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Abstract

Existing methods on knowledge base question
generation (KBQG) learn a one-size-fits-all
model by training together all subgraphs with-
out distinguishing the diverse semantics of sub-
graphs. In this work, we show that making
use of the past experience on semantically simi-
lar subgraphs can reduce the learning difficulty
and promote the performance of KBQG mod-
els. To achieve this, we propose a novel ap-
proach to model diverse subgraphs with meta-
learner (DSM). Specifically, we devise a graph
contrastive learning-based retriever to iden-
tify semantically similar subgraphs, so that
we can construct the semantics-aware learning
tasks for the meta-learner to learn semantics-
specific and semantics-agnostic knowledge on
and across these tasks. Extensive experiments
on two widely-adopted benchmarks for KBQG
show that DSM derives new state-of-the-art per-
formance and benefits the question answering
tasks as a means of data augmentation. Codes
and datasets are available online1.

1 Introduction

In recent years, knowledge base question gener-
ation (KBQG) has attracted substantial research
interests as it shows great promise to improve the
quality of question answering (QA). Specifically,
KBQG can augment training data for QA sys-
tems (Chen et al., 2020; Indurthi et al., 2017), and
it can also motivate the machines to actively ask
questions in human-machine conversations (Sun
et al., 2018b; Zeng and Nakano, 2020).

Concretely, KBQG generates natural language
questions according to a set of facts extracted from
KB, where each fact is typically specified as a
triplet (e, r, e′) meaning entity e has relation r with
entity e′. Previous efforts on KBQG can be cate-
gorized into template-based models (Seyler et al.,

∗Corresponding author.
1https://github.com/RUCKBReasoning/DSM

2017) and neural network-based (NN-based) mod-
els (Bi et al., 2020; Kumar et al., 2019). The former
ones heavily depend on hand-crafted templates, re-
sulting in low scalability as these templates are lim-
ited to narrow domains. Alternatively, NN-based
models address this issue via inputting the set of
triplets about a certain answer into a Seq2Seq ar-
chitecture to automatically generate the question.

In fact, for generating a question, triplets about
a certain answer can naturally form a subgraph as
illustrated in Figure 1. We observe that subgraphs
differ in their semantics, which is especially shown
in the relations that express the triplets2 as well
as the structural patterns such as chain, star, and
triangle3. Existing efforts do not distinguish the se-
mantics of different subgraphs but learn a one-size-
fits-all model by training together all subgraphs,
which increases the learning difficulty. Inspired
by humans who solve a problem by searching the
relevant problems that they have encountered in the
past and adjusting the solution of these problems to
the new one (Lancaster and Kolodner, 1987; Ross,
1984), we avoid directly learning a model on the
entire data but try to leverage the past experience
from similar KBQG cases to supervise generation
from the current subgraph.

To achieve the goal, we propose a KBQG ap-
proach which models Diverse Subgraph with Meta-
learner (DSM). DSM retrieves semantically similar
subgraphs which share similar relations and struc-
tures to construct semantics-aware learning tasks,
so that the model can carefully learn potential ques-
tion generation (QG) patterns over each kind of
subgraphs. With multiple learning tasks, we em-
ploy a Model-Agnostic Meta-Learning (Finn et al.,
2017)-like (MAML-like) meta-learner to capture
semantics-specific and semantics-agnostic knowl-

2The relations instead of the concrete entities in a subgraph
is the decisive factor of the meaning.

3More complex examples can be viewed as the combina-
tion of chain, star, and triangles.
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Figure 1: Illustration of diverse subgraphs in a knowledge graph, where blue nodes represent answer entities. Each
subgraph is used to generate a question about the answer entity. Especially, question generation (QG) based on
the subgraphs with different relations (e.g., teammate, speak, and workmate) and structures (e.g., chain, star, and
triangle) could follow distinct potential rules, so we suggest addressing subgraphs with distinct semantics differently.

edge on and across different learning tasks.
To create the above learning tasks in DSM, re-

trieving similar subgraphs is crucial. Although clas-
sic graph matching algorithms (Li et al., 2019; Riba
et al., 2018) can help do this, they only consider
graph structural properties, regardless of the seman-
tics of relations. Inspired by the great success of
graph neural networks (GNNs) (Hamilton et al.,
2017; Kipf and Welling, 2017; Velickovic et al.,
2018), we turn to represent subgraphs in the em-
bedding space by GNNs, as they can easily encode
both relations and structures. By doing this, we can
retrieve semantically similar subgraphs according
to cosine similarity between their representations.
Due to the lack of supervision, we perform graph
contrastive learning (GCL) (Qiu et al., 2020; You
et al., 2020a), which is one of the mainstream graph
self-supervised learning methods. To enable GCL,
we propose relation path-based similarity, a simple
and effective metric, to retrieve similar subgraphs
as positive samples of contrastive learning.

Contributions. (1) We design a KBQG approach
that considers the diversity of subgraph seman-
tics. Instead of training subgraphs of different se-
mantics together, we construct semantics-specific
learning tasks to reduce the learning difficulty. (2)
We devise a GCL-based retriever to identify se-
mantically similar subgraphs, so that we can con-
struct semantics-aware learning tasks for the meta-
learner to enable the meta-leaner learn semantics-
specific and semantics-agnostic knowledge. (3)
Our model shows the new state-of-the-art (SOTA)
performance in BLEU and ROUGE, and benefits
the QA tasks as a means of data augmentation. Hu-
man evaluation and case studies also show that

our model can generate more relevant and fluent
questions than other baselines.

2 Related Work

Knowledge Base Question Generation. Existing
KBQG models can be divided into two categories —
template-based models and neural network-based
(NN-based) models. The former (Seyler et al.,
2017) designs heuristic templates for question gen-
eration, which is simple but has low scalability.
Driven by advances of deep neural networks (Shen
et al., 2018; Vaswani et al., 2017), NN-based mod-
els (Bi et al., 2020; Elsahar et al., 2018; Indurthi
et al., 2017; Liu et al., 2019) are applied to gen-
erate questions automatically. Generally, triplets
in a subgraph are organized into a sequence to be
the input of a Seq2Seq (Sutskever et al., 2014)
neural network. Since the graph topology around
each entity also contains useful semantics, recent
studies (Chen et al., 2020; Kumar et al., 2019) uti-
lize graph neural networks to encode the structural
patterns. Nevertheless, previous studies overlook
modeling the diversity of graph semantics, which
could make the model easy to get over-fitting. On
the other hand, since existing NN-based models
are trained from scratch, their performance thereby
heavily relies on the scale of training data. Pre-
trained language models (PLMs) can help solve
this problem as they have been trained on the large
corpus to be empowered with rich semantic infor-
mation. Currently, some attempts of question gen-
eration over unstructured textual data (Chan and
Fan, 2019; Dong et al., 2019) have adopted PLMs.
But rare studies discuss PLM-based question gen-
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eration over structured KB. To this end, we target
to design a PLM-based KBQG model which con-
siders the diversity of subgraphs in KB.

Graph Self-supervised Learning. To construct
semantics-aware learning tasks, we need to re-
trieve subgraphs with similar semantics. This work
performs self-supervised learning (SSL) over sub-
graphs to learn their representations. By doing so,
we can retrieve semantically similar subgraphs ac-
cording to the similarity between their representa-
tions. Graph SSL schemes, which learn node-level
or graph-level representations to retain the attribu-
tive and structural patterns of the graph data, have
been widely studied in recent years. Generally,
graph SSL (Liu et al., 2021; Wang et al., 2021) can
be divided into four types, including generation-
based (Kim and Oh, 2021; You et al., 2020b), aux-
iliary property-based (Peng et al., 2020a; Sun et al.,
2020), contrastive-based (Hu et al., 2020a; Wang
et al., 2022) and hybrid (Hu et al., 2020b; Peng
et al., 2020b) methods. This paper adopts the graph
contrastive learning method to learn subgraph rep-
resentations via “graph-graph” contrast, which is
more suitable to the target of subgraph retrieval.

3 Preliminary

A knowledge base (KB) organizes the factual
information as a set of triplets, i.e., KB =
{(e, r, e′)|e, e′ ∈ E, r ∈ R}, where E and R
denote the entity set and the relation set respec-
tively. From a KB, we can extract any subgraph
Gi ⊂ KB. For convenience, we employ Ai to
denote the adjacent matrix of Gi and use ni to rep-
resent the number of nodes in Gi.

3.1 KBQG

Given a set of (subgraph, answer, question)
tuples as the training data denoted by D =
{(Gi, ai, qi)}Ni=1 with N as the total number of
data samples, the objective of KBQG is to learn a
mapping function f with parameter θ, i.e.,

fθ : (Gi, ai) −→ q̂i, (1)

where q̂i denotes the predicted natural language
question consisting of a sequence of word tokens,
and qi is the ground truth. The goal is to optimize
the model parameter θ to maximize the conditional
likelihood Pθ (qi|Gi, ai).

3.2 PLM-based KBQG Model

Inspired by the great success of pretrained language
models (PLMs), we first use BART (Lewis et al.,
2020), a pre-trained Seq2Seq model, as a base-
line to instantiate fθ. Specifically, we linearize
each subgraph Gi into a triplet-based sequence,
where each triplet is separated by the special token
“</s>”, then we input the sequence into BART to
generate a question about the answer ai4.

As reported in Table 2, directly fine-tuning the
BART has already outperformed the state-of-the-
art baseline G2S+AE+RL (Chen et al., 2020). How-
ever, this straightforward solution ignores the di-
verse semantics of subgraphs. Instead of learning
a one-size-fits-all model, we model diverse seman-
tics and learn over semantically similar subgraphs,
aiming to reduce the learning difficulty.

4 DSM

We introduce our KBQG approach which models
Diverse Subgraph with Meta-learner (DSM).

4.1 Model Overview

Figure 2 illustrates the overview of our approach.
Overall, DSM contains two key components, a
subgraph retriever and a MAML-like meta-learner.
The subgraph retriever retrieves top-k similar sub-
graphs to a query subgraph to construct a learning
task. Based on multiple learning tasks, a MAML-
like meta-learner summarizes semantics-specific
and semantics-agnostic knowledge on and across
these learning tasks.

Specifically, for a given query subgraph Gi of an
answer entity ai, the subgraph retriever retrieves
top-k similar subgraphs to Gi, which compose the
support set Si = {(Gj , aj , qj)}kj=1 for the data
sample Di = (Gi, ai, qi). To flexibly retrieve the
top-k subgraphs, we represent each subgraph by a
GNN encoder and leverage graph contrastive learn-
ing (GCL) to learn parameters of the GNN encoder.
A key of GCL is constructing positive sample pairs.
To enable GCL to capture the semantic similarity
between subgraphs, we devise a relation path-based
similarity metric to guide the positive sample pair
construction. After retrieving the support set for
each learning task, the MAML-like meta-learner
optimizes the parameter θ of the mapping function

4We have empirically proved that the generated question
is insensitive to the order of the triplets.
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Figure 2: Illustration of the overview framework, which comprises a subgraph retriever and a MAML-like meta-
learner. The subgraph retriever, implemented by a GCL-based method, retrieves top-k similar subgraphs to construct
multiple learning tasks, such that the meta-learner can learn the semantics-specific knowledge on each task by the
meta-train step and learn the semantics-agnostic knowledge across these tasks by the meta-test step.

f , which is instantiated by a pre-trained BART5.
Precisely, meta-learner includes two optimization
steps: meta-train step and meta-test step, where the
former targets to learn semantics-specific knowl-
edge, while the latter captures semantics-agnostic
knowledge shared across different tasks.

Inference. At the inference phase, given a sub-
graph Gi of an answer entity ai as the query, we
first create the support set Si for it. Afterwards, we
fine-tune fθ on Si to obtain fθi , then we generate
the natural language question from Gi using the
fine-tuned model fθi .

4.2 Subgraph Retriever by GCL
A core step of DSM is to retrieve subgraphs that are
similar to the query subgraph. Accordingly, it is
necessary to discuss what are semantically similar
subgraphs, so that we can design an effective graph
retriever. Specifically, we claim that the semantics
of a subgraph is mainly determined by its relations
and structures.

• If two subgraphs share relations, we can gen-
erate semantically similar questions. Exam-
ples in Figure 1(a) and Figure 1(b), and exam-
ples in Figure 1(a) and Figure 1(c), support
this claim. Although subgraphs in Figure 1(a)
and Figure 1(b) have distinct structures, it is
worth noting that the shared relations help pro-
duce semantically similar questions.

• If two subgraphs share relations and have
similar structures, their generated questions
can be more similar, especially in the sentence
patterns. Figure 1(a) and Figure 1(c) demon-
strate the assumption.

5The backbone of our model is BART, but other PLMs can
also be used, such as T5.

More concretely, the structure is useful but not
the decisive factor in the semantics of a subgraph.
If relation sets of two subgraphs do not intersect, no
matter how similar their structures are, the gener-
ated questions differ a lot from each other. Besides,
we find that entity names can be easily copied from
the input subgraph to the generated question, so
it is unnecessary to consider entity names when
measuring the semantic similarity.

Motivated by the great success of graph neural
networks (GNNs) (Kipf and Welling, 2017; Velick-
ovic et al., 2018), we leverage GNNs to learn a
low-dimensional real-valued embedding for each
subgraph, so that we can retrieve according to the
cosine similarity between subgraph representations.
Since GNNs are able to encode both the semantics
of relations and structures, the cosine similarity
between subgraph embeddings can represent the
above-demanded subgraph similarity. Due to the
lack of supervision, we propose to perform graph
contrastive learning (GCL) (Velickovic et al., 2019;
Wang et al., 2022), one of the mainstream graph
self-supervised learning (SSL) methods. To en-
able GCL, we define relation path-based similarity,
a simple and effective metric, for finding similar
subgraphs as the positive sample pairs of GCL.

Next, we explain how to design a subgraph
encoder for encoding both relations and structures,
and how to conduct positive sample generation
for contrastive learning.

4.2.1 Relation-enhanced Subgraph Encoder
We propose a relation-enhanced graph encoder for
representing a subgraph, as relation information is
a crucial factor in the semantics of the generated
questions. For example, in Figure 1, although the
entities in Figure 1(c) are totally different from
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those in Figure 1(a), they can be simply replaced as
the placeholders, which do not influence the seman-
tics of the generated questions. On the contrary, if
two subgraphs such as (<Lisa, born_in, France>)
and (<Lisa, favorite, France>) share the same
entities but have different relations, the generated
questions “Where was Lisa born in?” and “Which
is the favorite city of Lisa?” are far from similar
with each other. In light of this, we initialize the
feature of an entity node ej with the relations con-
nected to it. More clearly, we input the sequence of
relation names into the pre-trained BERT (Devlin
et al., 2019). Then we average the relation embed-
dings to represent the entity’s initial feature h(0)

j ,

h(0)
j =

1

|Rj |
∑

r∈Rj

r, (2)

where r denotes the embedding of the relation r,
and Rj is the set of the relations connected to ej .
Given a subgraph Gi with entities’ initial features
H(0)

i = {h(0)
j }ni

j=1 and the adjacency matrix Ai as
input, the GNN encoder gφ with L layers outputs
the entity embeddings H(L)

i . Then we average all
the outputted nodes’ representations and apply a
sigmoid activation function on the pooled result to
represent the graph-level representation zi.

Building on the relation-based initial node fea-
tures, we adopt GIN (Xu et al., 2019), a SOTA
GNN architecture, to instantiate the GNN encoder
gφ. In addition to the neighborhood homophily,
GIN can encapsulate the structures of nodes, which
is helpful for representing a subgraph.

Obviously, other heterogeneous GNN encoders
such as RGCN (Schlichtkrull et al., 2018) are alter-
native encoders. However, most of them create a
separate parameter for each relation, which ignores
the relations’ natural language semantics. We will
demonstrate the superiority of our method through
experiments (Cf. Table 3 for details).

Contrastive Loss Function. We adopt the
normalized temperature-scaled contrastive loss as
in (Sohn, 2016; You et al., 2020a). Formally, the
NT-Xent for a mini-batch is formulated as:

LGCL =

n(m+1)∑

i=1

∑

j∈Pos(i)

log
exp(zi · z+j /τ)∑n(m+1)

j
′
=1

1[j
′ �=i] exp(zi · zj′ /τ)

,

(3)

where n is the number of subgraphs in a mini-batch,
m represents the number of positive samples for
each subgraph, Pos(i) represents the indices of

Algorithm 1: Contrastive Learning
Input: G = {Gi}Ni=1, m (positive sample size).
Output: φ of the GNN encoder.

1: Initialize the parameters φ for the GNN
encoder;

2: for each epoch do
3: Sample a mini-batch of n subgraphs

B = {Gi}ni=1 ⊂ G;
4: for each subgraph Gi ∈ B do
5: Generate m positive sample

{G+
j |G+

j ∈ G}mj=1 (Algo. 2);
6: end for
7: {zi}n(m+1)

i=1 = gφ({Gi, {G+
j }mj=1}ni=1);

8: φ ← Adam(LGCL({zi}n(m+1)
i=1 ));

9: end for

Algorithm 2: Positive Sample Generation
Input: Paths of graphs {Pi}Ni=1 and

path-to-graph index {Gp}Mp=1.
Output: Top-m similar subgraphs about Gi.

1: for each path p ∈ Pi do
2: for each graph Gj ∈ Gp do
3: Add Gj into the sample candidate set Ci;
4: end for
5: end for
6: for each graph Gj ∈ Ci do
7: Calculate SRP (Gi, Gj) by Eq. (4);
8: end for
9: Return top-m similar graphs according to

SRP (Gi, Gj);

positive samples of the i-th sample, and τ denotes
a temperature parameter. The contrastive learning
algorithm is illustrated in Algo. 1.

4.2.2 Positive Sample Generation

In this subsection, we explain how to construct
positive sample pairs. The details are presented in
Algo. 2. Without the ground truth, we define re-
lation path-based similarity, a simple and effective
metric for measuring the similarity between sub-
graphs, and propose an efficient retrieval method
based on a path-to-graph index.

Intuitively, the relation path-based metric can
be directly used by the subgraph retriever. How-
ever, this method fails to cover subgraphs whose
relation paths are distinct but semantically similar
such as (<Lisa, , born_in, France>) and (<Lisa,
place_of_birth, France>).
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Relation Path. Given a subgraph Gi, a relation
path is denoted by π = (r1, · · · , r|π|). Any relation
in π is included in Gi and is traversed following
the relation direction from the arrowhead to the
arrowtail. The length |π| of path π represents the
maximal length of all possible paths in Gi. Figure 1
illustrates relation paths in a subgraph. For exam-
ple, in Figure 1(e), we can enumerate four paths,
including one π7 =

spouse−−−−→, two π8 =
live_in−−−−→, and

one π9 =
spouse−−−−→ live_in−−−−→. We use the classic DFS

algorithm to obtain all paths of a subgraph.

Relation Path Similarity. Given two subgraphs
Gi and Gj , we respectively enumerate relation
paths in them to construct sets Pi and Pj . Then
relation path-based similarity SRP between Gi and
Gj is defined as:

SRP (Gi, Gj) =
|Pi ∩ Pj |
|Pi ∪ Pj |

, (4)

Take Figure 1(a) as an example, given the subgraph
G1, SRP (G1, G2) = 2

3 , SRP (G1, G3) = 1
3 , and

SRP (G1, G4) = SRP (G1, G5) = 0. Such mea-
surement results meet our intuitive expectation that
relations play the most important role followed by
the structural properties.

Path-to-Graph Index. To improve the efficiency
of calculating relation path-based similarity, we
build a path-to-graph index with the path identifier
p as the key and the set of subgraphs including
the path πp, i.e., Gp, as the value. The whole in-
dex is denoted by {Gp}Mp=1 with M as the number
of all the distinct paths in the training data. Us-
ing the index, we can retrieve all subgraphs that
contain a specific path with a complexity of O(1).
Then Eq. (4) can be calculated with a complexity
of O(N̄ T̄ ), where N̄ is the average number of sub-
graphs with a path, and T̄ is the average number of
paths in a subgraph.

4.3 MAML-like Meta-learner
The subgraph retriever retrieves top-k similar sub-
graphs {Gj}kj=1 for a given Gi in training data,
which are used to construct the support set Si =
{(Gj , aj , qj)}kj=1 for a learning task about the
query sample Di = (Gi, ai, qi).

For the meta-learner, the learning process con-
sists of a meta-train step and a meta-test step. For
each learning task corresponding to a sample Di,
the meta-train step learns a task-specific learner θ′i
based on the support set Si:

θ′i = θ − α∇θLBART (fθ(Si)), (5)

Algorithm 3: The DSM algorithm
Input: D = {(Gi, ai, qi)}Ni=1, step size α and β,

k (support set size).
Output: θ of BART-base.

1: Perform GCL on D (Algo. 1) to learn φ of the
GNN encoder;

2: Encode all the subgraphs by GIN to get the
embeddings {zi}Ni=1;

3: for each Gi ∈ D do
4: Retrieve

{Gj}kj=1 = Top-k(cosine(zi, {zj}Nj=1));
5: Create the support set

Si = {(Gj , aj , qj)}kj=1;
6: end for
7: Fine-tune θ of BART-base on D;
8: for each epoch do
9: Sample a mini-batch of n samples

B = {(Gi, ai, qi)}ni=1 ⊂ D;
10: for each (Gi, ai, qi) ∈ B do
11: Update θ′i based on Si via Eq. (5);
12: end for
13: Update θ based on D via Eq. (6);
14: end for

where LBART (fθ(Si)) is the learner’s loss func-
tion, and α is the update learning rate.

To connect multiple learning tasks, the meta-test
step learns the task-agnostic learner θ by the loss
computed using task-specific learner θ′i:

θ ← θ − β∇θ

∑

Di∈D
LBART (fθ′i(Di)), (6)

where
∑

Di
LBART (fθ′i(Di)) is the meta-objective,

and β is the meta learning rate. We summarize the
whole procedure of the proposed DSM in Algo. 3.

5 Experimental Evaluation

We conduct extensive experiments to mainly an-
swer the four questions: (1) Does DSM take effect
in improving the KBQG performance? (2) Can
the GCL-based subgraph retriever result in more
effective support set for the meta-learner? (3) How
do the positive sample size for contrastive learn-
ing and the support set size for the meta-learner
affect DSM? (4) Can DSM benefit the QA tasks as
a means of data augmentation?

5.1 Experimental Protocol

Datasets. We adopt two benchmarks, WebQues-
tions (WQ) and PathQuestions (PQ) (Zhou et al.,
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Table 1: Data statistics. #Instances denotes the num-
ber of instances. #Entities and #Relations are the total
number of entities and relations included in the dataset.
#Triples represents the min/max/avg number of triplets
in each instance.

Dataset #Instances #Entities #Relations #Triples
WQ 22,989 25,703 672 2/99/5.8
PQ 9,731 7,250 378 2/3/2.7

2018), for evaluating the proposed DSM. To be
specific, WQ combines instances from WebQues-
tionsSP (Yih et al., 2016) and ComplexWebQues-
tions (Talmor and Berant, 2018). Table 1 shows
statistics of the two datasets.

Evaluation Metrics. We adopt BLEU-n (n = 1-
4) and ROUGE-L as automatic evaluation met-
rics. BLEU-n (Papineni et al., 2002) and ROUGE-
L (Lin and Och, 2004) compute the ratios of the
common n-grams between the generated question
and the ground truth question, where the former
can be viewed as precision and the latter focuses
on recall. For QA performance, we use Hits@1
to evaluate the accuracy of the top-1 predicted an-
swer. Since some questions have multiple answers,
we also evaluate the F1 score. We also hire three
people to evaluate the relevance and fluency of the
generated questions.

Baselines. We compare with five baselines.
Among them, MHQG+AE (Kumar et al., 2019)
adopts a transformer (Vaswani et al., 2017) to en-
code the input subgraph and decode the question.
G2S+AE (Chen et al., 2020) employs a bidirec-
tional gated GNN to encode the input directed
subgraph and decodes the question by a LSTM
model. G2S+AE+RL (Chen et al., 2020) is a vari-
ant of G2S+AE that adds an additional reinforce-
ment loss to incorporate the reward from BLEU-4
and ROUGE-L metrics. We also compare with
BART-base and BART-large (Lewis et al., 2020)
for KBQG. The details are explained in Section 3.

5.2 Overall Evaluation

Table 2 shows the overall evaluation results of all
comparison models. By the results, we summa-
rize the following conclusions: (1) PLMs can con-
tribute to KBQG. BART-base and BART-large
show better performance than the existing three
baselines, because the BART models are pretrained
on the large corpus so that they are empowered
with rich knowledge, while existing baselines are
all trained from scratch. (2) DSM significantly out-

performs BART-base and BART-large, which
reflects the effectiveness of modeling the di-
versity of subgraphs. The baselines train sub-
graphs of different semantics together, which in-
creases the learning difficulty. Alternately, we learn
on and across semantics-specific tasks to capture
semantics-specific and semantics-agnostic knowl-
edge. (3) DSM shows more promising perfor-
mance on the more diverse dataset WQ. We ob-
serve that WQ has more diverse subgraphs includ-
ing chain, star, and triangle structures, while PQ
only has the subgraphs of chain and star structures.
DSM obtains only 5.03% BLEU-4 gain and 1.52%
ROUGE-L gain over the best results of baselines on
PQ but significantly derives 6.81% BLEU-4 gain
and 7.74% ROUGE-L gain over the best results of
baselines on WQ. This shows that DSM can better
address the dataset with more diverse subgraphs.

5.3 Evaluation of GCL-based Retriever

We evaluate whether the proposed GCL-based re-
triever can result in a support set of high quality.
We keep the meta-learner in DSM, and vary the
retriever as 1-RP (RP is the abbreviation of Re-
lation Path) retriever, 2-RP retriever, All-RP re-
triever, GED-based retriever, DGI-based retriever,
and RGCN-based retriever. The former three fol-
low the same relation path-based similarity for
generating positive samples in contrastive learning.
Specifically, they enumerate the relation paths on
the subgraphs and calculate the relation path simi-
larity in Eq. (4) to retrieve top-k similar subgraphs.
The differences lie in that 1-RP retriever and 2-RP
retriever restrict the path length to 1 and 2 respec-
tively, while All-RP considers all the possible paths.
GED retriever retrieves top-k similar subgraphs ac-
cording to the classic graph edit distance (Bunke,
1983). DGI-based retriever replaces contrastive
loss in Eq. (3) with DGI loss (Velickovic et al.,
2019), a “local-global contrast”. RGCN-based re-
triever replaces the relation-enhanced subgraph en-
coder with the RGCN encoder (Schlichtkrull et al.,
2018), which considers the features of entities and
relations simultaneously.

Table 3 presents the evaluation results of DSM
with various retrievers, which show that: (1) DSM
with variously devised retrievers can outper-
form the vanilla BART models. The results indi-
cate the effectiveness of the meta-learner coupled
with a retriever in the KBQG task. (2) All-RP
shows more promising performance than 1-RP
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Table 2: Overall evaluation on WQ and PQ (%).

Model WQ PQ
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

MHQG+AE 42.35 29.32 18.43 9.63 35.72 45.02 35.86 28.73 17.86 63.45
G2S+AE 53.48 38.67 27.35 20.54 55.61 78.21 69.62 63.35 54.21 82.32

G2S+AE+RL 54.69 39.77 27.35 20.80 55.73 76.05 67.75 61.64 52.19 81.94
BART-base 56.39 41.05 29.59 21.46 56.51 79.59 70.63 64.30 55.73 84.54
BART-large 56.89 41.29 30.11 21.81 56.38 79.30 70.64 64.54 56.00 84.22

DSM(ours) 62.94 48.20 37.50 28.62 64.25 82.44 74.20 68.60 61.03 86.06
Performance Gain 6.05 6.91 7.39 6.81 7.74 2.85 3.56 4.06 5.03 1.52

Table 3: Evaluation of the GCL-based subgraph retriever and other retrievers (%).

Retriever WQ PQ
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

1-RP retriever 60.30 45.66 34.84 26.23 60.22 81.56 73.44 67.94 60.47 85.25
2-RP retriever 60.36 45.76 35.34 26.41 60.53 81.90 73.75 68.23 60.57 85.50

All-RP retriever 61.40 46.88 36.38 27.53 61.78 81.80 73.44 67.60 59.78 85.50
GED retriever 61.03 45.87 35.62 26.45 60.45 80.50 71.94 66.06 57.97 84.25

DGI-based retriever 61.28 46.57 36.23 26.58 62.13 82.10 73.80 68.25 60.66 85.80
RGCN-based retriever 60.87 45.72 34.57 25.03 59.24 80.40 71.56 65.44 56.84 84.40

GCL-based retriever 62.94 48.20 37.50 28.62 64.25 82.44 74.20 68.60 61.03 86.06

The bold format represents the best results over all the methods and the underline format represents the best results of baselines.

and 2-RP on the more diverse dataset WQ, while
2-RP outperforms the other two on PQ. Since
PQ mostly contains the chain-style subgraphs with
length 2, relation paths of length 2 could be more
distinguished than other paths. On the contrary,
WQ is more diverse, demanding relation paths with
various lengths to express the potential structures.
Thus All-RP performs better than the other two
on WQ. (3) The proposed GCL-based retriever
outperforms the three RP retrievers and GED
retriever, because the three RP retrievers cannot
find subgraphs without common relations, and the
GED retriever only captures the structural knowl-
edge but overlooks the relation semantics. (4) GCL
loss function outperforms the DGI loss func-
tion. DGI aims to encode the global features of
a whole subgraph into each node via the “local-
global” contrast. On the contrary, GCL performs
“global-global” contrast to directly compare two
subgraphs, which is more suitable to the objective
of the retriever. (5) RGCN encoder is worse than
the relation-enhanced GNN encoder. In addition
to the relation semantics, RGCN also encodes the
entity information, which shows no obvious effect
on determining the question semantics. Meanwhile,
RGCN creates a separate parameter for each rela-
tion without considering the semantics presented
by relation names, which also weakens its effect.

(a) Support set size (b) Positive sample size

Figure 3: Sensitivity study.

5.4 Sensitivity Study

We investigate how the support set size k in the
meta-learner and the positive sample size m of
GCL affect DSM. Figure 3(a) presents ROUGE-L
of DSM over different support set sizes on WQ. We
observe that the performance rises first then falls
and reaches the top at 20. Similarly, Figure 3(b)
presents ROUGE-L of DSM over different positive
sample sizes for GCL on WQ. We observe the
same optimal value of 20. The results indicate that
more similar subgraphs might introduce additional
noises. Similar trends are observed on PQ.

5.5 Positive Impacts on QA Tasks

We study whether the proposed DSM can benefit
QA tasks as a means of data augmentation. We eval-
uate two classical KBQA models named GRAFT-
Net (Sun et al., 2018a) and NSM (He et al., 2021)
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Table 4: QA performance of GRAFT-Net and NSM.

Model GRAFT-Net NSM
F1 Hits@1 F1 Hits@1

Real 0.622 0.681 0.666 0.727

-o 0.493 0.575 0.524 0.594
+G2S 0.573 0.639 0.647 0.700
+BART 0.588 0.648 0.649 0.714
+DSM(ours) 0.604 0.664 0.663 0.721

Table 5: Human evaluation results on WQ.

Model Fluency Relevance

Ground truth 4.86 4.42

G2S 4.46 4.01
BART 4.65 4.14

DSM(ours) 4.72 4.35

on WebQSP (Yih et al., 2016), a widely-adopted
KBQA dataset with 2,848 (question, answer) train-
ing instances. To evaluate the quality of the gen-
erated questions by DSM, we replace part of the
(question, answer) pairs in WebQSP with the gener-
ated questions. Since the training data of WebQSP
has 1,409 overlapped (question, answer) pairs with
that of WQ, we can easily get their correspond-
ing subgraphs from WQ. For easy evaluation, we
replace the real questions of the 1,409 instances
in WebQSP with the questions generated from the
corresponding subgraphs by DSM and denote the
dataset as +DSM. On this partially replaced We-
bQSP, we train GRAFT-Net and NSM and compare
their performance with the same models trained
on the original WebQSP (Real) and the version
removing the overlapped instances (-o). We also
train GRAFT-Net and NSM on the datasets par-
tially replaced by the pseudo questions generated
by G2S+AE+RL and the BART-large model. We
denote them as +G2S and +BART respectively.

Table 4 presents the comparison results of
GRAFT-Net and NSM trained on various datasets.
The results show: (1) The generated (question,
answer) pairs can be viewed as a means of data
augmentation for KBQA, because both GRAFT-
Net and NSM trained on the datasets partially
replaced by various KBQG models (i.e., +G2S,
+BART, +DSM) can improve the QA performance
of them trained on the partially removed dataset
(i.e., -o). (2) DSM can generate much better
questions than others, because the KBQA models
trained on the dataset generated by DSM perform
best among all the other generated datasets. (3)
The generated dataset by DSM is quite close to

the real data, which is supported by the compara-
ble results between “+DSM” and “Real”.

5.6 Human Evaluation
We perform human evaluation to further verify the
effectiveness of DSM. We randomly choose 100
samples S100 = {(Gj , aj , qj)}100j=1 from the test set
of WQ dataset. Different models generate different
questions for the same (subgraph, answer) pair. We
evaluate the generated questions by fluency and
relevance, where the former assesses whether the
generated questions are readable for humans, and
the latter measures the relevance between the gen-
erated question and the input (subgraph, answer)
pair. We score fluency and relevance on a five-point
Likert scale, with 1-point being poor and 5-point
being perfect. We invite 6 annotators to score each
generated question and average their scores for the
proposed DSM and two baselines G2S and BART.

Table 5 presents the human evaluation results on
WQ, which shows that DSM can produce more flu-
ent and relevant questions than the other baselines,
and even competes with the ground truth questions.

6 Conclusion

This work pilots studies on KBQG. We propose
DSM to exploit semantic knowledge of diverse sub-
graphs. Instead of training on different subgraphs
together, we construct semantics-specific learning
tasks to reduce the learning difficulty. Specifi-
cally, we devise a GCL-based retriever to flexibly
construct semantics-specific learning tasks. Be-
sides, a MAML-like meta-learner is employed to
learn on the different learning tasks, such that we
can learn the semantics-specific and the semantics-
agnostic knowledge shared on and across tasks.
Our model shows competitive performance across
the widely used benchmarks. We believe that using
the MAML-like meta-learner could be inspiring for
learning on datasets with high diversity.
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Limitations

Our model suffers from weak generalization. For
example, the ground truth question is “What is the
name of an attraction in Salt Lake City that has
fewer than 1012563 visitors per year?” but we gen-
erate “What is the largest attraction in Salt Lake
City Utah?”. The model fails to generate “fewer
than 1,012,563 visitors per year” because it did
not see the corresponding relation “ annual_visitors−−−−−−−−−−→”
during training. In another example, the ground
truth question is “Who plays Jason Morgan on Gen-
eral Hospital as well as Cloud Strife?” but we
generate “Who plays Jason Morgan on General
Hospital?”. We observe that the corresponding re-

lation path “
dubbing_performances−−−−−−−−−−−−−−→ actor−−−→” appears

in the training data, but the model still fails to gener-
ate “as well as Cloud Strife”, because the two-hop
relation path is more difficult to be generalized.
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A Notations

As shown in Table 6, the notations in this paper are
described in detail.

Table 6: Notations used in this paper.

Symbol Description

D, N training data and its size
Di=(Gi, ai, qi) a sample with subgraph Gi, answer ai,

and question qi
Ai the adjacent matrix of Gi

Si the support set of Di

r, e, π a relation, an entity, and a path
r, h, zi the embeddings of r, e, and Gi

k,m support set size and positive sample size
n, ni batch size and the number of entities in Gi

Pi,Gp the set of paths in Gi and the set of
subgraphs with πp

fθ, gφ the QG function and GNN encoder

B Experiment

B.1 Experiment Settings

For performing subgraph contrastive learning in
Algo. 1, the key settings include: (1) We implement
the graph encoder using the GIN framework (Xu
et al., 2019) and employ the sum-style graph con-
volution, which sums the neighbor embeddings of
a node during message passing to capture the struc-
tural properties of nodes. The layer number L is set
to 1, as the average number of triplets in a subgraph
is only 2.7 in PQ and 5.8 in WQ. (2) For initializ-
ing the embedding of a node, the embeddings of all
its connected relations are averaged. Each relation
is embedded by BERT (Devlin et al., 2019). (3)
For implementing the contrastive loss, we set the
number of the positive samples m to 20, which
is the selected optimal value shown in Figure 3.
(4) Following the setting of supervised contrastive
learning (Khosla et al., 2020), we set the tempera-
ture parameter τ to be 0.07. In addition, we set the
input feature dimension as 1024, the node represen-
tation dimension as 1024, the learning rate as 0.001,
the batch size n as 16, the optimizer as Adam, the
patience as 15, and the maximum epochs as 100
for early stopping.

In the proposed DSM, f is instantiated as BART-
base. For fine-tuning BART-base in Line 7 of
Algo. 3, we set the learning rate as 5e-5, batch size
as 8, the patience as 15, and the maximum epochs
as 50 for early stopping. BART-base has a 6-layers
encoder and a 6-layers decoder. BART-large has a
12-layers encoder and a 12-layers decoder.
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For fine-tuning BART-base by the meta-learner
in Lines 8-14 of Algo. 3, we set the learning rate α
for the meta-train step as 5e-5, the learning rate β
for the meta-test step as 3e-5, the number of tasks
in a batch as 8, the meta-train steps for each task
(i.e., the update steps for Line 11 in Algo. 3) as 1.
We set the epochs for the meta-learner (i.e., the loop
times of Lines 9-13 in Algo. 3) to 5, as the BART-
base model is fine-tuned before the meta-learner
training process, resulting in quick convergence.

For inference, we fine-tune the BART-base
model on the support set of a new sample by 5
epochs, and then infer the top beam as the gener-
ated question of the sample.

B.2 Case Study
Due to the space limitation, we only present 13
questions generated by DSM, G2S, and BART in
Table 7 on WQ. We also show the corresponding
query subgraph and the support set for the top-3
cases in Figure 4. The results show that: (1) The
generated question derived by our model is much
closer to the ground truth question than the base-
lines. (2) The retrieved top-2 subgraphs in the sup-
port set are quite similar to the query subgraph in
the relation semantics and the structures, so that the
experience of question generation on these similar
subgraphs can benefit the question generation of
the query subgraph.

Ground truth : What actor starring on Buffy the Vampire Slayer was born in Iowa?
Generation: Who plays the character born in Iowa on Buffy the Vampire Slayer?
Query subgraph:

Support set:
Top-1 subgraph:

Question: Who was the voice actor of the character who was born in Tatooine?

Top-2 subgraph:

Question: What Indianapolis-born actor played Mason Capwell?

place_
of_birt

h
actorRiley

Finn appearred_in_
tv_program

seasonnone Buffy the Vampire Slayer
yyyy

Iowa Mare Blucas

Darth
Vader

place_of
_birth

appearred_in_tv_program none voice

Matt Lanteractor

performance_type

place_of_birthactortv_program none Indianapolis

Terry
Lester

Ground truth : What are the common beliefs of the religions that believe in the end time?

Query subgraph: Circumcision

MonotheismAbrahamic
religions

end time

practices

Support set:
Top-1 subgraph:

Question:What do Abrahamic religions have in common?

Monotheism
Abrahamic
religions

Circumcision

practices

Top-2 subgraph:
Eid al-Adha

Eid al-Fitr

Generation: What are some of the beliefs of the religion that believes in the end time
theory practiced by Abrahamic people?

Question:Which holidays are considered the most significant in the religion
that worships god in Islam ?

beliefs

practi
ces

practi
ces

beliefs

holidays

holid
ays

holidays
Islam

Ramadan
god in Islam

Ground truth: What time zone would I be in if I was in the US State whose capital is Jefferson city?
Generation: What time zone is used in the US State whose capital is Jefferson city?

Query subgraph:

Question:What is the time zone of the country with Brasília as its capital?

Support set:
Top-1 subgraph:

UTC-3
UTC-4

UTC-5

Michigan Lansing

Eastern Time Zone
Central Time Zone

Missouri time_zones
capti

al

time_zones

Jefferson city

UTC-6

Central Time Zone

Question: in which time zone is the state with the capital named lansing located?

Top-2 subgraph:

time_zones

time_zones

time
_zon

es

captial

Brazil time_zones

time
_zon

es

captial

time_zones

UTC-2

Brasília

Mason
Capwell

(a) Case 1

(b) Case 2

(c) Case 3

appearred_in_

Tatooine

Figure 4: Case study of three generated questions. The
support set is built by our proposed GCL-based retriever.
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Table 7: Comparison of generated questions on WQ.

Ground Truth G2S BART DSM

What actor starring on Buffy the
Vampire Slayer was born in

Iowa ?

Who plays Riley Finn in Buffy
Vampire ?

Who plays the character born in
Iowa in Buffy the Vampire

Slayer ?

Who plays the character born
in Iowa on Buffy the Vampire

Slayer ?

What are the common beliefs of
the religions that believe in the

end times ?

What do the people who believes
in end time ?

What did the person who believed
in the end time practice ?

What are some of the beliefs of
the religion that believes in the
end time theory practiced by

Abrahamic people ?

What time zone would I be
in if I was in the US State

whose capital is Jefferson city ?

What time zone is the state whose
capital is Jefferson city ?

What is the time zone where
Jefferson city is the capital ?

What time zone is used in the
US State whose capital is

Jefferson city ?

What country export to Sudan
and has Giza necropolis ?

What country exports to Sudan
and Sudan ?

What country that exports to
Sudan is Giza neccropolis

located in ?

What country exports to Sudan
and is home to the Giza

necropolis ?

What movie produced by Brad
Lewis did Alyson Stoner

starred in ?

What movie was produced by
Brad Lewis ?

What movie produced by Brad
Lewis was Alyson Stoner in ?

What movie produced by Brad
Lewis did Alyson Stoner

play in ?

Which english language shows
did Henry Winkler produce ?

What show produced by Henry
Winkler has Henry Winkler

as an actor ?

What english speaking shows
did Henry Winkler produce ?

What english speaking shows
did Henry Winkler produce ?

Which type of monarchy does
Japan have that is similar as
the Kingdom of Prussia ?

What type of government is
used in Japan and Japan ?

What type of government can
be found in both Japan and the

Kingdom of Prussia ?

What type of government is
used in both Japan and the

Kingdom of Prussia ?

What actress played Rose
Loomis and has ties to John

F. Kennedy ?

Which actor who played the
character Rose Loomis ?

What actress who portrayed
Rose Loomis was John F.

Kennedy dating ?

Which actress played Rose
Loomis and also dated John

F. Kennedy ?

in the Tortall universe what
language do native American

Indians speak ?

What language is spoken in
the <unk> and the fictional

universe the Tortall universe ?

What language do native
American Indians speak ?

What language, found in the
fictional Tortall universe, do

native American Indians
speak ?

What person born in Batlesville
was the first leader of the AFL ?

Who was born in <unk> and
was born in <unk> ?

Who was born in Bartlesville
and was a person of the AFL ?

Who was born in Bartlesville
and was a member of the AFL

first team ?

Who participated in the third
joint debate at Jonesboro and
influenced Walt Whitman’s

poetry ?

Who was the speaker of
the speaker at <unk> ?

Which speaker participated
in the third joint debate at

Jonesboro ?

Which speaker featured in the
third joint debate at Jonesboro

influenced Walt Whitman ?

What country is home to Nova
Roma and borders Bolivia ?

What country bordering Bolivia
and Nova Roma ?

What country borders Bolivia
and Nova Roma ?

What country borders Bolivia
and is home to Nova Roma ?

What movie featuring Rihanna
was released last ?

What is the earliest released film
that Rihanna starred in ?

What is the latest released film
that Rihanna starred in ?

What is the latest film that
Rihanna has been in that

was released last in 2012 ?

“<unk>” represents a word that does not appear in the vocabulary.
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