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Abstract

We present an empirical study on methods for
span finding, the selection of consecutive to-
kens in text for some downstream tasks. We
focus on approaches that can be employed in
training end-to-end information extraction sys-
tems, and find there is no definitive solution
without considering task properties, and pro-
vide our observations to help with future de-
sign choices: 1) a tagging approach often yields
higher precision while span enumeration and
boundary prediction provide higher recall; 2)
span type information can benefit a boundary
prediction approach; 3) additional contextual-
ization does not help span finding in most cases.

1 Introduction

Various information extraction (IE) tasks require
a span finding component, which either directly
yields the output or serves as an essential com-
ponent of downstream linking. In named entity
recognition (NER), spans in text are detected and
typed; coreference resolution (RE) requires men-
tion spans; mention spans are linked when perform-
ing relation extraction (RE), and in event extraction
this also requires detection of trigger spans. In
extractive question answering (QA), a span in a
passage is detected to be presented as the answer
to a given question.

Following the proliferation of large pre-trained
models (Peters et al., 2018; Devlin et al., 2019;
Raffel et al., 2020, i.a.), recent approaches to span
finding can be roughly divided into three different
types: as tagging, span enumeration, or bound-
ary prediction (see §2, Table 1). In this paper, we
present an empirical study of these methods and
their influence on downstream tasks, hoping to shed
light on how to build future NLP systems. Specifi-
cally, we discuss the design choice of span finding
methods and examine two common tricks for im-
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Figure 1: Three common methods for span find-
ing, detecting the mention spans North Korea and
nuclear weapons in the sentence. “�” denotes a candi-
date span that is too long to be considered.

proving performance. We answer the following
questions:

1. Q: What is the best span finding method? Does
this hold for various NLP tasks or different pre-
trained encoders?

A: The choice depends on the downstream task:
tagging generally has higher precision, but span
enumeration or boundary prediction has higher
recall. For most cases, boundary prediction is
preferable to span enumeration. Tagging per-
forms much better on a masked language model
pretrained encoder (e.g., RoBERTa) than an
encoder-decoder pretrained model (e.g., T5).

2. Q: Does inclusion of mention type information
help (e.g., just B-PERSON or B in tagging)?

A: For downstream IE tasks, tagging and span
enumeration approaches prefer untyped tags,
but boundary prediction heavily relies on type
information to obtain good performance.
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Task Tagging Span Enumeration Boundary Prediction

NER
Features + decision trees (Sekine et al., 1998)

Features + CRF (McCallum and Li, 2003)

BiLSTM + CRF (Lample et al., 2016)

Instance-based (Ouchi et al., 2020)

SPANNER (Fu et al., 2021)
As QA (Li et al., 2020)

EE
JointEE Features+CRF (Yang and Mitchell, 2016)

As Cloze BERT+CRF (Chen et al., 2020)

DYGIE BiLSTM+GNN (Luan et al., 2019)

DYGIE++ BERT+GNN (Wadden et al., 2019)
As QA (Du and Cardie, 2020)

RE BiLSTM + CRF (Bekoulis et al., 2018) PURE (Zhong and Chen, 2021) CASREL (Wei et al., 2020)

CR Features + MEMM (Florian et al., 2004) Span Ranking BiLSTM (Lee et al., 2017) s2e Coref (Kirstain et al., 2021)

QA
Features + CRF (Yao et al., 2013)

BiLSTM + CRF (Du and Cardie, 2018)
RASOR BiLSTM (Lee et al., 2016)

BiDAF (Seo et al., 2017)

BERT on SQuAD (Devlin et al., 2019)

Table 1: An overview of various span detecting methods for various tasks in recent NLP literature.

3. Q: Is an additional contextualization with RNN
layers on top of Transformers helpful? Some
prior work put an LSTM layer on top of em-
beddings produced by Transformers (Straková
et al., 2019; Shibuya and Hovy, 2020; Wang
et al., 2021, i.a.). Are these necessary?

A: Not for RoBERTa (a pretrained encoder-
only), but we observe a slight benefit from BiL-
STM layers atop T5 (an encoder-decoder).

2 Background

We assume a pre-trained base model is in place
(e.g. BERT (Devlin et al., 2019), T5 (Raffel et al.,
2020)). The encoding for each token 𝑥𝑖 is denoted
as x𝑖 ∈ R𝑑 . For further analyses, we focus on
RoBERTa (Liu et al., 2019) and T5 since these
represent two classes of pretrained models: one
with an encoder trained with reconstruction loss;
the other with both an encoder and a decoder.

Tagging Span selection can be reduced to a se-
quence tagging problem, usually under the BIO
scheme. Such tagging problems can be modeled
using a linear-chain conditional random field (CRF;
Lafferty et al., 2001), with tags either typed or un-
typed (for example, in NER tags may be labeled
with entity types B-PERSON, I-LOCATION, or with-
out, B, I). In recent work, features input to CRF
may be hand-crafted features or predominantly out-
puts of a neural network. Note that reducing span
finding to a tagging problem does not allow the
system to produce overlapping spans. There ex-
ist methods to address these (e.g., for the task of
nested NER), but we leave the analysis of these
methods for future work.

Span Enumeration Lee et al. (2017) first pro-
posed to enumerate all spans (up to length 𝑘) and
predict whether they are entity mentions for coref-

erence resolution. A span embedding s𝑖 𝑗 is derived
for each span 𝑥 [𝑖 : 𝑗], usually a concatenation of
the left and right boundary tokens x𝑖 , x 𝑗 , a pooled
version of all the tokens between 𝑥𝑖 and 𝑥 𝑗 (usually
an attention-weighted sum with a learned global
query vector q (Lee et al., 2017; Lin and Ji, 2019)),
and optionally some additional manual features 𝝓:

𝑎𝑘∈{𝑖, · · · , 𝑗 } ∝ exp(q · x𝑘)
s𝑖 𝑗 =

[
x𝑖 ; x 𝑗 ;

∑︁ 𝑗

𝑘=𝑖𝑎𝑘x𝑘 ; 𝝓
]

Such span embedding can be used for both span
detection (untyped) and span typing: for detection,
a span is given a score indicating whether it is a
span of interest by applying a feedforward network
𝐹 on top of the span embedding:

{𝑥 [𝑖 : 𝑗] | 𝐹 (s𝑖 𝑗) > 0, 0 ≤ 𝑗 − 𝑖 ≤ 𝑘}

For typing, one can create a classifier with the span
embedding as input, and the set of types plus an 𝜀
type (not a selected span) as the output label set.

Boundary Prediction BiDAF (Seo et al., 2017)
introduced a method to select one span from a se-
quence of text that we term boundary prediction.
This has been widely adopted following the prolif-
eration of work based on pretrained models such
as BERT for QA.

In boundary prediction, two vectors l, r over to-
kens are computed to indicate whether a token is a
left or right boundary of a span:

𝑙𝑖 ∝ exp(qL · x𝑖); 𝑟 𝑗 ∝ exp(qR · x 𝑗)

To determine the most likely span, one selects
[arg max𝑖 𝑙𝑖 , arg max 𝑗 𝑟 𝑗].

This method can be extended to the case where
the model does not select any span (Devlin et al.,
2019). A special [CLS] token may be prepended to
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Encoder Method Entities EE RE CR QA

Ent-I Ent-C Trig-I Trig-C Arg-I Arg-C F1 Avg. F1 EM F1

RoBERTabase

Tagging 94.6 90.0 73.3 68.9 53.4 50.8 59.5 54.5 74.4 80.8
Span Enumeration 94.8 89.8 72.7 69.0 22.6 16.7 13.1 72.5 68.8 73.8

Boundary Prediction 94.9 89.9 72.3 67.7 41.6 37.4 39.6 71.7 77.6 85.0

T5enc
base

Tagging 94.5 88.6 60.2 39.0 24.2 22.4 18.6 55.1 58.1 67.3
Span Enumeration 92.0 86.2 59.2 47.8 20.2 14.1 10.2 70.4 62.3 66.1

Boundary Prediction 95.5 90.5 70.7 68.3 39.4 35.5 37.3 70.5 70.3 76.1

Table 2: Basic experimental results on downstream tasks that involve mention detection. We report the results of
entity extraction and event extraction from ACE05-E+ dataset (F-score, %), relation extraction from ACE05-R
dataset (F-score, %), coreference resolution from OntoNotes dataset, and QA task from SQuAD 2.0 dataset.

the sequence of tokens, taking index 0, and the
model is trained to select the placeholder span
[0, 0] if no span should be selected.

Boundary prediction can also be extended to
select more than one span. In CASREL (Wei et al.,
2020), instead of selecting the most likely left and
right indices, they select multiple left and right
index if their score surpasses a threshold:

𝐿 = {𝑖 | 𝑙𝑖 ≥ 𝜃}; 𝑅 = { 𝑗 | 𝑟𝑖 ≥ 𝜃}

Then a heuristic is used to match these candidate
left/right boundaries to select spans. Li et al. (2020)
extended the idea: instead of a heuristic, a model 𝐹
(can be a 2-layer feedforward network, as is used
in our experiments) is used to score all candidate
spans selected by the threshold (up to length 𝑘):

{𝑥 [𝑖 : 𝑗] | 𝐹 (s𝑖 𝑗) > 0, 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑅, 0 ≤ 𝑗 − 𝑖 ≤ 𝑘}

Since it is the most flexible and heuristic-free, we
will focus on the last method in Li et al. (2020).
To modify this span detector into a typed classifier,
one can apply the same trick in span enumeration.

3 Experimental Setup

We perform all our experiments on RoBERTabase
and the encoder part of T5base (T5enc

base). Each num-
ber reported is an average of 3 runs with different
random seeds. Each run is trained with a single
Quadro RTX 6000 GPU with 24GB memory.

NER, EE, and RE We use the ACE 2005 dataset
(Walker et al., 2006) to evaluate model performance
on NER, EE, and RE tasks. We follow OneIE (Lin
et al., 2020) to compile dataset splits and establish
the baseline using their released codebase.

For comparable setups across tasks, we disable
all the global features which involve complicated

cross-subtask interactions and cross-instance inter-
actions that are hard to adapt to other span finding
methods. We also disable the additional biaffine
entity classifier and event type classifier and use
the typing from the span finding module directly in
inference time for the experiments in Table 2.

For NER, in addition to the standard entity clas-
sification F1 (Ent-C), we also report entity identi-
fication F1 (Ent-I) to measure how models detect
spans. For EE, we use the standard {trigger (Trig) /
argument (Arg)}-{identification (I) / classification
(C)} F1 scores. For RE, the standard F1 is used.

Coreference Resolution We use the higher-order
coreference resolution model (Lee et al., 2018) as
implemented in AllenNLP (Gardner et al., 2018)
as the baseline for coreference resolution.

We report the average F1 (Avg. F1) of the three
common metrics, namely MUC, B3, and CEAF𝜙4

on the OntoNotes dataset (Weischedel et al., 2013).

Extractive QA We use the Transformer QA
model in BERT as the baseline. We evaluate on the
dev set of SQuAD 2.0 (Rajpurkar et al., 2018), a
large-scale reading comprehension dataset contain-
ing both answerable and unanswerable questions.
We keep the first span in the input sequence for the
questions with multiple answer spans and discard
the others. We use exact match (EM) and token
overlap F1 for QA.

4 Discussions

4.1 Which Span Finder to Use?

From the results presented in Table 2, we find that
boundary prediction is potentially preferable to
span enumeration. Although span enumeration out-
performs boundary prediction by a small margin in
coreference resolution, boundary prediction outper-
forms span enumeration in other downstream tasks.
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Approach P R

Tagging 81.7 72.8
Span Enumeration 25.5 96.1
Boundary Prediction 25.5 96.0

Table 3: Breakdown of men-
tion score of each span finding
method on OntoNotes dataset.
We present the results from the
models using RoBERTabase en-
coder.

Method Entities EE RE

Ent-I Ent-C Trig-I Trig-C Arg-I Arg-C F1

Tagging 94.6 89.6 72.7 69.1 54.5 52.1 56.5
- w/o Typing +0.4 +0.5 +0.4 −1.1 +3.2 +3.0 +9.6

Span Enumeration 94.7 52.6 72.3 51.5 28.1 17.6 10.7
- w/o Typing +0.1 −0.2 −0.1 +0.8 +1.5 +1.3 +1.0

Boundary Prediction 95.1 70.1 72.4 69.2 42.2 35.9 37.6
- w/o Typing −0.0 −16.9 +2.1 −9.2 −12.6 −16.1 −27.3

Table 4: Experiment results of typing on IE tasks. Positive impact on model
performance is shown in green while negative in red.

Encoder Method Entities EE RE CR QA

Ent-I Ent-C Trig-I Trig-C Arg-I Arg-C F1 Avg. F1 EM F1

RoBERTabase

Tagging −0.0 −1.0 −1.3 −2.3 −2.9 −2.2 −1.2 +0.9 +0.3 +0.5
Span Enumeration +0.3 +0.1 +0.1 −0.6 +0.8 −0.8 −1.3 −0.1 −0.1 +0.1

Boundary Prediction +0.5 +0.6 −0.3 +0.6 −0.5 −0.2 −0.8 +0.6 +0.5 +0.4

T5enc
base

Tagging −0.4 +1.0 −7.0 +9.1 +5.2 +6.5 +4.0 +0.1 +4.0 +3.4
Span Enumeration +1.4 +1.7 +1.3 +5.1 −1.6 −0.8 −0.3 +0.9 +1.3 +1.0

Boundary Prediction −0.5 −0.8 −3.0 −4.0 −1.6 −1.9 −1.4 +1.1 +3.6 +3.8

Table 5: Experiment results adding BiLSTM contextual layer to our baseline models. The table shows the
performance gaps compared to counterparts in Table 2 that do not have an additional contextualization. Positive
impact on model performance is shown in green while negative in red.

While tagging and span enumeration suffer a con-
siderable performance drop in all downstream tasks
when using T5enc

base as encoder, boundary prediction
only suffers a slight performance drop.

From the breakdown of the mention scores of
each model on the OntoNotes dataset (coreference
resolution) in Table 3, we can see that although
span enumeration focuses significantly on recall,1

boundary prediction can reach a comparable level
of recall, whereas in a downstream task like QA
where precision is needed, span enumeration can-
not reach a comparable level of performance to
boundary prediction.

The choice between tagging and boundary pre-
diction depends on various factors, including but
not limited to the language model, downstream
task, training strategy, etc. Overall, tagging excels
at precision; in contrast, boundary prediction and
enumeration have better recall.

1 In the evaluation of coreference resolution, singleton
mention clusters (i.e., clusters that have only 1 mention) are
ignored in computing the evaluation scores. This practice
weeds out lots of spans that should not be selected as mentions.
This is the reason that a coreference model can achieve state-
of-the-art results with low mention detection precision.

4.2 Does Typing Help Span Finders?

As can be seen from the results in Table 4, tagging
with untyped labels outperforms tagging with typed
labels in all tasks except trigger classification; the
margin is even more significant for the tasks of
event argument extraction and relation extraction.
We hypothesize that under joint training, the types
in the labels might hinder the model from learning
other objectives. Therefore, if it is not necessary
to have typed tags, it is recommended to use plain
BIO labels for tagging.

As for boundary prediction, we found that per-
forming classification with types is crucial in the
joint training with downstream tasks. This is pos-
sibly due to the nature of the two-step process of
the method, where the first step can be seen as a
coarse classifier to select potential mention can-
didates while the second step double-checks such
candidates (or classifies candidates with more fine-
grained types). However in span enumeration we
observed that it is not much impacted by the in-
clusion of types. We hypothesize this results from
label imbalance. Under span enumeration, there are
a considerable number of spans that should not be
labelled as valid mention spans. When downstream
tasks further require classifying spans to more fine-
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grained types, the label distribution would be se-
riously imbalanced and dominated by the 𝜀 (null
type) label, making the learning ineffective.

4.3 Additional Contextualization?

We further examine a commonly seen practice of
having an additional contextualization with RNN
layers atop Transformer encoders. Following (Lee
et al., 2017) as implemented in AllenNLP (Gardner
et al., 2018), we use a 1-layer BiLSTM with hidden
dimension of 200 for each direction.

We stack the BiLSTM contextual layer atop the
Transformer encoders and report the experimen-
tal results in Table 5. We observe that, for IE
tasks, adding additional contextualization does not
affect model performance; for extractive QA, it
improves model performance. Also, when using
encoder-decoder architecture models (e.g., T5), the
additional contextualization would lead to higher
variance in downstream tasks compared to using
encoder-only models (e.g., BERT). We hypothesize
that the difference might come from the underlying
architecture in T5, in which the encoder learns to
specialize its representation to support the decoder.
Therefore, when the encoder is being used alone,
an additional contextualization might serve a simi-
lar purpose as a decoder and have to learn to utilize
the representation to some extent. Even with such
exceptions, from the design choice perspective, the
merit of this trick is limited as it is not helpful in
most cases while introducing training variance and
additional parameters to the model.

5 Conclusions

We identified and investigated three common span
finding methods in the NLP community: tag-
ging, span enumeration, and boundary prediction.
Through extensive experiments, we found that
there is not a single recipe that is best for all scenar-
ios. The design choices on downstream tasks rely
on specific task properties, specifically the trade-
off between precision and recall. We suggest that
precision-focused tasks consider tagging or bound-
ary prediction, and recall-focused (such as corefer-
ence resolution) tasks consider span enumeration
or boundary prediction.

We further examined two commonly used tricks
to improve span finding performance, i.e., adding
span type information during the training and
adding additional contextualization with an RNN
on top. We observed that boundary prediction on

IE tasks heavily relies on type information, and
adding additional contextualization mostly does
not help span finding.

Architectures will continue to evolve and models
will continue to grow in size, which may lead to
different conclusions on the relative benefits of
approaches. Still, the fundamental task of isolating
informative spans of text will remain. We hope this
study helps inform system designers today with
existing models and still in the future as a starting
point for further inquiry.

6 Limitations

As an empirical study, we provide observations
under different combination of design choices for
building an end-to-end trained IE systems with a
span finding component. We hope such observa-
tions could provide insights for future work, but
we have to admit that we are also bounded by the
limitations of empirical studies, and that a theoret-
ical analysis is out of scope of this paper. As a
result, we only make our claims based on the ex-
periment results with the baseline models that we
evaluated, and hope that it could generalize well to
other architectures.
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