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Abstract

Domain adaptation is an effective solution to
data scarcity in low-resource scenarios. How-
ever, when applied to token-level tasks such
as bioNER, domain adaptation methods often
suffer from the challenging linguistic charac-
teristics that clinical narratives possess, which
leads to unsatsifactory performance. In this pa-
per, we present a simple yet effective hardness-
guided domain adaptation (HGDA) framework
for bioNER tasks that can effectively lever-
age the domain hardness information to im-
prove the adaptability of the learnt model in the
low-resource scenarios. Experimental results
on biomedical datasets show that our model
can achieve significant performance improve-
ment over the recently published state-of-the-
art (SOTA) MetaNER model.

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal NLP task which aims to locate named entity
(NE) mentions and classify them into predefined
categories such as location, organization, or person.
NER usually serves as an important first sub-task
for information retrieval (Banerjee et al., 2019),
task oriented dialogues (Peng et al., 2020) and other
language applications. Consequently, NER has
seen significant performance improvements with
the recent advances of pre-trained language models
(PLMs) (Akbik et al., 2019; Devlin et al., 2019).
Unfortunately, a large amount of training data is
often essential for these PLMs to excel and except
for a few high-resource domains, the majority of
domains have limited amount of labeled data.

This data-scarcity problem amplifies given the
context of biomedical NER (bioNER). Firstly, the
annotation process for the biomedical domains is
time-consuming and can be extremely expensive.
Thus, many biomedical domain corpora, especially
for those privately developed, are often scarcely
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labeled. Furthermore, each biomedical domain can
have distinct linguistic characteristics which are
non-overlapping with those found in other biomed-
ical domains (Lee et al., 2019). This linguistic
challenge often diminishes the robustness of PLMs
transferred from high-resource biomedical domains
to low-resource ones (Giorgi and Bader, 2019).

Given the premise, this paper focuses on adapt-
ing PLMs for bioNER tasks learned from high-
resource biomedical domains to low-resource ones.
A potential solution is to inject the prior “experi-
ence” to this adaptation process. Few works have
explored this area such as Li et al. (2020a) and
Li et al. (2020b), where the former followed the
optimization/meta-learning strategy by (Finn et al.,
2017) and the latter introduced a feature critic mod-
ule similar to the work of Li et al. (2019).

We show that simply incorporating the hard-
ness information that each domain contributes to
the learning of the bioNER LMs could signifi-
cantly boost the adaptation performance of existing
learning paradigms under various low-resource set-
tings. This happens since the importance/hardness
of biomedical domains can vary significantly, as
shown in Table 1. While some domains might con-
tain a lot of NEs, many do not, (e.g., the last row
in Table 1), and hence, contribute little to learning
the bioNER LMs. Meanwhile, the domain diffi-
culty ties both to the number of entities and to the
length of those entities. Given the non-overlapping
linguistic characteristics found in biomedical do-
mains, this poses another challenge to effectively
adapt the trained bioNER LMs to the new domain.
Therefore, we argue that the current adaptation
framework proposed by Li et al. (2020b) could
be further enhanced using the hardness informa-
tion. We present two simple but effective ways of
incorporating hardness information into our learn-
ing framework, named HGDA. We show that our
hardness-guided domain adaptation approaches for
bioNER tasks outperform the SOTA domain adap-
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tation NER technique by Li et al. (2020b).

2 Related Works

Few works have addressed domain adaptation for
NER. Both Li et al. (2020a) and Li et al. (2020b)
seek a robust representation for the sequence label-
ing function BiLSTM-CRF using the meta-learning
framework (Finn et al., 2017), with the latter further
includes an auxiliary network to promote adversar-
ial learning. Hu et al. (2022) consider label de-
pendencies via an auto-regressive framework built
on top of Bi-LSTM for cross-domain NER. How-
ever, different domains can have different level of
hardness which both works have not yet addressed.
Existing domain adaptation techniques using meta
learning framework to incorporate hardness infor-
mation via 1) actively ranking the tasks in term of
difficulty level (Yao et al., 2021; Zhou et al., 2020;
Liu et al., 2020; Achille et al., 2019); 2) designing
an adaptive task scheduler (Yao et al., 2021); or 3)
relying on generative approaches to quantify the un-
certainties of tasks (Kaddour et al., 2020; Nguyen
et al., 2021). To our knowledge, we are the first
to perform hardness guided domain adaptation for
bioNER tasks.

3 Hardness-guided domain adaptation

3.1 Problem Setup
Given a set of biomedical corpora from multiple
source domains Dsource (e.g., Drug, Gene, Species,
etc), we aim to learn a sequence labelling function
h : X → Y 1 from a set of tasks p(T ) sampled
from Dsource so that h can be adapted to a new
task T ′

sampled from the target domain Dtarget
(e.g., Disease). This function h should contain
1) a sentence encoder parameterized with θ (e.g.,
BiLSTM) that captures the contextual information
about words, and 2) a tag decoder parameterized
with ϕ (e.g., CRF) that assigns the entity tags to
these words 2. Thus, the learning objective is to
search for the optimal Θ∗ ≡ {θ,ϕ} from Dsource.
This optimal Θ∗ should minimise the risk of adapt-
ing h from Dsource to T ′

from Dtarget.

3.2 Task Generation
To optimize for Θ∗ with stochastic optimization,
one first needs to sample from p(T ), i.e., task gen-

1X = {xi
1, . . . , x

i
L}Ni=1, and Y = {yi

1, . . . , y
i
L}Ni=1. X

and Y denote the set of sentences and tags/labels respectively.
N is the total number of sentences, and L is the number of
word tokens for the sentence i.

2We consider the BIO tagging schema.

eration. Each bioNER task Ti in our setting is
divided into a support set T S

i and a query set T Q
i ,

with T S
i ∩ T Q

i = ∅. We further restrict both T S
i

and T Q
i to contain only K sentences respectively

sampled from a domain in Dsource. This value of
K is dependent on the amount of data we have
during adaptation phase for T ′

and can be as small
as 5 or 10. This is to mimic the same few-shot
setting in the training phase which has been shown
to reduce the PAC-Bayesian error bound during the
adaptation phase (Ding et al., 2021). To encode
the hardness information into our task generation
process, we further consider the imbalance issue
caused by the NER tasks. As shown in Table 2,
the majority of the sentences in the biomedical cor-
pora does not contain any NEs. Thus, it is highly
likely that the K randomly-sampled sentences con-
tain no NEs, which can result in a biased sequence
labeller that always predicts “O” in the adaption
phase. To avoid this issue, we propose our first
HGDA approach by selecting the K sentences in
T S
i to be those containing at least one biomedical

NE, which is shown to be highly effective during
the adaptation phase.

3.3 Bilevel Optimization
To regularize θ, HGDA includes a domain classifier
as a separate head on top of the sentence encoder.
This enforces the network to learn a domain condi-
tional invariant sentence encoder (Blanchard et al.,
2017; Li et al., 2018; Shao et al., 2019). This do-
main classifier, parameterized with ω, consists of a
fully connected layer and is used to predict which
domain the sentences in a task Ti belong to. The
classification function f will henceforth be used
to represent the composition of the sentence en-
coder and the domain classifier. Consequently, the
learning objective of HGDA is

Li = Llab (h (θ,ϕ) , Ti) + λLcls (f (θ,ω) , Ti) , (1)

where λ control the trade-off between the labelling
loss and the classification loss. As HGDA follows
the bilevel optimization framework, we first gen-
erate a batch of task from p(T ). For each Ti in
this batch, we train the model on T S

i then validate
the performance on T Q

i using our learning objec-
tive. Consequently, we gather the gradients from
each Ti in the current batch of task and make the
update to the parameters, finishing one iteration
of the training process. This runs until no further
improvement can be made. The full algorithm is

4064



Example Score
Stimulation of human neutrophils with [chemoattractants] [FMLP] or [platelet activating factor (PAF)] results in different but overlapping functional responses. 0.46
Of even more interest, [IkappaBalpha] overexpression inhibited the production of [matrix metalloproteinases 1 and 3] while not affecting their tissue inhibitor.
...more durable inhibition of HIV - 1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone.
Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes.
Here we report the fabrication of single-molecule transistors based on individual C60 molecules connected to gold electrodes. 0.18
The contractile effects of [oxytocin], prostaglandin F2 alpha and their combined use on human pregnant myometrium were studied in vitro.
Transcriptional activation of the [proopiomelanocortin gene] by [cyclic AMP-responsive element binding protein].
The difference between the effects of the two dose levels of Z.
She was monitored for one more day and then discharged with instructions to discontinue her diet pills 0.01
The Raf/Ras/ERK/MAPK pathway is known to be involved in NGF-induced outgrowth
Our analysis reveals that the oviduct is lined, along its entire length, by a monolayered epithelium comprised of squamous-type cells.
In one case study, Bramson et al.

Table 1: Examples of domain hardness scores (computed from our method) for tasks generated from three domains
(gene, drug, and species respectively) during the training procedure. The score is based on a scale from 0 to 1, the
higher the score, the more challenging the domain is. The NEs are put in brackets with red color for each sentence.

summarized by Alg. 1 and Alg. 2 in the appendix.

3.4 Task Hardness
Although picking the K sentences with NEs for Ti
is shown to improve the DA performance (see Ta-
ble 3), it is not realistic in practice to have only
sentences with NEs and wasteful not using the
sentences without NEs as these sentences would
still provide the sentence encoder with important
contextual information of the clinical narratives.
Hence, HGDA incorporates another simple but ef-
fective way of computing the bioNER task hard-
ness based on the losses. The gradients propa-
gated by Ti will be weighted by the hardness level
of Ti. Specifically, we define the task difficulty
Γi = {γθi , γϕi , γωi } for task Ti with its correspond-
ing objective values as follows

γθ
i =

Li∑Lj
; γϕ

i =
Llab

i∑Llab
j

; γω
i =

Lcls
i∑Lcls
j

, (2)

where {γθi , γϕi , γωi } represent the task hardness
scores to update {θ, ϕ, ω} respectively. By in-
corporating task hardness in the optimization pro-
cess, HGDA, after collecting adequate contextual
information for the sentence encoder, should grad-
ually shift the focus to more challenging labelling
tasks for the tag-decoder rather than the ones that
contribute little to no learning value, e.g., a task
that contains short and simple sentences without
bioNEs. This happens as multiplying the hardness
score with the corresponding gradient value will
force the gradient update to zero for sentences with
no NEs. Table 1 shows how HGDA ranks the con-
tribution of each task towards the gradient updates.

4 Experimental Results

4.1 Datasets
We use the pre-processed version of the bench-
mark corpora (see Tab. 2) which were used by

Corpora Entity
Type

No. Unique
Tokens

% sentences
with NEs

NCBI (Doğan et al., 2014) Disease 12, 128 55
BC5CDR (Li et al., 2016) Disease 23, 068 59
BC5CDR (Li et al., 2016) Drug 23, 068 65
BC4CHEMD (Krallinger et al., 2015) Drug 114, 837 48
JNLPBA (Collier and Kim, 2004) Gene 25, 046 81
BC2GM (Smith et al., 2008) Gene 50, 864 51
LINNAEUS (Gerner et al., 2010) Species 34, 396 13
S800 (Pafilis et al., 2013) Species 205, 26 30

Table 2: Biomedical corpora used in our experiments
(Habibi et al., 2017; Lee et al., 2019; Zhu et al., 2018).

the SOTA bioNER BioBERT (Lee et al., 2019)
and are publicly available at BioBERT’s github
website 3. These corpora are categorized into four
non-overlapping biomedical domains, namely Dis-
ease, Drug, Gene and Species, each of which will
serve as the target domain in our DA experiments.
When the sentence encoder is BiLSTM, HGDA
uses BioWordVec embeddings pre-trained based
on both PubMed database and clinical notes from
MIMIC-III (Chen et al., 2018; Yijia et al., 2019).

4.2 Experimental Settings

To analyze the adaptability of the HGDA under
low-resource scenarios, we consider the following
experimental settings:

• The size of T ′
: We use T ′ ∈ {5, 10, 20, 50}

to replicate the data scarcity issue in low-
resource scenarios of privately labelled medi-
cal corpora.

• Sequence encoder adaptation: Following Li
et al. (2020b), we consider the hard task of
adapting the sequence encoder. This assumes
that each domain has a domain-specific de-
coder and only the sentence encoder param-
eter θ is shared across domains and conse-
quently adapted to T ′

.

3https://github.com/dmis-lab/biobert
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T ′
Disease Drug Gene Species Overall

Size NCBI BC5CDR BC5CDR BC4CHEMD JNLPBA BC2GM LINNAEUS S800
5

MetaNER 0.2729 0.2171 0.5784 0.2212 0.2175 0.2443 0.1214 0.1516 0.2530
BioBERT 0.0428 0.0352 0.0600 0.0237 0.0727 0.0304 0.0081 0.0083 0.0352
HGDA 0.3001 0.2698 0.6102 0.2464 0.3687 0.3326 0.1753 0.2840 0.3234
HGDA-NEs 0.2825 0.2530 0.5517 0.2571 0.3776 0.3573 0.1557 0.2615 0.3121
HGDA* 0.2285 0.0678 0.4794 0.1288 0.3691 0.3226 0.0710 0.2563 0.2404
HGDA-NEs* 0.3125 0.1290 0.6066 0.2359 0.3298 0.3236 0.0701 0.2880 0.2869

10

MetaNER 0.3330 0.3688 0.6659 0.3360 0.3374 0.3265 0.3038 0.3164 0.3735
BioBERT 0.0905 0.0223 0.2315 0.0607 0.1961 0.2016 0.0162 0.0268 0.1057
HGDA 0.3953 0.4178 0.6798 0.4227 0.4790 0.4489 0.3201 0.3703 0.4417
HGDA-NEs 0.4386 0.4222 0.6605 0.3933 0.4371 0.4086 0.2474 0.3225 0.4163
HGDA* 0.3825 0.4014 0.6640 0.3566 0.4255 0.3974 0.1445 0.3631 0.3919
HGDA-NEs* 0.4084 0.3110 0.7097 0.4076 0.3966 0.3713 0.1228 0.3532 0.3851

20

MetaNER 0.4612 0.4722 0.7301 0.4383 0.4167 0.3926 0.4952 0.2977 0.4630
BioBERT 0.3296 0.2654 0.6225 0.2345 0.3751 0.4242 0.1004 0.2348 0.3233
HGDA 0.5631 0.5529 0.7472 0.4935 0.5466 0.5114 0.3657 0.4432 0.5280
HGDA-NEs 0.5540 0.5098 0.7305 0.4694 0.5375 0.5097 0.4843 0.5205 0.5394
HGDA* 0.4326 0.4703 0.7007 0.4494 0.4865 0.4356 0.1638 0.3694 0.4385
HGDA-NEs* 0.4789 0.5166 0.7340 0.4944 0.4694 0.4359 0.2859 0.4045 0.4775

50

MetaNER 0.5731 0.6106 0.7478 0.5082 0.5337 0.5058 0.6125 0.3607 0.5565
BioBERT 0.5998 0.5740 0.7520 0.4883 0.4855 0.5882 0.5835 0.4586 0.5662
HGDA 0.6250 0.5939 0.7737 0.5728 0.5666 0.5442 0.6369 0.5855 0.6123
HGDA-NEs 0.6208 0.5847 0.7612 0.5781 0.6146 0.6016 0.6373 0.5445 0.6179
HGDA* 0.5618 0.5873 0.7584 0.5078 0.5256 0.4790 0.4526 0.4674 0.5425
HGDA-NEs* 0.6000 0.6190 0.8023 0.6273 0.5842 0.5464 0.4374 0.4678 0.5856

Table 3: Average F1-performance of the sequence encoder adaptation for bioNER tasks with the best performance
boldfaced. All results are averaged from 20 distinct samples, e.g., given T ′

size is 5, we adapt our HGDA variants
and their baselines using T ′

and validate their bioNER performance using the test data to record the f1-score. We
then repeat this process with 20 different T ′

of size 5, average the final results, and report the results using this table.
HGDA and HGDA-NEs use BiLSTM as the sentence encoder, while HGDA* and HGDA-NEs* use BERT as the
sentence encoder. Unless otherwise specified, the HGDA-variants outperform their baselines with a p-value < 0.05.

We implement two variants of HGDA and compare
them with the SOTA MetaNER (Li et al., 2020b).

• MetaNER will act as our major baseline. It
is the latest and most related work to HGDA,
showing SOTA performance. We followed
the parameter settings that the authors de-
tailed in their paper and tried to replicate the
MetaNER model based on our understand-
ings. We validated our implementation by
comparing its performance to the baseline
multi-tasking method used in MetaNER.

• BioBERT is used to demonstrate the difficulty
that deep PLMs face in low-resource scenar-
ios.

• HGDA is one of our set-ups that re-calibrates
the gradient updates of {θ, ϕ, ω} using equa-
tion (2).

• HGDA-NEs follows the strategy in the task
generation discussion, i.e., HGDA-NEs only
trains with sentences that contains at least one
bioNE.

As our HGDA and HGDA-NEs can either use BiL-
STM or BERT as the sequence encoder, we will

clearly highlight this information in the presenta-
tion of results to avoid any confusions. Addition-
ally, corpora from the target domain are unseen by
the model during the training phase. For instance,
if the “Disease” domain is treated as Dtarget for
adaptation, we only perform learning for Θ∗ using
the remaining Dsource = { “Drug”, “Gene”, and
“Species”}. More detailed parameter settings to
reproduce this work can be found in the appendix.

4.3 Results & Discussions

Table 3 presents the NER performance of
MetaNER, BioBERT, HGDA and their variants
under the previously defined adaptation settings.
We have the following observations:

• MetaNER v.s. HGDA: By simply incorporat-
ing the hardness information in the gradient
update, HGDA achieves a significant perfor-
mance improvement over MetaNER with an
average of 4 − 5% improvement in terms of
F1 score. In multiple cases (e.g., JNLPBA 5
shots, BC2GM 10 shots, etc), the performance
gain of HGDA goes up to 15% in terms of
F1-score. This result demonstrates that using
the hardness to differentiate the importance of
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each task in the gradient update will contribute
to the NER performance.

• HGDA v.s. HGDA-NEs: Both HGDA and
HGDA-NEs work well in our experiments,
outperforming the strong baseline by a large
margin. HGDA re-weights the gradient up-
date based on the task difficulty and HGDA-
NEs trains the learner exclusively only on sen-
tences containing NEs. It is not surprising to
see both approaches perform similarly when
T ′

increases, as HGDA automatically tries to
down-weight tasks with sentences containing
few/no NEs dynamically.

• It is interesting that both HGDA and HGDA-
NEs might perform worse than MetaNER on
the LINNAEUS corpus. Table 2 shows that
87% of LINNAEUS sentences contains no
bioNEs. Since both HGDA and HGDA-NEs
toss out those sentences implicitly and explic-
itly during training, this could have attributed
to the performance loss.

• The BioBERT performance shows the weak-
ness of adapting deep PLMs in the low-
resource scenarios for bioNER tasks. Under
our HGDA settings, both HGDA* and HGDA-
NEs*, which use BERT as the sentence en-
coder, perform significantly better than the
BioBERT baseline. This might suggest that
our techniques are architecture invariant. Ad-
ditionally, the significant performance gaps
when T ′

= {5,10} further elevate the neces-
sity of HGDA for deep sentence encoder.

Additionally, we also provide the precision and re-
call results for all of our experiments, these results
can be found in the appendix, Table 4 and Table 5.

5 Conclusion

We have proposed simple yet effective methods
that effectively leverage the domain hardness infor-
mation to improve the effectiveness of the learnt
model under the low-resource NER settings. Ex-
periments on biomedical corpora have shown that
the sequence labelling function derived from our
HGDAs have achieved substantial performance im-
provements compared to current SOTA baselines.

Limitations

HGDA and its variants are trained using English
bioNER corpora which have limited morphology.

We have not applied HGDA to other languages to
further verify the performance so this can be a po-
tential area for future works. To make sure that the
batch of tasks are constructed properly, we have to
make modifications to the dataloaders. This pre-
vents the GPUs to be fully utilised during training
and leads to long training time, e.g., taking up to
48 hours to train with 1 NVIDIA RTX3090. We
use multiple RTX3090s to train our models; thus,
for GPUs with lower memory, the batch size must
be changed which might affect the results. Since
we try to validate the performance of each configu-
ration for 20 times as discussed in the experimental
results section, it takes a considerable amount of
time to finish the validation of the adaptation per-
formance. Finally, due to the limitation of available
pages, we cannot show detailed information of p-
values that suggests the significance of our work.

Ethics Statement

Our works comply with ACL Ethics Policy. In this
work, we include solely publicly available biomed-
ical corpora that are widely used as benchmarks
to measure the bioNER performance and provide
proper citations to the authors of these corpora.
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Algorithm 1 HGDA

Require: p(T ) from source domains
Require: α, β, λ hyper-parameters
Require: m tasks batch size

1: Initialize θ, ϕ, ω
2: while not converge do
3: for i = 1, . . . ,m do
4: Ti ∼ p(T )
5: T S

i , T Q
i = Ti s.t. T S

i ∩ T Q
i = ∅

6: Llab
i ,Lcls

i = algorithm 2
7: Li = Llab

i + λLcls
i

8: end for
9: Γ1, . . . ,Γm = equation 2

10: θ ← θ − α
∑

i γ
θ
i∇θLi

11: ϕ← ϕ− α
∑

i γ
ϕ
i ∇ϕLlab

i

12: ω ← ω − α
∑

i γ
ω
i ∇ωLcls

i

13: end while
14: return Θ = (θ, ϕ)

A Appendix
Detailed experimental setups HGDA and HGDA-
NEs can use either BiLSTM or BERT as the sen-
tence encoder. When BiLSTM is used as the sen-
tence encoder, we use CRF as the tag decoder and a
fully connected layer as the domain classifier. The
size of the token embeddings from BioWordVec
is 200. Aside from using this token embeddings
to feed to the sentence encoder, we also have one
LSTM and one CNN network to learn the character
embeddings with the output of 50. Combining the
token embeddings and the character embeddings
gives the input of 300 to the BiLSTM sentence en-
coder. The output of this BiLSTM is 256 (128*2),
this output is then fed to two separate heads in
the network. One of them is the CRF tag-decoder
which generate the BIO tagging sequence with with
B-Begin, I-Inside, and O-Outside of NEs. The
other is a fully connected layer that predicts which
domain the sentences in Ti belong to. During train-
ing, we set the default learning rate of 1e-2 for both
α and β. As this is the preferred learning rate for
the BiLSTM with a batch size of 32, these learning
rates are subjected to changes depending on the
training batch-size, i.e., K and T ′

as previously
discussed. For each K, we calculate α and β using

α = β = Default Learning Rate ∗
√

K

32
(3)

When BERT (Devlin et al., 2019; Wolf et al., 2020)
acts as the sequence encoder, we set the max se-
quence length for padding and truncating to be

Algorithm 2 Bilevel optimization for Ti
Require: Ti =

(
T S
i , T Q

i

)
s.t. T S

i ∩ T Q
i = ∅

Require: θ, ϕ, ω current iteration parameters
Require: β, λ hyper-parameters

1: Initialize θi, ϕi, ωi with θ, ϕ, ω
2: for i = 1, . . . , adaptation steps do
3: Llab

i = L
(
h (θi, ϕi) , T S

i

)

4: Lcls
i = L

(
f (θi, ωi) , T S

i

)

5: Li = Llab
i + λLcls

i

6: θi ← θi − β∇θiLi
7: ϕi ← ϕi − β∇ϕi

Llab
i

8: ωi ← ωi − β∇ωiLcls
i

9: end for
10: Llab

i = L
(
h (θi, ϕi) , T Q

i

)

11: Lcls
i = L

(
f (θi, ωi) , T Q

i

)

12: return Llab
i ,Lcls

i

256 as biomedical texts tends to be longer than
the general texts. We use cased vocabulary for a
slightly better performance and set the dimension-
ality of the encoder layers and the pooler layer to
768. For the tokenization, BERT uses WordPiece
tokenization (Wu et al., 2016) to deal with the out-
of-vocabulary (OOV) issue which is common for
biomedical texts. The default learning rates α and
β for K of 32 are set to 1e-5 and are subjected to
changes as shown in Eq. 3. The output from the
BERT sequence encoder will then be fed into two
separate fully connected layers. One of them is
to predict the tagging sequence. The other is to
predict which domain for the sentences in Ti.

All models are trained using the SGD optimizer
(Kiefer and Wolfowitz, 1952) with a linear learning
rate scheduler (Wolf et al., 2020). We set the gra-
dient clip at 5; momentum at 0.9; weight decay at
1e-6; and dropout rate at 0.2 for all our training (Li
et al., 2020b). After cross-validating for different
values of λ , we use λ = 1 for all HGDA vari-
ants to control the trade-off between the sequence
labelling loss and the domain classifying loss. Ad-
ditionally, since HGDA involves the bilevel opti-
mization framework, we have to approximate for
the gradients acquired from T Q

i using first order
gradient approximations (Nichol et al., 2018) and
implicit gradients (Rajeswaran et al., 2019) to avoid
the computation for the Jacobian matrix. Please
contact the corresponding author for the codes to
re-implement this work.
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Precision Performance
T ′

Disease Drug Gene Species
Size NCBI BC5CDR BC5CDR BC4CHEMD JNLPBA BC2GM LINNAEUS S800

5

MetaNER 0.3645 0.4010 0.7740 0.4048 0.1717 0.2050 0.6278 0.2589
BioBERT 0.0324 0.0305 0.1099 0.0283 0.0573 0.0489 0.0055 0.0054
HGDA 0.3937 0.5039 0.7355 0.4085 0.3175 0.3431 0.4312 0.3538
HGDA-NEs 0.4540 0.5044 0.7023 0.3203 0.3507 0.3887 0.5784 0.4551
HGDA* 0.2219 0.1419 0.5400 0.1502 0.2928 0.2616 0.0860 0.1899
HGDA-NEs* 0.3059 0.2203 0.5858 0.1761 0.2546 0.2571 0.1954 0.2401

10

MetaNER 0.3176 0.3721 0.7079 0.3398 0.2864 0.3175 0.6281 0.3812
BioBERT 0.1038 0.0426 0.3964 0.0916 0.1608 0.2480 0.0444 0.0221
HGDA 0.4311 0.4656 0.7227 0.4457 0.4300 0.4468 0.4991 0.3714
HGDA-NEs 0.5715 0.5651 0.7079 0.4226 0.3762 0.3938 0.4354 0.3206
HGDA* 0.3318 0.3581 0.6324 0.2844 0.3370 0.3117 0.1264 0.2909
HGDA-NEs* 0.3847 0.3172 0.6815 0.3666 0.3113 0.2824 0.1452 0.2844

20

MetaNER 0.4699 0.4652 0.7523 0.4384 0.3516 0.3625 0.5462 0.2611
BioBERT 0.3907 0.3402 0.7389 0.2518 0.3048 0.4067 0.1954 0.2362
HGDA 0.5968 0.5926 0.7846 0.4771 0.4836 0.4910 0.5205 0.4443
HGDA-NEs 0.5698 0.5263 0.7650 0.4680 0.4745 0.4805 0.7638 0.5419
HGDA* 0.3634 0.3876 0.6338 0.3660 0.3918 0.3467 0.1243 0.2787
HGDA-NEs* 0.4354 0.4587 0.7027 0.4173 0.3722 0.3428 0.2455 0.3205

50

MetaNER 0.6154 0.6150 0.7500 0.4824 0.4938 0.5030 0.6400 0.3455
BioBERT 0.5661 0.5455 0.7679 0.4308 0.3963 0.5314 0.6914 0.4020
HGDA 0.6659 0.5916 0.8006 0.5734 0.5035 0.5141 0.7683 0.5911
HGDA-NEs 0.6320 0.5692 0.7722 0.5585 0.5587 0.5901 0.7331 0.5578
HGDA* 0.5060 0.5258 0.7083 0.3758 0.4202 0.3820 0.3580 0.3699
HGDA-NEs* 0.5536 0.5720 0.7566 0.5497 0.4971 0.4697 0.3243 0.3663

Table 4: Average precision-performance of the sequence encoder adaptation for bioNER tasks with the best
performance boldfaced. All results have the same settings with those from Table 3.

Recall Performance
T ′

Disease Drug Gene Species
Size NCBI BC5CDR BC5CDR BC4CHEMD JNLPBA BC2GM LINNAEUS S800

5

MetaNER 0.2493 0.1689 0.4818 0.1725 0.3099 0.3196 0.0700 0.1110
BioBERT 0.1029 0.1294 0.0828 0.0369 0.1402 0.0700 0.0932 0.0482
HGDA 0.2780 0.2084 0.5446 0.2027 0.4580 0.3454 0.1212 0.2498
HGDA-NEs 0.2247 0.1934 0.4852 0.2471 0.4280 0.3467 0.0947 0.1981
HGDA* 0.2617 0.0485 0.4759 0.1251 0.5114 0.4327 0.0719 0.4199
HGDA-NEs* 0.3342 0.1048 0.6442 0.3728 0.4824 0.4504 0.0498 0.3829

10

MetaNER 0.3555 0.3913 0.6381 0.3574 0.4149 0.3447 0.2052 0.2843
BioBERT 0.1275 0.0970 0.2724 0.0997 0.2612 0.1973 0.1266 0.0728
HGDA 0.3887 0.3904 0.6486 0.4135 0.5497 0.4615 0.2134 0.3802
HGDA-NEs 0.3627 0.3481 0.6261 0.3996 0.5313 0.4334 0.1821 0.3341
HGDA* 0.4631 0.4704 0.7061 0.4870 0.5799 0.5500 0.1883 0.5045
HGDA-NEs* 0.4503 0.3216 0.7438 0.4740 0.5507 0.5459 0.1255 0.4733

20

MetaNER 0.4559 0.4859 0.7116 0.4460 0.5133 0.4325 0.4574 0.3574
BioBERT 0.3126 0.2429 0.5582 0.2351 0.4923 0.4529 0.1290 0.2422
HGDA 0.5362 0.5235 0.7167 0.5194 0.6315 0.5391 0.2922 0.4449
HGDA-NEs 0.5418 0.5019 0.7009 0.4768 0.6135 0.5573 0.3598 0.5076
HGDA* 0.5406 0.6074 0.7846 0.5911 0.6426 0.5866 0.2584 0.5503
HGDA-NEs* 0.5395 0.5945 0.7717 0.6138 0.6390 0.6015 0.3563 0.5545

50

MetaNER 0.5382 0.6079 0.7475 0.5392 0.5825 0.5109 0.5918 0.3819
BioBERT 0.6406 0.6108 0.7384 0.5691 0.6283 0.6608 0.5122 0.5379
HGDA 0.5896 0.5982 0.7499 0.5732 0.6486 0.5792 0.5480 0.5830
HGDA-NEs 0.6115 0.6027 0.7541 0.6024 0.6845 0.6149 0.5670 0.5361
HGDA* 0.6333 0.6690 0.8172 0.5644 0.7025 0.6429 0.5883 0.6043
HGDA-NEs* 0.6475 0.6764 0.8554 0.7023 0.7095 0.6563 0.6823 0.6508

Table 5: Average recall-performance of the sequence encoder adaptation for bioNER tasks with the best performance
boldfaced. All results have the same settings with those from Table 3.
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