-fr) and Estonian-Italian (et-it)
on two datasets: EMEA and JRC-acquis (Tiede-
mann, 2012). For this experiment, we used the
multilingual model mBART50 (Tang et al., 2020),
compute the retrieval steps using the geometric pro-
gression with imin = 2 and imax = 16, and use a
sentence-level cache.

EMEA JRC
es-fr et-it es-fr et-it

Base MT 5.02 16.44 19.27 17.94
kNN-MT 36.65 38.79 45.87 39.88
Chunk-based kNN-MT 25.69 32.80 29.17 28.16

Table 8: BLEU scores on the EMEA and JRC test sets,
for a batch size of 8.

EMEA JRC
es-fr et-it es-fr et-it

Base MT 189 214 189 205
kNN-MT 37 37 26 27
Chunk-based kNN-MT 98 96 95 101

Table 9: Decoding speed (tokens per second) on the
EMEA and JRC test sets, for a batch size of 8.

We report the BLEU scores and the decoding
speeds (in tokens per second) on Tables 8 and 9,
respectively. As can be seen, the chunk-based kNN-
MT model is able to improve the translation quality
considerably, when comparing with the base MT
model, while leading to a decoding speed around 3
times faster than the vanilla kNN-MT model.

D Hyperparameters

On Table 10 we report the values for the hyperpa-
rameters of the semi-parametric models: the inter-
polation coefficients λ ∈ {0.5, 0.6, 0.7, 0.8} and
λ′ ∈ {0.4, 0.5, 0.6}, and the retrieval softmax tem-
peratures T and T ′ ∈ {1, 2, 3}. For decoding we
use beam search with a beam size of 5.

On Table 11 we report the values of the hyperpa-
rameters used to fine-tune the base model on each
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domain: learning rate, learning rate scheduler, and
whether warmup steps were used.

E On-the-fly Adaptation on Law Domain

We report the results of the on-the-fly adaptation
experiment, on the law domain, on Figure 5. In a
similar way as in the medical domain, the top left
plot shows that the kNN-MT and the chunk-based
kNN-MT models lead to higher BLEU scores than
the fine-tuned models. We can also see, on the
top right plot, that the time the models take to add
examples to the datastore along the generation is
much shorter than the time needed to fine-tune the
model. This comes at the cost of a higher inference
time (as shown on the bottom left plot). However,
we can see that the chunk-based kNN-MT model
is able to substantially reduce the inference time
gap between fully-parametric and semi-parametric
models, having a shorter total time than the kNN-
MT and the models fine-tuned every 32,000 and
64,000 steps (bottom right plot). Concerning the
fine-tuned models, fine-tuning more often leads to
a slightly better BLEU score. However, this also
leads to a substantially higher training time.

F Translation Examples

We report some translation examples on the medi-
cal domain in Figures 6 and 7, on the law domain
in Figure 8, and on the IT domain in Figure 9. To
simplify the examples, we use a batch size of 1 and
a beam size of 1.
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Medical Law IT Koran
λ T λ′ T ′ λ T λ′ T ′ λ T λ′ T ′ λ T λ′ T ′

kNN-MT 0.7 10 — — 0.8 10 — — 0.7 10 — — 0.6 100 — —
Efficient kNN-MT 0.7 10 — — 0.8 10 — — 0.7 10 — — 0.7 100 — —
Chunk-based kNN-MT 0.7 10 0.5 1 0.8 10 0.5 1 0.7 10 0.4 2 0.8 100 0.4 3

Ablations

c=6 , i=6
Maintain order 0.8 10 0.4 — 0.7 10 0.4 — 0.5 10 0.4 — 0.7 100 0.4 —
Single chunk 0.8 10 0.4 2 0.7 10 0.4 2 0.7 10 0.4 2 0.7 100 0.4 3
All chunks 0.7 10 0.5 1 0.8 10 0.5 1 0.7 10 0.4 2 0.6 100 0.4 1
Keep previous 0.7 10 0.5 1 0.8 10 0.5 1 0.7 10 0.4 1 0.7 100 0.4 3

Keep previous
i = 6 0.7 10 0.5 1 0.8 10 0.5 1 0.7 10 0.4 1 0.7 100 0.4 3
i = 8 0.7 10 0.4 1 0.8 10 0.5 1 0.7 10 0.4 1 0.7 100 0.4 3
exp(imax = 16) 0.7 10 0.5 1 0.8 10 0.5 1 0.7 10 0.4 2 0.8 100 0.4 3
exp(imax = 32) 0.8 10 0.5 1 0.6 10 0.5 1 0.6 10 0.4 1 0.5 100 0.4 1

Table 10: Values of the hyperparameters: number of neighbors to be retrieved k, interpolation coefficient λ, and
retrieval softmax temperature T .

Medical Law
η schedule warmup η schedule warmup

1× 10−5 on plateau no 5× 10−5 inverse sqrt yes

IT Koran
η schedule warmup η schedule warmup

5× 10−5 inverse sqrt yes 5× 10−5 inverse sqrt no

Table 11: Values of the hyperparameters for the fine-tuned model.
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Figure 5: Analysis of the on-the-fly adaptation experiments on the law domain. Top left: BLEU scores measured
every 4,000 examples. Top right: Time (in minutes) spent by each model on training / creating and updating the
datastore and the corresponding BLEU score. Bottom left: Inference time (in minutes) spent by each model to
translate the whole set of examples and its BLEU score. Bottom right: Total time (training + inference) spent by
each model to translate the set of examples and its BLEU score. The lower right corner is better.
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  ['-', 'T@@', 'ell', 'your', 'doctor', 'if', 'you', 'get', 'any', 'of', 'these', 'symptoms', '.', '</s>']
  ['-', 'T@@', 'ell', 'your', 'doctor', 'if', 'you', 'have', 'been', 'treated', 'with', 'medic@@', 'ines', 'that', 'may', 'reduce']
  ['-', 'T@@', 'ell', 'your', 'do@@', 'ct', 'or', 'if', 'you', 'have', 'ha@@', 'em@@', 'ophi@@', 'lia', '.', '</s>']
  ['Some', 'patients', 'taking', '</s>']
  ['-', 'T@@', 'ell', 'your', 'doctor', 'if', 'you', 'have', 'diabetes', '.', '</s>']
  ['T@@', 'ell', 'your', 'doctor', 'or', 'pharmac@@', 'ist', '.', '</s>']
  ['A', 'gain', ',', 'loss', 'or', 're@@', 'distribution', 'of', '</s>']
  ['-', 'T@@', 'ell', 'your', 'doctor', 'if', 'you', 'have', 'a', 'heart', 'pac@@', 'em@@', 'aker', 'or', 'if', 'there']

- T@@ ell your if developdoctor you a ra@@ sh .

  ['ell', 'the', 'doctor', 'if', 'your', 'child', 'has', 'recently', 'received', 'a', 'vaccine', 'or', 'if', 'one', 'is', 'scheduled']
  ['ell', 'your', 'doctor', 'if', 'you', 'are', 'taking', 'anti', '@-@', 'HIV', 'therapy', '.', '</s>']
  ['ell', 'your', 'doctor', 'if', 'you', 'are', 'di@@', 'abe@@', 'tic', '.', '</s>']
  ['ell', 'your', 'doctor', 'if', 'the', 'child', 'has', 'he@@', 'pati@@', 'tis', 'C', '.', '</s>']
  ['ell', 'your', 'doctor', 'if', 'you', 'are', 'breast', '@-@', 'feeding', 'or', 'about', 'to', 'start', 'breast', '@-@', 'feeding']
  ['ell', 'your', 'doctor', 'if', 'you', 'have', 'he@@', 'pati@@', 'tis', 'C', '.', '</s>']
  ['ell', 'your', 'doctor', 'or', 'pharmac@@', 'ist', 'if', 'you', 'are', 'pregnant', 'or', 'think', 'you', 'may', 'be', 'pregnant']
  ['ell', 'your', 'doctor', 'if', 'you', 'are', 'breast', '@-@', 'feeding', '.', '</s>']

  ['develop', 'a', 'ra@@', 'sh', '.', '</s>']
  ['experience', 'ra@@', 'sh', 'and', 'any', 'of', 'the', 'other', 'side', 'effects', 'of', 'a', 'hyper@@', 'sensi@@', 'tivity', '(']
  ['develop', 'any', 'of', 'these', 'symptoms', 'you', 'should', 'seek', 'medical', 'attention', 'immediately', '.', '</s>']
  ['get', 'any', 'of', 'these', '.', '</s>']
  ['get', 'a', 'skin', 'ra@@', 'sh', '.', '</s>']
  ['get', 'these', 'symptoms', '.', '</s>']
  ['get', 'any', 'of', 'these', 'symptoms', '.', '</s>']
  ['develop', 'lymp@@', 'homa', 'or', 'other', 'canc@@', 'ers', 'while', 'you', 'are', 'taking', 'Re@@', 'mic@@', 'ade', '.', '</s>']

Neighbors' cache

Translation

  Source: - Informieren Sie Ihren Arzt, wenn sich bei Ihnen ein Hautausschlag entwickelt. 

  Target: - Tell your doctor if you develop a rash. 

Figure 6: Example of translation from the medical domain. The tokens generated at the retrieval steps are highlighted
in the same color as the retrieved chunks of tokens. These chunks of tokens are added to the neighbors’ cache, after
being retrieved. The retrieved tokens which are present in the translation are bolded.
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  ['If', 'you', 'forget', 'a', 'dose', ',', 'talk', 'to', 'your', 'doctor', 'or', 'pharmac@@', 'ist', 'as', 'soon', 'as']
  ['In', 'case', 'you', 'in@@', 'ject', 'an', 'incor@@', 'rec@@', 't', 'dose', 'or', 'you', 'miss', 'an', 'in@@', 'jection']
  ['24', 'If', 'you', 'take', 'more', 'N@@', 'ex@@', 'av@@', 'ar', 'than', 'you', 'should', 'T@@', 'ell', 'your', 'doctor']
  ['If', 'you', 'have', 'acci@@', 'dentally', 'taken', 'more', 'than', 'the', 'prescri@@', 'bed', 'dose', ',', 'you', 'should', 'contact']
  ['If', 'you', 'have', 'forgotten', 'a', 'dose', 'of', 'Fil@@', 'gra@@', 'st@@', 'im', 'HE@@', 'X@@', 'AL', ',', 'you']
  ['If', 'you', 'are', 'concerned', 'that', 'you', 'may', 'have', 'missed', 'a', 'dose', ',', 'contact', 'your', 'doctor', 'or']
  ['If', 'you', 'have', 'liver', 'or', 'ki@@', 'dney', 'problems', ',', 'talk', 'to', 'your', 'doctor', ',', 'since', 'your']
  ['If', 'you', 'have', 'liver', 'or', 'ki@@', 'dney', 'problems', ',', 'talk', 'to', 'your', 'doctor', ',', 'since', 'your']

If you think you have dosemissed , talka to your immediately

  ['think', 'you', 'might', 'have', 'any', 'of', 'these', ',', 'talk', 'to', 'your', 'doctor', 'immediately', '.', '</s>']
  ['think', 'you', 'may', 'be', 'aller@@', 'gic', 'to', 'vil@@', 'd@@', 'ag@@', 'lip@@', 'tin', 'or', 'any', 'of', 'the']
  ['think', 'you', 'may', 'be', 'aller@@', 'gic', 'to', 'any', 'of', 'these', ',', 'talk', 'to', 'your', 'doctor', 'before']
  ['think', 'that', 'a', 'dose', 'has', 'been', 'forgotten', '.', '</s>']
  ['think', 'you', 'are', 'having', 'any', 'of', 'these', 'types', 'of', 'reaction', ',', 'stop', 'taking', 'this', 'medicine', 'and']
  ['think', 'you', 'may', 'have', 'been', 'given', 'too', 'much', 'medicine', ',', 'tell', 'your', 'doctor', 'straight', 'away', '.']
  ['think', 'you', 'are', 'pregnant', '.', '</s>']
  ['think', 'you', 'are', 'experiencing', 'any', 'of', 'these', 'side', 'effects', '.', '</s>']

  ['dose', ',', 'ad@@', 'minister', 'it', 'as', 'soon', 'as', 'possible', '.', '</s>']
  ['dose', ',', 'contact', 'your', 'doctor', 'or', 'pharmac@@', 'ist', '.', '</s>']
  ['dose', ',', 'talk', 'to', 'your', 'doctor', 'or', 'pharmac@@', 'ist', 'as', 'soon', 'as', 'possible', '.', '</s>']
  ['dose', ',', 'just', 'carry', 'on', 'with', 'the', 'next', 'dose', 'as', 'normal', '.', '</s>']
  ['dose', ',', 'take', 'it', 'as', 'soon', 'as', 'you', 'remember', '.', '</s>']
  ['dose', ',', 'just', 'resume', 'your', 'usual', 'schedule', 'the', 'following', 'day', '.', '</s>']
  ['dose', 'of', 'M@@', 'IR@@', 'C@@', 'ER@@', 'A', 'ad@@', 'minister', 'the', 'missed', 'dose', 'as', 'soon', 'as', 'you']
  ['dose', ',', 'take', 'it', 'as', 'soon', 'as', 'you', 'remember', '.', '</s>']

Neighbors' cache

Translation

  Source: Wenn Sie glauben, dass Sie eine Dosis vergessen haben, informieren Sie sofort Ihren Arzt. 

  Target: If you think that you have missed a dose, tell your doctor straight away. 

doctor .

Figure 7: Example of translation from the medical domain. The tokens generated at the retrieval steps are highlighted
in the same color as the retrieved chunks of tokens. These chunks of tokens are added to the neighbors’ cache, after
being retrieved. The retrieved tokens which are present in the translation are bolded.
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  ['8', '.', 'Where', 'the', 'last', 'day', 'of', 'the', 'period', 'is', 'not', 'a', 'working', 'day', ',', 'the']
  ['8', '.', 'In', 'the', 'case', 'of', 'ir@@', 'regul@@', 'arities', 'affecting', 'at', 'least', '5', '%', 'of', 'the']
  ['8', '.', 'In', 'the', 'case', 'of', 'ir@@', 'regul@@', 'arities', 'affecting', 'at', 'least', '5', '%', 'of', 'the']
  ['8', '.', 'A', 'new', 'ent@@', 'rant', 'which', 'has', 'been', 'offered', 'sl@@', 'ots', 'within', 'two', 'hours', 'before']
  ['8', '.', 'If', 'any', 'of', 'the', 'def@@', 'ici@@', 'en@@', 'cies', 'referred', 'to', 'in', 'par@@', 'ag@@', 'rap@@']
  ['(', '8', ')', 'Where', 'several', 'representatives', 'are', 'appointed', 'by', 'the', 'same', 'party', ',', 'they', 'may', ',']
  ['8', '.', 'The', 'office', 'referred', 'to', 'in', 'par@@', 'ag@@', 'rap@@', 'hs', '4', 'and', '5', 'shall', 'keep']
  ['8', '.', 'The', 'date', 'of', 'issue', 'of', 'the', 'movement', 'certific@@', 'ate', 'must', 'be', 'indicated', 'in', 'the']

8 If hasmember paidnot itsa to budgetcontribution

  ['If', 'on', '1', 'June', 'a', 'Member', 'State', 'has', 'not', 'submitted', 'its', 'annual', 'invent@@', 'ory', 'report', 'to']
  ['If', 'a', 'member', 'of', 'the', 'F@@', 'UND', 'fails', 'to', 'ful@@', 'fi@@', 'l', 'any', 'of', 'its', 'oblig@@']
  ['If', 'a', 'member', 'has', 'not', 'paid', 'its', 'full', 'contribution', 'to', 'the', 'administrative', 'budget', 'within', 'four', 'months']
  ['If', 'actual', 'recovery', 'has', 'not', 'taken', 'place', 'by', 'the', 'due', 'date', 'sti@@', 'pul@@', 'ated', 'in', 'the']
  ['If', 'no', 'products', 'have', 'been', 'put', 'into', 'free', 'circu@@', 'lation', 'during', 'the', 'course', 'of', 'one', 'of']
  ['Where', 'the', 'time', 'limit', 'set', 'by', 'the', 'customs', 'office', 'pursu@@', 'ant', 'to', 'par@@', 'ag@@', 'rap@@', 'h']
  ['Where', 'a', 'con@@', 'sign@@', 'ment', 'has', 'not', 'been', 'presented', 'at', 'the', 'office', 'of', 'destination', 'and', 'the']
  ['If', 'a', 'member', 'decl@@', 'ares', 'himself', 'un@@', 'available', 'for', 'a', 'stated', 'period', ',', 'the', 'Chairman', 'may']

  ['paid', 'its', 'full', 'contribution', 'to', 'the', 'administrative', 'budget', 'within', 'four', 'months', 'after', 'such', 'contribution', 'becomes', 'due']
  ['paid', 'its', 'contribution', 'within', 'two', 'months', 'after', 'such', 'request', ',', 'that', 'member', 'shall', 'be', 'requested', 'to']
  ['paid', 'its', 'contribution', ',', 'its', 'voting', 'rights', 'shall', 'be', 'suspended', 'and', 'an', 'interest', 'charge', 'shall', 'be']
  ['paid', 'the', 'purchase', 'price', 'to', 'the', 'producer', 'within', 'the', 'deadline', 'laid', 'down', 'in', 'Article', '65', '(']
  ['paid', 'for', 'the', 'cer@@', 'e@@', 'als', 'within', 'the', 'period', 'laid', 'down', 'in', 'the', 'first', 'par@@', 'ag@@']
  ['paid', 'the', 'producer', 'the', 'purchase', 'price', 'referred', 'to', 'in', 'par@@', 'ag@@', 'rap@@', 'h', '6', 'within', 'the']
  ['made', 'the', 'payment', 'referred', 'to', 'in', 'par@@', 'ag@@', 'rap@@', 'h', '2', 'within', 'the', 'speci@@', 'fied', 'period']
  ['paid', 'the', 'producer', 'the', 'purchase', 'price', 'referred', 'to', 'in', 'par@@', 'ag@@', 'rap@@', 'h', '7', 'of', 'this']

Neighbors' cache

Translation

  Source: (8) Zahlt ein Mitglied seinen Beitrag zum Verwaltungshaushalt nicht binnen sechs Monaten nach Beginn des

  Target: 8. If a member does not pay its contribution to the administrative budget in full within the six months 

within. the administrative six months of the

commen@@ cement of the year .

  ['year', '.', 'The', 'part', 'of', 'the', 'balance', 'exce@@', 'eding', 'the', 'amount', 'of', 'the', 'Community', 'subsi@@', 'dy']
  ['quanti@@', 'ties', 'with@@', 'drawn', ':', '</s>']
  ['storage', 'contract', 'or', 'the', 'final', 'day', 'for', 'sub@@', 'mission', 'of', 'ten@@', 'ders', 'in', 'response', 'to', 'an']
  ['Commission', 'shall', ':', '</s>']
  ['period', 'referred', 'to', 'in', 'Article', '10', '(', '1', ')', 'of', 'the', 'Act', 'of', '</s>']
  ['entry', 'into', 'force', '</s>']
  ['compet@@', 'ent', 'official', 'body', 'concerned', ',', 'or', '</s>']
  ['final', 'day', 'for', 'sub@@', 'mission', 'of', 'ten@@', 'ders', 'in', 'response', 'to', 'an', '</s>']

Figure 8: Example of translation from the law domain. The tokens generated at the retrieval steps are highlighted in
the same color as the retrieved chunks of tokens. These chunks of tokens are added to the neighbors’ cache, after
being retrieved. The retrieved tokens which are present in the translation are bolded.
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  ['Use', 'this', 'sp@@', 'in@@', 'box', 'to', 'set', 'the', 'number', 'of', 'days', 'to', 'show', 'upcoming', 'special', 'occasions']
  ['Use', 'this', 'sp@@', 'in@@', 'box', 'to', 'set', 'the', 'number', 'of', 'days', 'to', 'show', 'upcoming', 'events', 'up']
  ['This', 'sp@@', 'in@@', 'box', 'allows', 'you', 'to', 'set', 'the', 'reminder', 'trigger', 'time', '.', 'The', 'time', 'unit']
  ['With', 'the', 'sli@@', 'der', ',', 'you', 'can', 'set', 'the', 'speed', 'of', 'the', 'anim@@', 'ation', '.', '</s>']
  ['Use', 'the', 'sli@@', 'der', 'to', 'set', 'the', 'mo@@', 'dem', 'volume', '.', 'Left', 'is', 'low', 'volume', ',']
  ['The', 'sli@@', 'der', 'bar', 'can', 'be', 'used', 'to', 'ad@@', 'just', 'the', 'dur@@', 'ation', 'of', 'the', 'visible']
  ['Use', 'the', 'sli@@', 'der', 'to', 'select', 'a', 'value', 'between', '5@@', 'x@@', '5', 's@@', 'quar@@', 'es', 'and']
  ['With', 'this', 'sli@@', 'der', 'you', 'can', 'set', 'the', 'bri@@', 'ght@@', 'ness', 'when', 'the', 'system', 'is', 'plu@@']

Use the sp@@ in@@ tobox set number of days

.

  ['sp@@', 'in@@', 'box', 'to', 'set', 'the', 'number', 'of', 'days', 'to', 'show', 'upcoming', 'special', 'occasions', 'up', 'to']
  ['sp@@', 'in@@', 'box', 'to', 'set', 'the', 'number', 'of', 'days', 'to', 'show', 'upcoming', 'events', 'up', 'to', '1']
  ['sli@@', 'der', 'to', 'set', 'the', 'mo@@', 'dem', 'volume', '.', 'Left', 'is', 'low', 'volume', ',', 'center', 'is']
  ['sli@@', 'der', 'to', 'select', 'a', 'value', 'between', '5@@', 'x@@', '5', 's@@', 'quar@@', 'es', 'and', '10@@', 'x@@']
  ['sli@@', 'der', ',', 'you', 'can', 'set', 'the', 'speed', 'of', 'the', 'anim@@', 'ation', '.', '</s>']
  ['spin', 'box', 'combination', '.', '</s>']
  ['rot@@', 'ate', 'butt@@', 'ons', 'visible', '</s>']
  ['sli@@', 'der', ')', 'before', 'the', 'key@@', 'stroke', 'will', 'be', 'accepted', '.', 'This', 'helps', 'prevent', 'acci@@', 'dental']

  ['set', 'the', 'number', 'of', 'days', 'to', 'show', 'upcoming', 'events', 'up', 'to', '1', 'year', 'in', 'the', 'future']
  ['set', 'the', 'number', 'of', 'days', 'to', 'show', 'upcoming', 'special', 'occasions', 'up', 'to', 'one', 'year', 'in', 'the']
  ['speci@@', 'fy', 'the', 'dur@@', 'ation', 'for', 'displa@@', 'ying', 'a', 'frame', 'and', 'the', 'number', 'of', 'times', 'an']
  ['define', 'how', 'broad', 'the', 'trail', 'of', 'a', 'vehicle', 'should', 'be', '.', 'Mo@@', 'ving', 'the', 'sli@@', 'der']
  ['determine', 'how', 'many', 'lines', 'of', 'text', 'one', 'step', 'of', 'the', 'm@@', 'ouse', 'wheel', 'will', 'sc@@', 'roll']
  ['speci@@', 'fy', 'the', 'number', 'of', 'rows', 'you', 'want', 'in', 'the', 'voc@@', 'ab@@', 'ul@@', 'ary', '.', 'You']
  ['ad@@', 'just', 'the', 'time', ',', 'in', 'milli@@', 'seconds', ',', 'that', 'the', 'OS@@', 'D', 'is', 'displayed', 'on']
  ['set', 'the', 'number', 'of', 'pages', 'to', 'be', 'displayed', '.', '</s>']

Neighbors' cache

Translation

  Source: Mit dem Drehregler können Sie die Anzahl Tage in die Zukunft festlegen, für die anstehende Aufgaben angezeigt 
                 werden sollen. Der maximale Einstellung ist ein Jahr. 

  Target: Use this spinbox to set the number of days to show pending To-dos up to 1 year in the future. 

  ['pending', 'To', '@-@', 'dos', '</s>']
  ['upcoming', 'events', 'up', 'to', '1', 'year', 'in', 'the', 'future', '.', '</s>']
  ['pending', 'To', '@-@', 'dos', '</s>']
  ['upcoming', 'special', 'occasions', 'up', 'to', 'one', 'year', 'in', 'the', 'future', '.', '</s>']
  ['upcoming', 'events', '</s>']
  ['upcoming', 'events', '</s>']
  ['pending', 'tasks', ',', 'record', 'your', 'occ@@', 'ur@@', 'ren@@', 'ces', ',', 'experiences', ',', 'and', 'refle@@', 'ctions', 'and']
  ['upcoming', 'events', 'and', 'to@@', 'dos', '.', '</s>']

the to show pending tasks up to 1

year in the future

Figure 9: Example of translation from the IT domain. The tokens generated at the retrieval steps are highlighted in
the same color as the retrieved chunks of tokens. These chunks of tokens are added to the neighbors’ cache, after
being retrieved. The retrieved tokens which are present in the translation are bolded.
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