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Abstract

Can machines know what twin prime is? From
the composition of this phrase, machines may
guess twin prime is a certain kind of prime,
but it is still difficult to deduce exactly what
twin stands for without additional knowledge.
Here, twin prime is a jargon– a specialized term
used by experts in a particular field. Explaining
jargon is challenging since it usually requires
domain knowledge to understand. Recently,
there is an increasing interest in extracting and
generating definitions of words automatically.
However, existing approaches, either extrac-
tion or generation, perform poorly on jargon.
In this paper, we propose to combine extraction
and generation for jargon definition modeling:
first extract self- and correlative definitional in-
formation of target jargon from the Web and
then generate the final definitions by incorpo-
rating the extracted definitional information.
Our framework is remarkably simple but ef-
fective: experiments demonstrate our method
can generate high-quality definitions for jargon
and outperform state-of-the-art models signif-
icantly, e.g., BLEU score from 8.76 to 22.66
and human-annotated score from 2.34 to 4.04.1

1 Introduction

Jargons are specialized terms associated with a par-
ticular discipline or field. To understand jargons,
a straightforward approach is to read their defini-
tions, which are highly summarized sentences that
capture the main characteristics of them. For in-
stance, given jargon twin prime, people can know
its meaning by reading its definition: “A twin prime
is a prime number that is either 2 less or 2 more
than another prime number.”

Recently, acquiring definitions of words/phrases
automatically has aroused increasing interest.
There are two main approaches: extractive, corre-
sponding to definition extraction, where definitions

1Code and data are available at https://github.com/
jeffhj/CDM.

are extracted from existing corpora automatically
(Anke and Schockaert, 2018; Veyseh et al., 2020;
Kang et al., 2020); and abstractive, corresponding
to definition generation, where definitions are gen-
erated conditioned with the target words/phrases
and the contexts in which they are used (Noraset
et al., 2017; Gadetsky et al., 2018; Bevilacqua et al.,
2020; August et al., 2022; Gardner et al., 2022).

In this paper, we study jargon definition mod-
eling, which aims to acquire definitions for jargon
automatically. Jargon definition modeling is impor-
tant since definitions of jargon are less likely to be
organized in an existing dictionary/encyclopedia
and such terms are difficult for non-experts to
understand without explanations (Bullock et al.,
2019). This is particularly true for new jargon from
fast-advancing fields. For instance, neither Oxford
dictionary (Butterfield et al., 2016) nor Wikipedia2

includes few-shot learning– an important setup in
machine learning.

However, to acquire definitions for jargon, both
extractive and abstractive approaches may fail. Ex-
tracting high-quality definitions would be difficult
due to the incompleteness and low quality of data
sources (this issue is more serious for jargon since
jargon is usually less frequently used than general
words/phrases). E.g., a good definition may not
be available in the corpus; even if it existed, it
might be difficult to select from a large set of can-
didate sentences (Kang et al., 2020). Generating
definitions for jargon would be challenging since
jargons are usually technical terms that need do-
main knowledge to understand, while the contexts
in which they are used cannot provide sufficient
knowledge. For instance, it is almost impossible
for a model to generate the definition for twin prime
only with context “proof of this conjecture would
also imply the existence of an infinite number of
twin primes” since the context does not explain
twin prime, and the specific meaning is difficult

2https://en.wikipedia.org
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Jargon:
few-shot learning

Self-Definitional Information (SDI)
• Few-shot learning, or one-shot learning in this case,

is a hot topic for machine learning applications
where the model is supposed to predict something
based on a few training examples.

• Few-shot learning is a sub-area of machine
learning.

• …

Correlative Definitional Information (CDI)
• Zero-shot learning (ZSL) is a problem setup in

machine learning, where at test time, a learner
observes samples from classes that were not
observed during training, and needs to predict the
class they belong to.

• Meta learning is a subfield of machine learning
where automatic learning algorithms are applied
to metadata about machine learning experiments.

• …

SDI-Extractor

CDI-Extractor

Definition:
Few-shot learning (FSL) is a
problem setup in machine learning,
where predictions are made based
on a few training examples.

Generator

Figure 1: The overview of the proposed framework. In this example, the definition of few-shot learning is generated
based on both the SDI (e.g., “predictions are made based on a few training examples”) and the CDI (e.g., “is a
problem setup in machine learning”).

to infer from the surface form, leading to halluci-
nations, i.e., generating irrelevant or contradicted
facts (Bevilacqua et al., 2020). Consequently, ex-
isting models designed for general words/phrases
perform poorly on jargon. In our evaluation (Tables
5 and 6), we find most definitions produced by the
state-of-the-art model contain wrong information.

Fortunately, definition extraction and definition
generation can complement each other naturally.
On one hand, definition generator has the potential
to help the extractor by refining and synthesizing
the extracted definitions; therefore, the extracted
sentences are not required to be perfect definitions
of the target jargon. On the other hand, definition
extractor can retrieve useful definitional informa-
tion as knowledge for the generator to produce
definitions of jargon. However, surprisingly, exist-
ing works are either extractive or abstractive, even
do not connect and compare them.

Therefore, in this work, we propose to combine
definition extraction and definition generation for
jargon definition modeling. We achieve this by in-
troducing a framework consisting of two processes:
extraction, where definitional information of jargon
is extracted from the Web; and generation, where
the final definition is generated with the help of the
extracted definitional information.

We build models for extraction and generation
based on Pre-Trained Language Models (Devlin
et al., 2019; Lewis et al., 2020a; Brown et al.,
2020). Specifically, for extraction, we propose
a BERT-based definition extractor to extract self-
definitional information (i.e., definitional sentences
of the target jargon). We also suggest that related

terms can help define the target jargon and lever-
age Wikipedia as the external knowledge source
to retrieve correlative definitional information (i.e.,
definitions of related terms). For generation, we de-
sign a BART-based definition generator to produce
the final definition by incorporating the extracted
knowledge. An example is shown in Figure 1.

Our framework for jargon definition modeling
is remarkably simple that can easily be further
expanded by leveraging more advanced language
models, e.g., we can replace the BART generator
with larger models such as Meta OPT (Zhang et al.,
2022) with a simple modification. Besides, since
our framework does not require a domain-specific
corpus or ontology like the ones used in Vanetik
et al. (2020); Liu et al. (2021), it is easy to apply
to a variety of domains. Experimental results on
four datasets demonstrate our simple model out-
performs state-of-the-art models significantly (e.g.,
BLEU score from 8.76 to 22.66, human-annotated
score from 2.34 to 4.04).

Our contributions are summarized as follows:
• We report the first attempt to connect and com-

bine definition extraction and definition genera-
tion.

• We introduce jargon definition modeling and
solve it by incorporating both self- and correl-
ative definitional information of jargon.

• Experimental results show that our simple model
substantially outperforms SOTA models for defi-
nition modeling.

• We publish several datasets, along with defini-
tions (e.g., of ~75,600 computer science terms)
generated by our proposed model.
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2 Related Work

Definition Extraction. Definition extraction,
which aims to extract definitions from corpus auto-
matically, has been studied for a long period. Exist-
ing works for definition extraction can be roughly
divided into three categories: 1) rule-based, which
extracts definitions with defined linguistic rules
and templates (Klavans and Muresan, 2001; Cui
et al., 2004; Fahmi and Bouma, 2006); 2) machine
learning-based, which extracts definitions by sta-
tistical machine learning with carefully designed
features (Westerhout, 2009; Jin et al., 2013); 3)
deep learning-based, the state-of-the-art approach
for definition extraction, which is based on deep
learning models such as CNN, LSTM, and BERT
(Anke and Schockaert, 2018; Veyseh et al., 2020;
Kang et al., 2020; Vanetik et al., 2020).

Definition Generation. Definition generation, or
definition modeling, has aroused increasing inter-
est in recent years. The first study on definition
generation was presented in Noraset et al. (2017),
which aims to generate definitions of words with
word embeddings. Later works on definition gener-
ation put more emphasis on generating definitions
of words/phrases with given contexts (Gadetsky
et al., 2018; Ishiwatari et al., 2019; Washio et al.,
2019; Mickus et al., 2019; Li et al., 2020; Reid
et al., 2020; Bevilacqua et al., 2020; Huang et al.,
2021a). For example, Bevilacqua et al. (2020) ap-
ply pre-trained BART (Lewis et al., 2020a) for def-
inition generation with a simple context encoding
scheme. Huang et al. (2021a) employ three T5 mod-
els (Raffel et al., 2020) for definition generation
with a re-ranking mechanism to model specificity
of definitions. Liu et al. (2021) study the graph-
aware definition modeling problem by incorporat-
ing biomedical ontology. August et al. (2022) study
the problem of generating definitions of scientific
and medical terms with varying complexity. Huang
et al. (2022) propose to generate definitional-like
sentences to describe relations between entities.
There are also recent works on definition modeling
for other languages, e.g., Chinese, by incorporat-
ing the special properties of the specific language
(Yang et al., 2020; Zheng et al., 2021).

However, although definition extraction and def-
inition generation are quite relevant tasks, surpris-
ingly, existing works do not connect and compare
them. In this work, we report the first attempt to
combine them.

3 Methodology

Our framework for jargon definition modeling con-
sists of two processes: extraction, which extracts
self- and correlative definitional information of the
target jargon from the Web; and generation, which
generates the final definition by incorporating the
extracted definitional information. The overview
of the framework is shown in Figure 1.

3.1 Extraction

3.1.1 Self-Definitional Information
Since jargons are specialized terms used in a par-
ticular field, to understand jargon, we need back-
ground knowledge of jargon. To acquire useful
information for defining jargon, it is natural to refer
to definitional sentences containing the target jar-
gon, named Self-Definitional Information (SDI).
We achieve SDI by first extracting sentences con-
taining the target jargon from the Web (more details
are in Section 4.1) and then using a classifier to rank
the extracted sentences.

To build the classifier, we apply the BERT model
(Devlin et al., 2019), which has achieved excel-
lent results on various text classification tasks. We
adopt a simple encoding scheme, which is “[CLS]
jargon [DEF] sentence”, e.g., “[CLS] machine
learning [DEF] machine learning is the study of
computer algorithms that improve automatically
through experience and by the use of data.” The
final hidden state of the first token [CLS] is used
as the representation of the whole sequence and a
classification layer is added. After fine-tuning on
the jargon-sentence pairs, the model has a certain
ability to distinguish whether the sentence contains
representative definitional information of the target
jargon. SDI is then obtained as the top definitional
sentences by ranking the sentences according to
the confidence of the prediction. We refer to this
model as SDI-Extractor.

3.1.2 Correlative Definitional Information
To explain a jargon, in addition to utilizing SDI,
we can also refer to the definitions of its related
terms, i.e., Correlative Definitional Information
(CDI). For instance, to define few-shot learning, we
can incorporate definitions of zero-shot learning
and meta learning, with which we can know the
meaning of “shot” and “learning” and may define
few-shot learning similarly to zero-shot learning.

To get related terms and their definitions, we
leverage Wikipedia as the external knowledge

3996



source, which covers a wide range of domains and
contains high-quality definitions for a large number
of terms. Specifically, we follow the core-fringe
notion in Huang et al. (2021b), where core terms
are terms that have corresponding Wikipedia pages,
and fringe terms are ones that are not associated
with a Wikipedia page. For each jargon, we treat it
as query to retrieve the most relevant core terms via
document ranking based on Elasticsearch (Gorm-
ley and Tong, 2015), and extract first sentences on
the corresponding Wikipedia pages as the defini-
tions of related terms. We refer to this model as
CDI-Extractor.

3.2 Generation
After extraction, we acquire the self- and correla-
tive definitional information of jargon. This kind of
information captures important characteristics of
jargon and can be further refined and synthesized
into the final definition by a definition generator.

Definition generation can be formulated as a con-
ditioned sentence generation task– generating a
coherent sentence to define the target jargon. For-
mally, we apply the standard sequence-to-sequence
formulation: given jargon x, combining with the
extracted sentences Ss (for SDI) and Sc (for CDI),
the probability of the generated definition d is com-
puted auto-regressively:

P (d|x,Ss,Sc) =

m∏

i=1

P (di|d0:i−1, x,Ss,Sc),

where m is the length of d, di is the ith token of d,
and d0 is a special start token.

Following Bevilacqua et al. (2020), to build the
generator, we employ BART (Lewis et al., 2020a),
a pre-trained transformer-based encoder-decoder
model that can be fine-tuned to perform specific
conditional language generation tasks with specific
training input-output pairs. Different from exist-
ing works (Gadetsky et al., 2018; Ishiwatari et al.,
2019; Bevilacqua et al., 2020) which aim to learn
to define a word/phrase in a given context, we pro-
pose to learn to define a jargon using the extracted
knowledge. To be specific, we aim to fine-tune the
BART model to generate the definition of the target
jargon based on the surface name of the jargon and
the extracted definitional information.

To apply the BART model, for a target jargon,
we adopt the following encoding scheme: “jargon
[DEF] sent1 [SEP] sent2 ... [SEP] sentk [DEF]
sent′1 [SEP] sent′2 ... [SEP] sent′k′”, where senti

and sent′i are the ith sentences ranked by SDI-
Extractor and CDI-Extractor, respectively. We
fine-tune BART to produce the ground-truth defini-
tion conditioned with the encoded input.

After training, given a new jargon, we get cor-
responding SDI and CDI according to Section 3.1.
We encode the jargon and the top k ranked sen-
tences of SDI and top k′ ranked sentences of CDI
as described above and use the generator to produce
the final definition. We refer to this model as CDM-
Sk,Ck′, i.e., Combined Definition Modeling.

Here we would like to mention that our com-
bined definition modeling framework is modular
and can be applied to different extractor-generator
combinations commonly proposed for definition
extraction/generation, which means that the pro-
posed framework can improve the performance for
a variety of definition modeling systems. For in-
stance, we can replace the BART generator with
GPT-2/3 generator (Radford et al., 2019; Brown
et al., 2020) or DMAS (Huang et al., 2021a) by
simply modifying the encoding scheme.

4 Experiments

4.1 Datasets

Existing datasets for definition modeling are mainly
for general words/phrases. In this paper, we build
several datasets (UJ-CS, UJ-Math, UJ-Phy) for
jargon based on Wikipedia and CFL (Huang et al.,
2021b). Compared to general words/phrases, jar-
gons are less ambiguous but more specialized, i.e.,
a jargon usually only has one meaning, but it re-
quires domain knowledge to understand. We also
conduct experiments on the dataset (Sci&Med)
provided in August et al. (2022), which contains
definitions of scientific and medical terms derived
from Wikipedia science glossaries and MedQuAD
(Ben Abacha and Demner-Fushman, 2019).

Definition Extraction. We build a dataset for
jargon definition extraction with Wikipedia. We
first collect jargons with Wikipedia Category.
Specifically, we traverse from three root cate-
gories, including Category:Subfields of computer
science3, Category:Fields of mathematics4, and
Category:Subfields of physics 5, and collect pages

3https://en.wikipedia.org/wiki/Category:
Subfields_of_computer_science

4https://en.wikipedia.org/wiki/Category:
Fields_of_mathematics

5https://en.wikipedia.org/wiki/Category:
Subfields_of_physics
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Data Source of Jargon Train Valid Test

UJ-CS Springer 11,738 1,671 3,349
UJ-Math CFL 4,247 583 1,019
UJ-Phy CFL 4,157 573 1,026

Table 1: The statistics of the data.

at the first three levels of the hierarchies. For each
page, we process the title with lemmatization as
the jargon, extract the first sentence in the summary
section as the corresponding definition, and sam-
ple ≤ 5 sentences containing the target jargon from
other sections as negatives (they are less likely to be
definitional sentences). We filter out jargons with
surface name frequency < 5 in the arXiv corpus6

(to filter out some noisy phrases, e.g., List of arti-
ficial intelligence projects). The dataset contains
26,559 positive and 121,975 negative examples,
and the train/valid/test split is 0.8/0.1/0.1.

Definition Generation. Following (Huang et al.,
2021b), we focus on generating definitions for jar-
gon in three fields: computer science (UJ-CS),
mathematics (UJ-Math), and physics (UJ-Phy).
We collect jargons in two ways. For computer
science, we collect jargons (author-assigned key-
words) by web scraping from Springer publications
on computer science. We filter out jargons with
frequency < 5. For mathematics and physics, we
collect jargons with the CFL model proposed in
Huang et al. (2021b). Specifically, we collect terms
with domain relevance score > 0.5 as jargons. For
each jargon in the list, URLs of the top 20 results
from Google search are visited. Then the sentences
containing the target jargon are extracted. For train-
ing and evaluation, we only keep jargons that have
a corresponding Wikipedia page and extract the
first sentence on each page as the ground-truth def-
inition. Table 1 summarizes the statistics of the
data.

4.2 Experimental Setup
Baselines. For extraction, we compare SDI-
Extractor with a CNN baseline and a CNN-
BiLSTM baseline proposed in Anke and Schock-
aert (2018). Here we should mention that the more
recent models (Veyseh et al., 2020; Kang et al.,
2020) cannot be compared directly since these
works focus on a fine-grained sequence labeling
task, where the training data also requires addi-
tional labeling. Besides, extraction is not the focus

6https://www.kaggle.com/Cornell-University/
arxiv

Precision Recall F1
CNN 91.84 90.66 91.25
C-BLSTM 91.59 88.93 90.24
SDI-Extractor 96.72 97.67 97.19

Table 2: Results of definition extraction.

of this paper; therefore, we put more emphasis on
the evaluation for generation. For generation, we
evaluate on the following models:
• Gen (w/o context): A simple version of Gener-

ationary (Bevilacqua et al., 2020), where BART
(Lewis et al., 2020a) is fine-tuned on jargon-
definition pairs.

• Gen (w/ context): Generationary with a sentence
containing the target jargon as context, where
BART is fine-tuned on context-definition pairs.

• DMAS (Huang et al., 2021a): A definition mod-
eling model with three T5 (Raffel et al., 2020),
where a re-ranking mechanism is included to
model the specificity of definitions. Context is
given by a sentence containing the target jargon.

• BART NO SD and BART SD: For the Sci&Med
dataset (August et al., 2022), we also compare
with the two best methods introduced in their
paper: BART SD, where BART is fine-tuned
with the term question, e.g., What is (are) carbon
nanotubes?, concatenated with the supporting
document; and BART NO SD, where BART is
fine-tuned with just the question and definition,
without the support documents.

• Extractive: An extractive baseline, which out-
puts the candidate definition with the highest con-
fidence score predicted by SDI-Extractor (Sec-
tion 3.1.1).

• CDM-Sk,Ck′: The combined definition model-
ing model introduced in Section 3.2. Sk or Ck′

is omitted when k or k′ is equal to 0.

Metrics. For extraction, we use the standard pre-
cision, recall, and F1 scores to evaluate the perfor-
mance. For generation, we follow Bevilacqua et al.
(2020) and apply several automatic metrics, includ-
ing BLEU (BL)7 (Papineni et al., 2002), ROUGE-
L (R-L) (Lin, 2004), METEOR (MT) (Banerjee
and Lavie, 2005), and BERTScore (BS) (Zhang
et al., 2019). BLEU, ROUGE-L, and METEOR
focus on measuring surface similarities between
the generated definitions and the ground-truth def-
initions, and BERTScore is based on the similar-
ities of contextual token embeddings. The signa-

7The version implemented on https://github.com/
mjpost/sacrebleu.
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UJ-CS UJ-Math UJ-Phy
BL R-L MT BS BL R-L MT BS BL R-L MT BS

Extractive 15.62 29.41 16.41 79.02 13.04 25.95 13.88 75.97 9.75 20.30 12.48 75.27
Gen (w/o context) 8.31 28.02 12.83 77.97 6.89 28.50 10.97 76.45 5.28 25.75 10.57 76.88
Gen (w/ context) 8.76 30.00 13.15 78.73 10.00 31.18 12.67 77.24 8.71 29.68 12.94 78.37
DMAS 4.98 26.05 10.60 78.09 1.58 24.10 7.97 75.75 2.70 24.59 9.59 77.43
CDM-C5 12.26 29.90 14.55 79.09 12.54 32.17 14.10 78.22 9.36 28.87 13.26 78.62
CDM-S1 17.12 34.67 17.46 80.75 16.33 36.07 16.22 78.94 12.42 31.48 14.70 78.96
CDM-S3 19.08 35.48 18.44 81.16 19.35 38.56 17.88 79.90 16.54 34.54 17.00 80.03
CDM-S5 20.21 35.98 19.06 81.33 20.76 39.87 18.63 80.31 18.58 35.15 18.00 80.38
CDM-S10 19.27 36.34 18.79 81.51 21.71 40.43 19.28 80.68 20.66 36.92 19.18 81.03
CDM-S5,C5 22.66 38.12 20.30 82.00 23.22 39.39 19.61 80.30 20.84 37.66 19.26 81.18

Table 3: Results of definition generation on automatic metrics. The best results are bold and second best ones are
underlined.

BL R-L MT BS

Extractive 8.75 17.79 12.32 74.68
Gen (w/o context) 13.13 31.75 13.30 79.31
Gen (w/ context) 12.50 31.50 13.86 79.54
DMAS 9.12 28.43 11.04 79.21
BART NO SD 10.68 30.89 13.18 79.19
BART SD 11.11 32.34 13.97 80.12
CDM-C5 13.50 32.19 15.00 80.24
CDM-S1 11.91 33.14 15.31 80.24
CDM-S3 17.97 35.60 17.23 81.30
CDM-S5 20.18 37.25 18.52 81.75
CDM-S10 20.35 37.98 19.22 82.19
CDM-S5,C5 20.55 37.70 19.24 81.98

Table 4: Results of definition generation on Sci&Med
(August et al., 2022).

ture of BERTScore is: roberta-large-mnli L19 no-
idf version=0.3.0(hug trans=2.8.0). We also ask
three human annotators (graduate students doing
research on computational linguistics) to evaluate
the output definitions with a 1-5 rating scale used
in Ishiwatari et al. (2019): 1) completely wrong or
self-definition; 2) correct topic with wrong infor-
mation; 3) correct but incomplete; 4) small details
missing; 5) correct.

Implementation Details. For SDI extraction, we
adopt BERT-base-uncased from huggingface trans-
formers framework (Wolf et al., 2020). We apply
the BertForSequenceClassification in huggingface
(with a linear layer on top of the pooled output). We
use the default hyperparameters and fine-tune the
model using Adam (Kingma and Ba, 2015) with
learning rate of 2 × 10−6. All the layers of the
BERT model are fine-tuned. For the two baselines,
we train the models on our data with the official
implementation. For the extracted SDI, we exclude
sentences from Wikipedia to avoid the models to
see the ground truth.

For CDI extraction, following Huang et al.

(2021a), we use the built-in Elasticsearch-based
Wikipedia search engine8 to collect related core
terms for jargon; and then, we extract the first sen-
tence on the corresponding Wikipedia page as the
definition of each related term.

For generation, we employ the fairseq library9 to
build the BART-base generator and adopt the hyper-
parameters and settings as suggested in Bevilacqua
et al. (2020). We set the learning rate as 5× 10−5

and use batch size of 1, 024 tokens, updating every
16 iterations, with the number of warmup steps as
1, 000. For all the datasets, we use the same trained
SDI-extractor as described above to extract SDI.
We adopt the default/suggested hyperparameters
for the baselines. We train and evaluate all the base-
lines and variants on the same train/valid/test split
on NVIDIA Quadro RTX 5000 GPUs. The training
of CDM can be finished in one hour.

4.3 Definition Extraction
Table 2 reports the results of definition extraction.
We observe that SDI-Extractor outperforms base-
lines significantly and the performance is quite sat-
isfactory (with an F1 score higher than 0.97), which
indicates our definition extractor can extract useful
self-definitional information for jargon.

4.4 Definition Generation
We provide both quantitative and qualitative evalu-
ations for definition generation.

4.4.1 Automatic Evaluation
Tables 3 and 4 show the results on automatic met-
rics10. We observe the proposed CDM model out-

8https://en.wikipedia.org/w/index.php?search
9https://github.com/pytorch/fairseq/tree/

master/examples/bart
10For Table 4, August et al. (2022) use BERT-base for

BERTScore, while we use RoBERTa-large for BERTScore to
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Score (1-5)

Extractive 3.57
Gen (w/ context) 2.34
CDM-S1 3.65
CDM-S5 3.99
CDM-S5,C5 4.04

Table 5: Averaged human annotated scores.

performs the SOTA baselines significantly. Com-
paring Gen (w/ context) with Gen (w/o context),
we find contexts (random sentences containing
the target jargon) only have limited help with jar-
gon definition modeling. Besides, CDM-S5 out-
performs CDM-S3, while CDM-S3 outperforms
CDM-S1, which means the sentences extracted by
SDI-Extractor can provide important definitional
information. Comparing CDM-C5 with Gen (w/
context) and Gen (w/o context), we can verify CDI
is also helpful for definition generation, while the
improvement is not as significant as the models
with SDI, e.g., CDM-S5. Among all the models,
CDM-S5,C5 usually achieves the best performance,
which demonstrates the combination of SDI and
CDI is the most significant for jargon definition
modeling.

An interesting finding is that our simple extrac-
tive model is comparable to the SOTA abstrac-
tive baselines (except for Table 4, because most
of the definitions in the dataset are not complete
sentences, e.g, “the science of automatic control
systems” for cybernetics, while SDI-Extractor usu-
ally extracts complete sentences). We suppose this
is because, compared to general words/phrases, jar-
gons are more difficult to define without external
knowledge. For instance, it is almost impossible
for a model to generate the definition for twin prime
only with context “proof of this conjecture would
also imply the existence of an infinite number of
twin primes”, while the definition can possibly be
retrieved from the Web. The results also demon-
strate that existing context-aware definition mod-
eling systems are hard to handle jargon, while our
proposed extraction-generation framework is quite
practical for jargon definition modeling.

4.4.2 Human Evaluation
We conduct human evaluation for the computer
science field (UJ-CS). Specifically, we randomly
sample 50 jargons from the test set, and ask three
human annotators to evaluate the definitions pro-

be consistent with Table 3.
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Figure 2: Results of definition generation with respect
to jargon frequency in Springer (author-assigned key-
words). Best viewed in color.

duced by different models with the rating scale
described in Section 4.2. Table 5 reports the human
evaluation results, where the average pairwise Co-
hen’s κ is 0.69 (good agreement). We observe the
state-of-the-art baseline Gen (w/context) is difficult
to generate reasonable definitions for jargon. In
contrast, the proposed CDM-S5,C5 model can pro-
duce high-quality definitions in most cases (with
a human-annotated score higher than 4). The hu-
man evaluation results are also consistent with the
automatic evaluation results presented in Table 3.

4.5 Sensitivity to Frequency
To investigate the sensitivity of the models with
respect to the popularity of jargon, we report the
results according to jargon frequency in Figure 2.
We observe that Generationary (Bevilacqua et al.,
2020) achieves slightly worse performance for less
popular jargon on all metrics, while CDM performs
well for low-frequency jargon, which indicates our
framework can produce high-quality definitions for
long-tail jargon. We suppose this is because, al-
though long-tail jargon is less frequent, we can
still extract useful definitional information from
the entire Web and incorporate it for definition gen-
eration.

4.6 Generation Examples and Error Analysis
In Table 6, we show some sample outputs in the test
set of three models: Extractive, Gen (w/ context),
and CDM-S5,C5, with ground-truth definitions in
Wikipedia (Gold) as references.

From the results, we observe although the extrac-
tive baseline can produce reasonable sentences, the
output sentences may not be high-quality defini-
tional sentences of the target jargon. For instance,
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Extractive Gen (w/ context) CDM-S5,C5 Gold

intelligent user
interfaces

ACM IUI 2021 is the 26th annual
premier international forum for
reporting outstanding research
and development on intelligent
user interfaces.

An intelligent user inter-
face (IUI) is a user inter-
face (UI) that is designed
to respond to the needs
and wants of the user.

In computing, an intelligent user interface
(UI) is a user interface that has been devel-
oped by a group of researchers interested
in enabling natural human-computer in-
teraction by combining techniques from
computer vision, machine learning, com-
puter graphics, human-computer interac-
tion and psychology.

An intelligent user interface (Intelligent
UI, IUI, or sometimes Interface Agent) is
a user interface (UI) that involves some
aspect of artificial intelligence (AI or
computational intelligence).

wear leveling The term preemptive wear lev-
eling (PWL) has been used by
Western Digital to describe their
preservation technique used on
hard disk drives (HDDs) de-
signed for storing audio and
video data.

Wear leveling is the pro-
cess of reducing the wear
of a Flash die.

Wear leveling is a technique used to in-
crease the lifetime of a solid-state drive
(SSD).

Wear leveling (also written as wear level-
ling) is a technique for prolonging the ser-
vice life of some kinds of erasable com-
puter storage media, such as flash mem-
ory, which is used in solid-state drives
(SSDs) and USB flash drives, and phase-
change memory.

gittins index In applied mathematics, the "Git-
tins index" is a real scalar value
associated to the state of a
stochastic process with a reward
function and with a probability
of termination.

The Gittins index is a
decision-making tool used
in decision-making and
project management.

In applied mathematics, the Gittins in-
dex is a real scalar value associated to
the state of a stochastic process with a
reward function and with a probability of
termination.

The Gittins index is a measure of the re-
ward that can be achieved through a given
stochastic process with certain properties,
namely: the process has an ultimate ter-
mination state and evolves with an option,
at each intermediate state, of terminating.

reduplication The term ?C?compensatory redu-
plication?C? refers to duplica-
tion that serves a phonological
purpose.

In mathematics, reduplica-
tion is a generalization of
the concept of reduplica-
tion.

Reduplication is the repetition of an entire
word, word stem (root with one or more
affixes), or root.

In linguistics, reduplication is a morpho-
logical process in which the root or stem
of a word (or part of it) or even the whole
word is repeated exactly or with a slight
change.

power delay pro-
file

The power delay profile of a
channel represents the average
power of the received signal in
terms of the delay with respect to
the first arrival path in multi-path
transmission.

A power delay profile
(PDP) is a measure of the
time delay between the
transmission and reception
of a signal.

In telecommunications, the power delay
profile (PDP) of a multipath channel rep-
resents the average power of the received
signal in terms of the delay with respect
to the first arrival path in multi-path trans-
mission.

The power delay profile (PDP) gives the
intensity of a signal received through a
multipath channel as a function of time
delay.

Table 6: Sample of definitions produced by Extractive, Gen (w/ context), and CDM-S5,C5.

the extracted sentence for wear leveling in fact is
the definition of preemptive wear leveling. We also
find Gen (w/ context) suffers severely from halluci-
nations, i.e., generating irrelevant or contradicted
facts. For instance, gittins index is described as a
decision-making tool instead of a measure/value,
which is completely wrong. This is mainly because
the contexts of jargon may not provide sufficient
knowledge to define jargon. In contrast, the quality
of definitions generated by CDM-S5,C5 is high–
all the generated definitions capture the main char-
acteristics of the target jargon correctly.

Error Analysis. To further understand the results
and identify the remaining challenges, we analyze
the human evaluation results. We find that errors
could be introduced in either the extraction or the
generation process. E.g., 1) for intelligent user in-
terfaces in Table 6, the top 1 sentence extracted
by SDI-Extractor (“ACM IUI ... interfaces.”) can-
not provide meaningful knowledge to the generator.
Although by incorporating other sentences, CDM-
S5,C5 can generate a reasonable definition, the def-
inition still contains minor errors. 2) For markup
languages, although SDI-Extractor extracts reason-
able definitions (e.g., “Markup languages are lan-
guages used by a computer to annotate a docu-
ment.”), the generator mistakenly synthesizes the
SDI and CDI into “A markup language is a se-

ries of tags mixed with plain text.” Nonetheless,
compared to existing models that do not combine
extraction and generation, CDM greatly reduces
hallucination.

5 Discussion

In this work, we focus on jargon definition mod-
eling. The proposed framework can be further ex-
tended to general words/phrases in a context-aware
setting (Gadetsky et al., 2018). For instance, to re-
trieve the definitional information, we can incorpo-
rate the context the target word/phrase used in. E.g.,
the BERT extractor can be trained with a modified
encoding scheme: “[CLS] word/phrase [SEP]
context [DEF] sentence”. Similarly, the genera-
tor can produce the final definition conditioned on
the context. E.g., the input of the generator can be
encoded as “word/phrase [SEP] context [DEF]
sent1 [SEP] sent2 ... [SEP] sentk [DEF] sent′1
[SEP] sent′2 ... [SEP] sent′k′”. Since our frame-
work is modular, the BERT extractor and BART
generator can also be replaced with more advanced
language models. It is also interesting to train the
extractor and generator jointly or iteratively (Guu
et al., 2020; Lewis et al., 2020b). We keep the
proposed model simple and leave context-aware
combined definition modeling and more compli-
cated combinations as future work.
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6 Conclusion
We present the first combination of definition ex-
traction and definition generation. We show that,
by incorporating extracted self- and correlative def-
initional information, the generator can produce
high-quality definitions for jargon. Experimental
results demonstrate the effectiveness of our frame-
work, where the proposed method outperforms re-
cent baselines by a large margin. We also publish
several datasets for jargon definition modeling. In
future work, we plan to improve our framework as
discussed in Section 5 and apply our methods to
construct several online domain dictionaries.

Limitations

One limitation of this paper is that it does not con-
sider the diversity of definitions. Definitions from
different perspectives can facilitate a more com-
prehensive understanding. For instance, to define
artificial intelligence, we may relate it to or contrast
it with other concepts, e.g., “artificial intelligence
refers to systems or machines that mimic human
intelligence to perform tasks and can iteratively
improve themselves based on the information they
collect.” or “artificial intelligence is intelligence
demonstrated by machines, as opposed to the natu-
ral intelligence displayed by animals including hu-
mans.” Recent work starts to model the specificity
and complexity for definition modeling (Huang
et al., 2021a; Gardner et al., 2022); however, the di-
versity of generative definitions is still limited. We
believe our framework can benefit diversity since
the generator has the potential to generate defini-
tions with different styles by incorporating diverse
definitional information extracted from the Web.

Acknowledgements

We thank the reviewers for their constructive feed-
back. This material is based upon work supported
by the National Science Foundation IIS 16-19302
and IIS 16-33755, Zhejiang University ZJU Re-
search 083650, IBM-Illinois Center for Cognitive
Computing Systems Research (C3SR)– a research
collaboration as part of the IBM Cognitive Horizon
Network, grants from eBay and Microsoft Azure,
UIUC OVCR CCIL Planning Grant 434S34, UIUC
CSBS Small Grant 434C8U, and UIUC New Fron-
tiers Initiative. Any opinions, findings, and conclu-
sions or recommendations expressed in this publi-
cation are those of the author(s) and do not neces-
sarily reflect the views of the funding agencies.

References
Luis Espinosa Anke and Steven Schockaert. 2018. Syn-

tactically aware neural architectures for definition
extraction. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 378–385.

Tal August, Katharina Reinecke, and Noah A Smith.
2022. Generating scientific definitions with control-
lable complexity. In ACL.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Asma Ben Abacha and Dina Demner-Fushman. 2019. A
question-entailment approach to question answering.
BMC bioinformatics, 20(1):1–23.

Michele Bevilacqua, Marco Maru, and Roberto Navigli.
2020. Generationary or:“how we went beyond word
sense inventories and learned to gloss”. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7207–7221.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Olivia M Bullock, Daniel Colón Amill, Hillary C Shul-
man, and Graham N Dixon. 2019. Jargon as a barrier
to effective science communication: Evidence from
metacognition. Public Understanding of Science,
28(7):845–853.

Andrew Butterfield, Gerard Ekembe Ngondi, and Anne
Kerr. 2016. A dictionary of computer science. Ox-
ford University Press.

Hang Cui, Min-Yen Kan, and Tat-Seng Chua. 2004.
Unsupervised learning of soft patterns for generating
definitions from online news. In Proceedings of the
13th international conference on World Wide Web,
pages 90–99.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the

4002



North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Ismail Fahmi and Gosse Bouma. 2006. Learning to
identify definitions using syntactic features. In Pro-
ceedings of the Workshop on Learning Structured
Information in Natural Language Applications.

Artyom Gadetsky, Ilya Yakubovskiy, and Dmitry Vetrov.
2018. Conditional generators of words definitions.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 266–271.

Noah Gardner, Hafiz Khan, and Chih-Cheng Hung.
2022. Definition modeling: literature review and
dataset analysis. Applied Computing and Intelli-
gence, 2(1):83–98.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: the definitive guide: a distributed real-time
search and analytics engine. " O’Reilly Media, Inc.".

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Han Huang, Tomoyuki Kajiwara, and Yuki Arase.
2021a. Definition modelling for appropriate speci-
ficity. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 2499–2509.

Jie Huang, Kevin Chen-Chuan Chang, Jinjun Xiong,
and Wen-mei Hwu. 2021b. Measuring fine-grained
domain relevance of terms: A hierarchical core-
fringe approach. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing.

Jie Huang, Kevin Chen-Chuan Chang, Jinjun Xiong,
and Wen-mei Hwu. 2022. Open relation modeling:
Learning to define relations between entities. In Find-
ings of the Association for Computational Linguistics:
ACL 2022.

Shonosuke Ishiwatari, Hiroaki Hayashi, Naoki Yoshi-
naga, Graham Neubig, Shoetsu Sato, Masashi Toy-
oda, and Masaru Kitsuregawa. 2019. Learning to
describe unknown phrases with local and global con-
texts. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3467–3476.

Yiping Jin, Min-Yen Kan, Jun Ping Ng, and Xiangnan
He. 2013. Mining scientific terms and their defini-
tions: A study of the acl anthology. In Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 780–790.

Dongyeop Kang, Andrew Head, Risham Sidhu, Kyle Lo,
Daniel S Weld, and Marti A Hearst. 2020. Document-
level definition detection in scholarly documents: Ex-
isting models, error analyses, and future directions.
In Proceedings of the First Workshop on Scholarly
Document Processing, pages 196–206.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. Proceedings of
the 3rd International Conference on Learning Repre-
sentations.

Judith L Klavans and Smaranda Muresan. 2001. Evalu-
ation of the definder system for fully automatic glos-
sary construction. In Proceedings of the AMIA Sym-
posium, page 324. American Medical Informatics
Association.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020b. Retrieval-augmented generation
for knowledge-intensive nlp tasks. arXiv preprint
arXiv:2005.11401.

Jiahuan Li, Yu Bao, Shujian Huang, Xinyu Dai, and
CHEN Jiajun. 2020. Explicit semantic decomposi-
tion for definition generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 708–717.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Zequn Liu, Shukai Wang, Yiyang Gu, Ruiyi Zhang,
Ming Zhang, and Sheng Wang. 2021. Graphine: A
dataset for graph-aware terminology definition gen-
eration. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3453–3463.

Timothee Mickus, D Paperno, and Mathieu Constant.
2019. Mark my word: A sequence-to-sequence ap-
proach to definition modeling. In Proceedings of The
First NLPL Workshop on Deep Learning for Natural
Language Processing, page 1. Linköping University
Electronic Press.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learning
to define word embeddings in natural language. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

4003



Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Machel Reid, Edison Marrese-Taylor, and Yutaka
Matsuo. 2020. Vcdm: Leveraging variational bi-
encoding and deep contextualized word representa-
tions for improved definition modeling. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6331–6344.

Natalia Vanetik, Marina Litvak, Sergey Shevchuk, and
Lior Reznik. 2020. Automated discovery of math-
ematical definitions in text. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 2086–2094.

Amir Veyseh, Franck Dernoncourt, Dejing Dou, and
Thien Nguyen. 2020. A joint model for definition
extraction with syntactic connection and semantic
consistency. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9098–
9105.

Koki Washio, Satoshi Sekine, and Tsuneaki Kato. 2019.
Bridging the defined and the defining: Exploiting
implicit lexical semantic relations in definition mod-
eling. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3521–3527.

Eline Westerhout. 2009. Definition extraction using
linguistic and structural features. In Proceedings
of the 1st Workshop on Definition Extraction, pages
61–67.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Liner Yang, Cunliang Kong, Yun Chen, Yang Liu, Qinan
Fan, and Erhong Yang. 2020. Incorporating sememes

into chinese definition modeling. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
28:1669–1677.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Hua Zheng, Damai Dai, Lei Li, Tianyu Liu, Zhifang Sui,
Baobao Chang, and Yang Liu. 2021. Decompose,
fuse and generate: A formation-informed method
for chinese definition generation. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5524–5531.

4004


