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Abstract

Open Information Extraction (OpenIE) aims
to extract relational tuples from open-domain
sentences. Traditional rule-based or statistical
models have been developed based on syntac-
tic structures of sentences, identified by syn-
tactic parsers. However, previous neural Ope-
nIE models under-explore the useful syntac-
tic information. In this paper, we model both
constituency and dependency trees into word-
level graphs, and enable neural OpenIE to learn
from the syntactic structures. To better fuse het-
erogeneous information from both graphs, we
adopt multi-view learning to capture multiple
relationships from them. Finally, the finetuned
constituency and dependency representations
are aggregated with sentential semantic repre-
sentations for tuple generation. Experiments
show that both constituency and dependency
information, and the multi-view learning are
effective. Our model is publicly available.1

1 Introduction

Open Information Extraction (OpenIE) aims
to generate structured tuples from unstruc-
tured open-domain text (Yates et al., 2007).
The extracted tuples are in the form of
⟨Subject, Relation,Object⟩ for binary relation,
and ⟨ARG0, Relation,ARG1, . . . , ARGn⟩ for n-
ary relation. It has been a critical NLP task as it
is domain-independent and does not rely on pre-
defined ontology schema. The structured relational
tuples are beneficial to many downstream tasks
such as question answering (Khot et al., 2017),
knowledge base population (Martínez-Rodríguez
et al., 2018; Gashteovski et al., 2020) and word
embedding generation (Stanovsky et al., 2015).

In general, traditional OpenIE systems are either
statistical or rule-based. They extract relational
tuples mainly based on certain sentence patterns
heuristically defined on syntactic structures. The

1https://github.com/daviddongkc/smile_oie
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(a) n-ary OpenIE tuple.
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(b) Constituency tree (results from CoreNLP).
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(c) Dependency tree (results from spaCy).

Figure 1: An example of constituency tree, dependency
tree, and n-ary OpenIE tuple to be extracted for sentence
“Mary’s cat likes playing plush toys in the room.”

limitation of patterns causes traditional OpenIE
systems to be ineffective in handling complex sen-
tences. Recently, neural OpenIE systems have been
developed and showed promising results. Neural
OpenIE systems no longer depend on pre-defined
patterns. Instead, they learn to extract relational
tuples directly from unstructured text in an end-to-
end manner. However, utilizing syntactic informa-
tion is under-explored among the neural OpenIE
systems, although syntactic information is widely
explored in other Information Extraction tasks such
as Semantic Role Labeling (SRL) (Fei et al., 2021)
and Relation Extraction (RE) (Zhang et al., 2018).

As syntactic information was proved to be use-
ful for the traditional OpenIE systems, we argue
that it is important for neural OpenIE systems as
well. Figure 1a shows an n-ary tuple expected from
an example sentence. Figure 1b displays the sen-
tence’s constituency tree, where the phrases are
labeled with constituency tags. The dependency
tree (shown in Figure 1c) represents syntax through
directed and typed edges between words, instead
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of between phrases. We observe that the boundary
of the OpenIE tuple (shown in Figure 1a) highly
coincides with edges from constituency and depen-
dency trees. As such, we believe both constituency
and dependency trees provide useful and comple-
mentary syntactic information for OpenIE systems.
The next question is: how to effectively incorporate
syntactic information to neural OpenIE models?

To fully explore the syntactic information from
both parse trees, we convert them into ‘node-
sharing’ graphs, i.e., constituency graph (denoted
as const-graph) and dependency graph (denoted as
dep-graph), respectively. A dependency relation
specifies a relationship between two words, and
we can represent words as nodes and the relation-
ship as corresponding edge. The key challenge is
to map constituency tree to a graph in which all
of its nodes are words, not phrases. Meanwhile,
the graph needs to largely capture the constituency
syntactic information. In this work, we present a
novel method for the conversion of constituency
trees. With the converted const-graph modelled
at the word level, we can now easily integrate it
with dep-graph. Moreover, both graphs can be di-
rectly integrated with Pre-trained Language Model
(PLM) which provides word-level representation.

In order to leverage heterogeneous syntactic in-
formation from both const-graph and dep-graph,
we propose a novel neural OpenIE model: SMiLe-
OIE (Syntactic Multi-view Learning for Open
Information Extraction). It first encodes a sen-
tence using BERT (Devlin et al., 2019), and subse-
quently uses two syntactic encoders, namely Const-
encoder and Dep-encoder. The model represents
constituency and dependency relations of the sen-
tence with the corresponding BERT representations
and applies two Graph Convolutional Networks
(GCN) (denoted as Const-GCN and Dep-GCN)
to learn graph representations for const-graph and
dep-graph separately. The representations from
BERT, Const-GCN, and Dep-GCN are aggregated
and finally used for tuple generation. To better
fuse the heterogeneous syntactic graph representa-
tions, SMiLe-OIE introduces a subtask, multi-view
learning, to learn multiple types of relationships
among const-graph and dep-graph. The multi-view
learning loss is used to finetune the graph represen-
tations along with OpenIE loss. In summary, our
contributions are threefold:

• We propose a novel strategy to map phrase-
level relations in constituency tree into word-

level relations, and to enhance each word’s rep-
resentation with constituency path information.

• We propose SMiLe-OIE, the first neural Ope-
nIE system that incorporates heterogeneous
syntactic information through GCN encoders
and multi-view learning.

• Our experimental results show that the pro-
posed neural OpenIE model achieves better per-
formance than state-of-the-art methods.

2 Related Work

Syntax Usage in OpenIE. Open Information
Extraction (OpenIE) was first proposed by Yates
et al. (2007), and TextRunner is the first OpenIE
system that generates relational tuples in open
domain. Before deep learning era, many sta-
tistical and rule-based systems have been pro-
posed, including Reverb (Fader et al., 2011),
R2A2 (Fader et al., 2011), OLLIE (Mausam
et al., 2012), Clausie (Corro and Gemulla, 2013),
Stanford OpenIE (Angeli et al., 2015), Ope-
nIE4 (Mausam, 2016), NESTIE (Bhutani et al.,
2016), and MINIE (Gashteovski et al., 2017). Most
of these models extract relational tuples based on
syntactic structures such as part-of-speech (POS)
tags and dependency trees. In this sense, syntactic
information has been essential to OpenIE.

Recently, neural OpenIE systems (Cui et al.,
2018; Stanovsky et al., 2018; Roy et al., 2019; Kol-
luru et al., 2020a; Dong et al., 2021; Vasilkovsky
et al., 2022; Kotnis et al., 2022) have been devel-
oped and showed promising results. Neural Ope-
nIE systems are able to extract relational tuples
end-to-end based on the semantic encoding of in-
put sentence. The analysis of syntactic structure of
sentence, which was required by traditional mod-
els, seems no longer necessary. As a result, the
usage of syntactic information is under-explored
in neural OpenIE models. Nevertheless, there ex-
ist some neural OpenIE systems that utilize some
forms of syntactic information. For example, Rn-
nOIE (Stanovsky et al., 2018) projects POS tag
of each word into POS embedding and concate-
nates it with word embedding as input to sentence
encoder. SenseOIE (Roy et al., 2019) further con-
catenates word embedding with dependency em-
bedding. CIGL-OIE (Kolluru et al., 2020b) finds
all head verbs in the sentence and pre-defines a
few POS patterns to explicitly constrain the model
training. MGD-GNN (Lyu et al., 2021) connects
words, if they are in dependency relations, in an
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undirected graph and applies graph attention net-
work (GAT) to the graph (Veličković et al., 2018)
as its graph encoder. Although MGD-GNN uses
some graphic information of dependency, it loses
other information like the directness and types of
dependency relations.

In short, we observe that existing neural Ope-
nIE systems fail to explore some syntactic features
and that the integration of syntax is in a shallow
manner. Compared to the them, our SMiLe-OIE
is able to leverage full features of heterogeneous
syntactic information from both constituency and
dependency trees.

Integration of Constituency and Dependency
Syntax. Although constituency and dependency
trees possess common sentential syntactic infor-
mation, they capture syntactic information from
different perspectives. Recent NLP tasks have ben-
efited from integrating these two syntactic repre-
sentations. Zhou and Zhao (2019) and Strzyz et al.
(2019) integrate dependency and constituency syn-
tactic information as a representation of parse tree
or sequence, but not of a graph. To the best of our
knowledge, HeSyFu (Fei et al., 2021) is the only
work that converts dependency and constituency
trees into graphs and performs graph learning strat-
egy on both. In this sense, although HeSyFu is de-
signed for SRL task, it is the most relevant model
to ours.

SMiLe-OIE differs from HeSyFu mainly in three
perspectives: (1) HeSyFu models constituency
tree at phrase level, which is inconsistent with
word-level representations from BERT. Meanwhile,
HeSyFu models dependency tree at word level, so
the constituency representations cannot be directly
fused with the dependency representations. (2) As
a result, HeSyFu integrates the BERT representa-
tions and the two parse trees’ representations with
complicated bridging processes, which may hinder
synergistic integration of the heterogeneous repre-
sentations. (3) To better fuse heterogeneous syn-
tactic information, SMiLe-OIE adopts multi-view
learning to capture multiple relationships between
const-graph and dep-graph representations.

Multi-view Learning Multi-view learning aims
to learn representations or features from the multi-
view data. Generally, data from different views usu-
ally contain complementary information. There-
fore, multi-view learning is able to exploit such
complementary information to learn more com-
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Figure 2: Dependency graph constructed from word-
level dependency relations in Figure 1.

prehensive representations than those of single-
view learning methods (Li et al., 2019). In the
modern era, multi-view data have increased vo-
luminously, leading to more attention of multi-
view learning mechanism. The studies of multi-
view learning (Yan et al., 2021) mainly fall into:
multi-view fusion (Zhao et al., 2017; Sun, 2013),
multi-modal learning (Ramachandram and Taylor,
2017; Baltrušaitis et al., 2019), multi-view cluster-
ing (Chao et al., 2021), and multi-view represen-
tation learning (Li et al., 2019; Guo et al., 2019;
Ata et al., 2021). In our work, we perform multi-
view learning and fusion on two views of syntac-
tic graphs ( i.e., const-graph and dep-graph). To
the best of our knowledge, we are the first to use
multi-view mechanism to exploit complementary
syntactic information in NLP applications.

3 Graph Modelling

In this section, we elaborate on our graph mod-
elling strategy to convert constituency and depen-
dency trees into graphs G = (U,E), where U in-
dicates the set of nodes and E the set of edges.
They are Gcon = (U con, Econ) for const-graph,
and Gdep = (Udep, Edep) for dep-graph. The two
graphs’ nodes correspond to the same set of input
sentence’s words. However, the labels of the nodes
in the two graphs are different (constituency path
for const-graph, and dependency relation type for
dep-graph), preserving the syntactic information
of constituency and dependency trees. Also, their
edge sets are different, where the edges represent
word-to-word syntactic relations.

3.1 Dependency Graph Modelling
Dependency tree provides syntactic dependency at
word level. Thus, the dep-graph of a sentence is
identical to the dependency tree of the sentence,
except node labels. For each word, as shown in
Figure 1c, there is an inbound relation from its
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Figure 3: Word-level constituency relations converted
from phrase-level relations of constituency tree.

Word Const. Path

Mary S-NP-NP
‘s S-NP-NP
cat S-NP

likes S-VP
playing S-VP-S-VP

Word Const. Path

plush S-VP-S-VP-NP
toys S-VP-S-VP-NP
in S-VP-S-VP-PP
the S-VP-S-VP-PP-NP

room S-VP-S-VP-PP-NP

Table 1: Example constituency paths.

modifying head word. We follow Fei et al. (2021)
to label each word node with its inbound depen-
dency relation type, as exemplified in Figure 2.

3.2 Constituency Graph Modelling

We flatten the phrase-level relations of a constituent
structure into a const-graph of word-level rela-
tions, which can be directly integrated with word-
level granularity from Pre-trained Language Model
(PLM) such as BERT. The flattening process is
designed to preserve both the phrasal boundary in-
formation and the constituency relations which are
required for OpenIE task. But note that this flatten-
ing process can be used for other related modelling
tasks (e.g., SRL, NER, RE).

Word Node Labelling with Constituency Path.
In const-graph, each word is a node, and we label
each word node with the path from the root to the
word in the constituency structure of the input sen-
tence. Table 1 lists the constituency paths of words
in the example sentence in Figure 1. This labelling
of words with constituency paths preserves the rich
phrasal information of constituency tree.

Word-level Constituency Relations. In const-
graph, edges are constituency relations that con-
nect word nodes. We perform relation flattening of
the constituency tree in Figure 1b in the following
steps: (1) We add an edge between the first and last
word in each noun phrase (NP) (e.g., ‘Mary’-‘’s’,
‘Mary’-‘cat’, ‘plush’-‘toys’, ‘the’-‘room’). The
edge is labelled as ‘NP’. This edge identifies the
boundary of NP. (2) If a word and a phrase are
siblings (belonging to the same parent node in con-
stituency tree), we connect the word (e.g., Verb
in VP, Preposition in PP) to the first word of its
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Figure 4: Constituency graph constructed from word-
level constituency relations in Figure 3 and hierarchical
constituency paths in Table 1.

sibling phrase (e.g., ‘likes’-‘playing’, ‘playing’-
‘plush’, ‘playing’-‘in’, ‘in’-‘the’). This edge’s type
is marked according to the constituency type of the
parent node such as VP and PP. (3) To mark the
boundary of intra-sentential clause, we connect the
first and last word of each clause (S) and label the
edge as ‘S’ (e.g., ‘playing’-‘room’). (4) We remove
an edge when the distance between two words is
longer than 8 in the input sentence, since the ele-
ments in OpenIE tuple are usually short spans.

Figure 3 depicts the word-level relations flat-
tened from the constituency tree in Figure 1b, and
Figure 4 depicts the final const-graph.

4 SMiLe-OIE Model

The overall architecture of SMiLe-OIE is illus-
trated in Figure 5. SMiLe-OIE is based on BERT
encoder to get contextualized representations of
an input sentence. The BERT representations are
then integrated with constituency and dependency
information by Const-GCN and Dep-GCN, respec-
tively. Finally, SMiLe-OIE aggregates the BERT,
const-graph, and dep-graph representations in or-
der to predict output tuples. Beyond the OpenIE
tagging loss, SMiLe-OIE further performs multi-
view learning on the const-graph and dep-graph rep-
resentations, and generates additional multi-view
losses to enhance OpenIE tagging accuracy.

4.1 Task Formulation

We formulate OpenIE as a sequence tagging
task, using BIO (Beginning, Inside, Outside) tag-
ging scheme like recent neural OpenIE mod-
els (Stanovsky et al., 2018). Given an input sen-
tence s = [t0, . . . , tn], a variable number of tuples
will be extracted. Each tuple can be represented as
[x0, . . . , xm], where xj is a contiguous subspan of
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Figure 5: Overview of SMiLe-OIE model architecture.

s. One of xj is tuple relation (B/I-REL) and the
others are tuple arguments (B/I-ARGl).

We assume that each tuple has a verb as relation,
since OpenIE relation is typically associated with a
verb2. Meanwhile, since some verbs in a sentence
do not lead to any relational tuple, we assume one
verb can be a relation for at most one tuple.

4.2 BERT Encoder with Relation Indicator

We employ BERT (Devlin et al., 2019) as our
encoder to analyze semantic interactions among
words. We first project all words [t0, . . . , tn] into
embedding space by summing their word embed-
ding3 and verb embedding, i.e., wi = Wword(ti) +
Wverb(ti). Here, Wword is trainable and initialized
by BERT word embedding.
Wverb is a trainable verb embedding matrix.

Verb embedding is to distinguish whether an input
word is a relation indicator or not. Given an input
sentence, we extract all verbs from the sentence
using an off-the-shelf POS tagger. We consider
each verb in a sentence to be a potential relation
indicator and use the verb embedding to highlight
this relation indicator. Specifically, Wverb initial-
izes each verb to 1 at a time, and all the other words
in the sentence to 0. If a verb in the sentence does
not lead to a tuple, we set all of the sequence output
tags to be “O”. Consequently, the model is able to

2Relation can be referred as predicate, and verb can be
referred as predicate head word in other OpenIE works.

3If the word contains multiple sub-words after BERT tok-
enization, we use the representation of its first sub-word.

learn which verbs lead to relation.4

Then, we use ws = [w0, . . . , wn] as the input to
the BERT encoder and utilize BERT’s last hidden
states as contextualized representations:

hberti = BERT(wi) ∈ Rdh (1)

4.3 Syntactic GCN Encoders

In this section, we present syntactic encoders,
which represent the elements of the two graphs
with the BERT representations and encode them
using GCNs. Recall that the dep-graph and const-
graph are represented as Gz = (U z, Ez), where
z ∈ {dep, con}. ezij in Ez equals to 1 if there is
an edge between node nz

i and node nz
j ; Otherwise,

0. Each node nz
i ∈ U z has a label (or type), desig-

nated as type ⟨nz
i ⟩.

The node types of Udep are dependency relations.
The syntactic encoder of Gdep (called Dep-GCN)
takes node embedding as follows:

ldepi = W 1
dep

(
type

〈
ndep
i

〉)
(2)

where W 1
dep ∈ Rdl×Ndep is a trainable matrix, dl is

the size of node embeddings, and Ndep is the total
number of unique dependency relations.

A node ncon
i ∈ U con has a label of constituency

path type ⟨ncon
i ⟩ = [ncon0

i , · · · , nconm
i ], which con-

tains a list of constituent tags. Given a constituency
path, we first project all its constituent tags to re-
spective constituent tag vectors, and then average
all the constituent tag vectors in this constituency

4Implementation details of verb-tuple alignment are de-
scribed in Appendix A.1.
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path as inputs to the syntactic encoder of Gcon

(called Const-GCN) as follows:

lconi = avg
(
W 1

con(type ⟨ncon
i ⟩)

)
(3)

= avg
(
W 1

con(n
con0
i ), · · · ,W 1

con(n
conm
i )

)

where W 1
con ∈ Rdl×Ncon is a trainable matrix, and

Ncon is the total number of unique constituency
tags. avg() indicates the averaging operation on a
sequence of vectors.

Each syntactic encoder (Dep-GCN, Const-GCN)
employs a separate GCN to encode the correspond-
ing graph (Gdep, Gcon). The computation of the
GCN representation is formulated as:

hzi = ReLU
( n∑

j=1

αz
ij(h

bert
j +W 2

z · lzj + bz)
)

(4)

where n refers to the total number of word nodes
in the graph, W 2

z ∈ Rdh×dl is a trainable weight
matrix for syntactic type embeddings, and bz ∈
Rdh is the bias vector. The neighbour connecting
strength distribution αz

ij is calculated as below:

αz
ij =

ezij · exp
(
(mz

i )
T ·mz

j

)
∑n

k=1 e
z
ik · exp

(
(mz

i )
T ·mz

k

) (5)

where mz
i = hberti ⊕ lzi , and ⊕ is concatenation op-

erator. In this way, node type and edge information
are modelled in a unified way.

Finally, we aggregate the sequence represen-
tations from BERT encoder in Eq.(1) and the
graph representations from Const-Encoder and
Dep-Encoder in Eq.(4) as follows:

hfinali = hberti ⊕ hconi ⊕ hdepi (6)

where hfinali is used by the tagging layer for tuple
prediction.

4.4 Multi-view Learning

Recall that the const-graph and the dep-graph share
the same set of nodes U and have two different sets
of node representations hcon and hdep, and two dif-
ferent edge sets Econ and Edep, respectively. We
treat const-graph and dep-graph as two syntactic
views z ∈ {dep, con} of the input sentence. We
adopt multi-view learning (Ata et al., 2021) in or-
der to explore three types of relationships among
the representations of const-graph and dep-graph
views. The multi-view learning loss is used to fine-
tune these representations, which can provide rich
syntactic information for tuple generation.

We consider three categories of relationships be-
tween these two views. In the first category, the
multi-view learning captures the inter-node and

intra-view relationship in each view. In the sec-
ond category, it aligns instances of the same node
across various views, i.e., intra-node and inter-view
relationship. In the third category, it ensures the
nodes that are connected in one view should be sim-
ilar with each other in another view, i.e., inter-node
inter-view relationship.

Inter-node Intra-view Relationship. We design
a loss to ensure the representations of connected
nodes i and j in the same view z, i.e., hzi and hzj ,
to be similar.5 This is to ensure coherence within
the same view.

LR1 = −
∑

z∈{dep,con}

∑

i∈U

∑

j∈U
ezij · logP (hzj , h

z
i )

(7)

P (hzj , h
z
i ) =

exp(hzj · hzi )∑
k∈U exp(hzk · hzi )

(8)

Intra-node Inter-view Relationship. While
const-graph and dep-graph exhibit diversity, they
ultimately converge on a common set of words.
The same word, although bearing different syntac-
tic functions, well connects the two views. There-
fore, we design a loss for the intra-node and inter-
view relations. Specifically, we make sure a node
i’s const-graph representation hconi to be similar to
its dep-graph representation hdepi by minimizing
the following loss:

LR2 = −
∑

z∈{dep,con}

∑

i∈U

∑

z′ ̸=z

logP (hz
′

i , h
z
i ) (9)

where z′ indicates the other view than z, and
P (hz

′
i , h

z
i ) is computed in a similar way as in Eq. 8.

Inter-node Inter-view Relationship. We ob-
serve that const-graph and dep-graph share many
common edges. In another word, two nodes linked
in const-graph are often linked with each other in
dep-graph as well. Consequently, we explore inter-
view and inter-node relations in order to leverage
the frequent edge sharing between the two graphs.
Specifically, if node i and node j are connected
in const-graph, we design a loss to move node i‘s
const-graph representation hconi towards node j‘s
dep-graph representation hdepj , as follows:

LR3 = −
∑

z∈{dep,con}

∑

i∈U

∑

z′ ̸=z

∑

j∈U
ezij · logP (hz

′
i , h

z
j )

(10)
5In the original paper (Ata et al., 2021), the corresponding

objective of their multi-view learning is to make node repre-
sentations within each view close to each other. In our problem
setting, we redefine this objective on ‘connected nodes’ only.
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Dataset Source #Sent #Tuple

LSOIE-wiki-train QA-SRL 2.0 19,591 45,890
LSOIE-wiki-test QA-SRL 2.0 4,660 10,604

LSOIE-sci-train QA-SRL 2.0 38,826 80,271
LSOIE-sci-test QA-SRL 2.0 9,093 17,031

CaRB-train OpenIE 4 92,774 190,661
CaRB-test Crowdsourcing 1,282 5,263

Table 2: Statistics of OpenIE datasets used in training
and evaluating SMiLe-OIE.

Loss Function. We combine the losses of the
three categories of relations in Equations (7), (9),
and (10) with the OpenIE sequence tagging loss
LCE . LCE is the cross-entropy loss between the
gold and the predicted word labels in sequence
tagging (i.e., the BIO tags shown in Figure 5). The
overall loss for our multi-view learning OpenIE is:

L = LCE + α · LR1 + β · LR2 + γ · LR3 (11)

where α, β, and γ are hyper-parameters, indicating
the importance of each individual loss.

5 Experiments

We mainly conduct our experiments on LSOIE (So-
lawetz and Larson, 2021), a large-scale OpenIE
data converted from QA-SRL 2.0 in two domains,
i.e., Wikipedia and Science. It is 20 times larger
than the next largest human-annotated OpenIE data,
and thus is reliable for fair evaluation.6 LSOIE pro-
vides n-ary OpenIE annotations and gold tuples
are in the ⟨ARG0, Relation,ARG1, . . . , ARGn⟩
format. The dataset has two subsets, and we use
both, namely LSOIE-wiki and LSOIE-sci, for com-
prehensive evaluation. LSOIE-wiki has 24,251 sen-
tences and LSOIE-sci has 47,919 sentences.

CaRB (Bhardwaj et al., 2019) dataset is the
largest crowdsourced OpenIE dataset.7 However,
CaRB only provides 1,282 annotated sentences,
which are insufficient for training neural OpenIE
models. As a result, we use the CaRB dataset
purely for testing. We follow Kolluru et al. (2020b)
to convert bootstrapped OpenIE4 tuples as labels
for distant supervised model training. CaRB pro-
vides binary OpenIE annotations and gold tuples
are in the form of ⟨Subject, Relation,Object⟩.
Finally, we summarize the statistics of the train-
ing and testing datasets of LSOIE-wiki, LSOIE-sci,
and CaRB in Table 2.

6https://github.com/Jacobsolawetz/large-scale-oie
7https://github.com/dair-iitd/CaRB

5.1 Baselines for Comparison
Baselines without Syntax. RnnOIE (Stanovsky
et al., 2018) is the first sequence tagging model
based on Bi-LSTM networks. In our work, we
implement8 its model with GloVe word repre-
sentation (Pennington et al., 2014), and name
it as ‘GloVe+bi-LSTM’. We further add a CRF
layer to be another baseline model ‘GloVe+bi-
LSTM+CRF’. Meanwhile, we utilize BERT word
representation along with its transformer layers,
and name this baseline model as ‘BERT’. ‘CopyAt-
tention’ (Cui et al., 2018) is the first neural OpenIE
model which casts tuple generation as a sequence
generation task. ‘IMOJIE’ (Kolluru et al., 2020a)
extends CopyAttention and is able to produce a
variable number of extractions per sentence. It it-
eratively generates the next tuple, conditioned on
all previously generated tuples. ‘CIGL-OIE + IGL-
CA’ (Kolluru et al., 2020b) models OpenIE as a
2-D grid sequence tagging task and iteratively tags
the input sentence until the number of extractions
reaches a pre-defined maximum.

Baselines with Syntax. We build baselines that
utilize syntactic information, based on BERT.
We first study the performance of using either
dependency or constituency tree as additional
syntactic feature, i.e., ‘BERT+Dep-GCN’ and
‘BERT+Const-GCN’. Then, we present three mod-
els of fusing heterogeneous syntactic information
from dependency and constituency trees. ‘Dep-
GCN ⊕ Const-GCN’ refers to the proposed parallel
aggregation of the two graph representations using
two syntactic GCNs. For comparison, we build
a model of sequential aggregation ‘Dep-GCN →
Const-GCN’, which passes the dependency graph
representation from Dep-GCN as input to Const-
GCN, and another model ‘Const-GCN → Dep-
GCN’, which passes the constituency graph repre-
sentation from Const-GCN as input to Dep-GCN.9

5.2 Evaluation
Evaluation Metric. For LSOIE-wiki and LSOIE-
sci dataset, Solawetz and Larson (2021) consider
two tuples to match if their relations (or verbs)
are identical, regardless of the matching of tuple
arguments. We consider this scoring function to
be over-lenient. Therefore, we revise their scoring
function to consider both relation and arguments

8Details of implementation are described in Appendix A.2.
9Details of experimental setups and re-implementation

details are described in Appendix A.1 and A.2.
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Models
LSOIE-wiki LSOIE-sci CaRB

F1 AUC F1 AUC F1 AUC

Without Dependency & Constituency Graph
GloVe + bi-LSTM (Stanovsky et al., 2018) 43.90 38.04 50.51 45.95 48.52 27.10
GloVe + bi-LSTM + CRF 44.48 38.72 50.85 46.23 48.72 27.51
BERT (Solawetz and Larson, 2021) 47.54 44.71 57.02 53.23 51.45 30.62
CopyAttention (Cui et al., 2018) 39.52 35.99 48.82 46.84 51.6† 32.8†

IMoJIE (Kolluru et al., 2020a) 49.24 47.55 58.75 55.81 53.5† 33.3†

CIGL-OIE + IGL-CA (Kolluru et al., 2020b) 44.75 41.98 56.62 52.37 54.0† 35.7†

With Dependency Graph
BERT + Dep-GCN 48.71 47.87 58.14 55.32 52.49 32.85

With Constituency Graph
BERT + Const-GCN 49.74 48.55 58.67 55.76 52.83 33.10

With Dependency & Constituency Graph
BERT + Dep-GCN ⊕ Const-GCN 49.89 49.15 59.23 56.47 52.70 33.28
BERT + Dep-GCN → Const-GCN 50.21 49.28 59.53 55.92 52.85 33.37
BERT + Const-GCN → Dep-GCN 49.71 48.80 58.81 56.04 53.28 33.51
SMiLe-OIE 51.73 50.88 60.51 57.22 53.76 34.92

Table 3: Results on OpenIE datasets. Scores with † are from Kolluru et al. (2020b). The best scores are in boldface,
and the second best scores underlined.
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Figure 6: Precision-recall curves of SMiLe-OIE and
other baselines on LSOIE-wiki test set.

matching, i.e., exact tuple matching, for accurate
and fair comparison. For CaRB dataset, we use
the default CaRB scoring function (Bhardwaj et al.,
2019) to evaluate binary tuple with lexical level
matching, i.e., partial tuple matching. Both scoring
functions report F1 score based on precision and
recall computed by tuples matching. Each tuple
extracted is associated with a confidence value, so
we can generate a precision-recall (P-R) curve and
report the area under P-R curve (AUC).

5.3 Dataset

Evaluation Results. We compare SMiLe-OIE
with other neural OpenIE baseline systems, sum-
marizing their evaluation results in Table 3 and
depicting their P-R curves in Figure 6. As shown
in Figure 6, SMiLe-OIE achieves better precision
at different recalls comparing to other baseline
systems. Observe that both “BERT + Dep-GCN”
and “BERT + Const-GCN” outperform “BERT”. It
shows that leveraging syntactic information, either
dependency or constituency tree, benefits OpenIE
task significantly.

The comparison results in Table 3 also show that
the integration of the heterogeneous syntactic infor-
mation is better than leveraging a single syntactic
structure. Both parallel and sequential aggrega-
tion of the two graph representations achieve better
results than “BERT” with either “Dep-GCN” or
“Const-GCN”.

Lastly, multi-view learning can effectively guide
the fusion of the heterogeneous syntactic infor-
mation, leading to the significant improvement
and outperforming all the baseline systems except
“CIGL-OIE + IGL-CA” on CaRB dataset. We find
that “CIGL-OIE + IGL-CA” uses a complicated
method of coordination boundary analysis dedi-
cated for CaRB dataset. However, the coordination
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Models
LSOIE-wiki LSOIE-sci
F1 AUC F1 AUC

SMiLe-OIE 51.73 50.88 60.51 57.22
– w/o LR1 50.86 49.23 59.71 56.43
– w/o LR2 50.24 49.35 58.47 55.72
– w/o LR3 51.05 50.52 59.84 56.53

w/o GCN 49.57 47.84 58.68 55.67
– w/o LR1 48.15 46.26 57.22 53.92
– w/o LR2 48.64 45.59 56.54 54.59
– w/o LR3 49.83 46.62 57.51 55.24

Table 4: Ablation study of SMiLe-OIE. The best scores
are in boldface

boundary analysis of “CIGL-OIE + IGL-CA” can-
not be generalized to other datasets, e.g., LSOIE-
wiki and LSOIE-sci, and it is thus not preferable.

5.4 Ablation Study

We ablate each part of our model and evaluate
the ablated models against the LSOIE-wiki and
LSOIE-sci datasets, and the results are reported
in Table 4. The upper part of the table reports
the ablation study results of removing each of the
three multi-view learning losses LR1 , LR2 , and
LR3 . It shows that LR2 (intra-node inter-view re-
lationship) has slightly more contribution than the
other two losses. The lower part reports the re-
sults of removing the GCN layers for dependency
and constituency graphs. In this setting, we only
concatenate the syntactic label representation to
each word, without leveraging the syntactic graph
structure. We observe that the GCN layers have
larger impact on SMiLe-OIE than multi-view loss,
although both contribute to the best performance.
Meanwhile, we study a few variants of const-graph,
and the results are reported in Appendix 5.5.

5.5 Effectiveness of Const-graph

To verify the effectiveness of the proposed
method for converting phrase-level relations of con-
stituency tree into word-level relations of the const-
graph (see Section 3.2), we build three variants:

• Variant 1: we replace the constituency path,
as the label of word node, with the last con-
stituency tag in the path;

• Variant 2: in step 2 of constituency relations
flattening, we connect a word to the last word
of its sibling phrase, instead of connecting to
the first word;

BERT+ LSOIE-wiki LSOIE-sci
Const-GCN F1 AUC F1 AUC

const-graph 49.74 48.55 58.67 55.76
- variant 1 48.91 48.04 57.73 54.89
- variant 2 49.57 48.67 58.17 55.32
- variant 3 49.25 47.78 58.25 54.03

Table 5: Effectiveness study of const-graph: the best
scores are in boldface, and the second best underlined.

• Variant 3: in step 4 of constituency relations
flattening, we keep edges whose distance be-
tween two words is longer than 8. We eval-
uate the proposed conversion method and its
three variants based on our baseline model
BERT+Const-GCN. Note that neither Dep-
Encoder nor multi-view learning is applied in
BERT+Const-GCN.

As shown in Table 5, the proposed method out-
performs all the three variants. The const-graph
with constituency path outperform its variant 1 that
uses a single constituency tag. It proves that using
constituency path is better than simply using the
last constituency tag. Comparing to variant 2, the
const-graph which connects the word to first word
of its sibling, achieves better scores. Moreover,
we find the keeping distant edges in variant 3 can
deteriorate the model performance. As such, it is
effective to remove distant edges from const-graph.

6 Conclusion

We design a novel strategy to map constituency
tree into constituency graph only with word nodes,
paving way for integrating constituency syntax
with BERT and dependency syntax. With the aid of
Const-GCN and Dep-GCN, we propose a new Ope-
nIE system SMiLe-OIE which combines hetero-
geneous syntactic information through multi-view
learning. Experiment results show that leveraging
syntactic information can benefit OpenIE task sig-
nificantly, and multi-view learning can effectively
guide the heterogeneous syntactic information fu-
sion. In future work, we will explore other types of
structured information to further improve OpenIE.
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Limitations

We analyze the limitation of our SMiLe-OIE from
three perspectives: syntactic parse errors, POS tag-
ging errors and multiple extractions issue. (1) As
we integrate both constituency and dependency
parsing results with OpenIE task, our system will
inevitably suffer from the noises introduced by the
off-the-shelf tools: spaCy and CoreNLP. (2) Mean-
while, the number of tuple extractions is highly
correlated with the number of verbs extracted by
the POS tagger. Therefore, the POS tagger’s errors
may also affect the quality of OpenIE. Based on
our statistics of LSOIE-wiki and LSOIE-sci, the
POS tagger fails to extract 8% of verbs that are
supposed to be relation indicators. (3) Moreover,
there are 6% of relation indicators corresponding
to multiple tuple extractions, while our system ex-
tracts up to one tuple per relation indicator. Our
system, suffering from the POS errors and the mul-
tiple extractions issue, fails to predict 14% of the
gold tuples.
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A Appendix

A.1 Experimental Setups

Dependencies. We build and run our system with
Pytorch 1.9.0 and AllenNLP 0.9.0 framework. We
collect all verbs from the sentences in all datasets
through spaCy10 POS tagger. In addition, we ob-
tain the constituency annotations through Stan-
ford CoreNLP11 and the dependency annotations
through spaCy. We have total 27 types of con-
stituency labels and 45 types of dependency labels.

10https://spacy.io/
11https://stanfordnlp.github.io/CoreNLP/

Verb-tuple Alignment. We assume that every tu-
ple has a verb in its relation (see Section 4). How-
ever, this assumption does not mean that each verb
in a sentence can lead to one tuple. If a sentence
contains multiple verbs identified by the POS tag-
ger, we create multiple training instances. In each
training instance, one verb is considered as the rela-
tion indicator, i.e., its Wverb initialized to 1, while
Wverb for all other verbs in the sentence are ini-
tialized to 0. The corresponding tuple taking this
verb as relation is the gold label for this training
instance. If this verb does not lead to a tuple, we
set the label for all words in the sentence to be “O”,
i.e., no tuple extracted for this verb. As such, the
model is able to learn which verb leads to a tuple
extraction. During testing, multiple test instances
are created if a sentence contains multiple verbs;
one verb serves as a relation indicator in each test
instance. No tuple is extracted if all predictions of
this test instance are “O”.

Parameters. The hidden dimension dh for BERT
representation hberti , Dep-GCN graph representa-
tion hdepi , and Const-GCN graph representation
hconi is 768. We use single-layer GCNs for both
constituency and dependency graphs. The hidden
dimension dl for Dep-Encoder type embedding ldepi

and Const-Encoder path embedding lconi is 400.
Hyper-parameters α, β, γ are set to 0.024, 0.012,
and 0.012, respectively. Hyper-parameters selec-
tion is based on grid searching. The experiments
are conducted with Tesla V100 32GB GPU and
Intel® Xeon® Gold 6148 2.40 GHz CPU.

A.2 Re-implementation Details
Note that all baselines are implemented to extract n-
ary tuples on LSOIE-wiki and LSOIE-sci datasets,
and binary tuples on CaRB dataset. ‘CopyAtten-
tion’, ‘IMoJIE’, and ‘CIGL-OIE + IGL-CA’ are bi-
nary OpenIE systems and cannot be tested naturally
on LSOIE-wiki and LSOIE-sci datasets. We re-
implement their models to cater n-ary tuple extrac-
tion based on the code repositories.12 In the evalu-
ation, we evaluate ‘CopyAttention’, ‘IMoJIE’, and
‘CIGL-OIE + IGL-CA’ on LSOIE-wiki and LSOIE-
sci datasets through our n-ary re-implementations.

12The source code of ‘CopyAttention’ and ‘IMoJIE’
can be found in https://github.com/dair-iitd/imojie. The
source code of ‘CIGL-OIE + IGL-CA’ can be found in
https://github.com/dair-iitd/openie6
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