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Abstract

While advances in pre-training have led to dra-
matic improvements in few-shot learning of
NLP tasks, there is limited understanding of
what drives successful few-shot adaptation in
datasets. In particular, given a new dataset
and a pre-trained model, what properties of the
dataset make it few-shot learnable and are these
properties independent of the specific adapta-
tion techniques used? We consider an exten-
sive set of recent few-shot learning methods,
and show that their performance across a large
number of datasets is highly correlated, show-
ing that few-shot hardness may be intrinsic to
datasets, for a given pre-trained model. To esti-
mate intrinsic few-shot hardness, we then pro-
pose a simple and lightweight metric called
Spread that captures the intuition that few-
shot learning is made possible by exploiting
feature-space invariances between training and
test samples. Our metric better accounts for
few-shot hardness compared to existing notions
of hardness, and is ~8–100x faster to compute.

1 Introduction

A growing body of recent work has shown im-
pressive advances in few-shot adaptation of pre-
trained transformers (Radford et al., 2019; Schick
and Schütze, 2020; Brown et al., 2020; Karimi Ma-
habadi et al., 2021; Liu et al., 2021a, among oth-
ers). Despite this progress, there is no concrete
understanding of when and why few-shot learning
may be successful for a given pre-trained model.
Indeed, no free lunch style arguments necessitate
the existence of tasks that are not few-shot learn-
able by a given pre-trained model, regardless of
the adaptation method, and in practice, very simi-
lar datasets exhibit varying levels of success when
state-of-the-art few-shot adaptation methods are
applied (Fig. 1a).

⋆ Equal Contribution

Method D1 D2

LMBFF 45.3 -0.4

NullPrompts 43.0 -5.7

BitFit 46.3 -3.5

AdaPET 44.9 -0.3

P-Tuning 46.3 0.3

Few-shot (Avg) 45.2 -2

Full Fine-tuning 45.3 35

D1 : NLI Sentiment

D2 : NLI Paraphrase 

context: When asked about the movie, Cannon 
said, 'Awful.  '. 
hypothesis: Cannon liked the movie

context: When asked about the movie, Ayden said, 
'Excellent film.  '. 
hypothesis: Ayden liked the movie

context: someone chronicled that a particular 
thing happened
hypothesis: that thing might or might not have 
happened

context: a particular person was satisfied to have a 
particular thing. 
hypothesis: that person didn't have that thing

Train Set Train Set

Test Set

D1: Low Spread,  
Low Few-shot hardness

Test Set

D2: High Spread,  
High Few-shot hardness

Finetuning Improvement

(a)
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Figure 1: (a) Fine-tuning a model on D1 (D2) on the
entire dataset leads to a +45.3 (+35) point improvement
over a random baseline. However, most methods are
successful at few-shot adaptation on D1 with an average
improvement of ~45 points over a random baseline,
while few-shot adaptation is unsuccessful on D2. (b)
We observe that features of test inputs are closer to
training set inputs for D1 than D2, motivating Spread
as a metric for evaluating few-shot hardness.

This work advances understanding of few-shot
learnability in two ways. First, we find that, given
a dataset, few-shot performance of various adapta-
tion methods is highly correlated. This suggests the
existence of adaptation-method independent fac-
tors behind few-shot learnability of a dataset, for a
given pre-trained model. Next, we propose a sim-
ple and lightweight metric to estimate this intrinsic
few-shot learnability. Concretely, we consider an
extensive set of recently proposed adaptation meth-
ods and find that on a wide range of datasets, these
methods have highly correlated behaviors i.e., the
degree to which a few-shot adaptation method suc-
ceeds on a dataset is correlated across methods.
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Next, we consider two recently proposed methods
that may be used for assessing intrinsic dataset
hardness—Rissanen Data Analysis (RDA, Perez
et al. (2021)) and Sensitivity Analysis (SA, Hahn
et al. (2021)). RDA computes dataset hardness
as the area under the curve of the test loss as a
function of number of training samples, while SA
computes hardness by examining how perturba-
tions in the input features cause a model to change
its predicted label. From experiments, we show
that SA is poorly correlated with few-shot hardness
and RDA, while well correlated, is very expensive
to compute. In response, we propose a new met-
ric that measures the ability of a model to exploit
feature-space invariances between the train and test
set to make few-shot generalizations. For instance,
consider the datasets in Fig. 1b, where D1 has a test
set that “looks similar” to the training set while D2

has a test set that looks dissimilar to the training set.
We capture this intuition into a lightweight metric
called Spread and show that Spread correlates as
well or better than existing methods (Spearman cor-
relation of 0.467 vs 0.356) while being ~8–100x
more computationally efficient.

2 Background

Consider a labeled dataset D = {z(1), z(2), . . .},
split into a training set Dtr and a test set Dts, where
each example z(k) is a tuple consisting of an input
x(k) and a label y(k). Typically, in k-way l-shot
learning (l is typically less than 128), Dtr consists
of l examples of each of the k labels. Given some
pre-trained model f , a few-shot adaptation method
m uses Dtr to modify f , outputting an “adapted
model” that can make predictions on Dts.

State-of-the-art approaches for such adaptation
typically involve either recasting the task into the
pre-training objective of the model (Gao et al.,
2021a; Tam et al., 2021), or using lightweight / pa-
rameter efficient finetuning (Houlsby et al., 2019;
Logan IV et al., 2022; Li and Liang, 2021; Liu et al.,
2021b; Ben Zaken et al., 2022). For this work, we
experiment with an extensive set of recently pro-
posed few-shot adaptation methods that we further
categorize into prompt-based methods which in-
cludes LMBFF (Gao et al., 2021a), AdaPET (Tam
et al., 2021), Null Prompts (Logan IV et al., 2022)
and Prompt-Bitfit (Ben Zaken et al., 2022)1, and
Light-weight finetuning methods which includes

1As demonstrated by (Logan IV et al., 2022), we use trig-
ger prompts in BitFit to improve few-shot performance.
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Figure 2: Average correlation between hardness mea-
surements from various few-shot adaptation meth-
ods on (a) FS-GLUE and (b) FS-NLI. “prompt-fs”
refers to prompt-based methods while “lw-fs” refers
to lightweight finetuning methods. We note a large cor-
relation of 0.85 and 0.77. We also observe a higher
correlation among methods from the same category.

Prefix Tuning (Li and Liang, 2021) and Compacter
(Karimi Mahabadi et al., 2021).

3 Intrinsic Few-Shot Hardness

For a fixed method and dataset, we define “method
specific few-shot hardness” (MFH) as a function
that takes a dataset D and some adaptation method
m, and outputs a real number that captures few-
shot hardness of D with respect to f and m. Con-
cretely, for this work, we define MFH(D, f,m) as
the classification accuracy of the adapted model,
normalized against the classification accuracy of
the majority baseline, on Dts.

Datasets. In FS-GLUE, we consider 11 tasks (de-
tails in Appendix A.1) from the GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) bench-
marks, covering a wide range of task formats and
objectives. Additionally, since these tasks have
differing textual formats as well as performance
metrics (F1 / accuracy / Pearson’s correlation), we
curate FS-NLI where every dataset is recast into
2 way NLI, and the performance metric is stan-
dardized as classification accuracy. To do this, we
take datasets from White et al. (2017); Poliak et al.
(2018); Richardson et al. (2019), giving us a collec-
tion of 28 datasets (more details in Appendix A.1),
covering a wide range of tasks such as sentiment
analysis, negation comprehension, name entity clas-
sification (NEC), paraphrase detection, event clas-
sification, logical entailment etc.
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3.1 Experiments

We compute MFH values for all adaptation meth-
ods on FS-GLUE and FS-NLI. For each dataset,
we sample a fixed training set consisting of 64
examples per label. Finally, we control for hyper-
parameter tuning across methods (details in Ap-
pendix A.2). We report the average spearman cor-
relation between MFH values for all pairs of adap-
tation methods for every dataset in Fig. 2.

Results. We observe an extremely high average
correlation between hardness measurements for
different methods—0.85 and 0.77 for FS-GLUE
and FS-NLI respectively. The average correlation
is higher among methods within the same cate-
gory than among methods from different categories
e.g., on FS-GLUE, the average correlation between
prompt-based and lightweight finetuning methods
is 0.8, while the average correlation among all
prompt-based methods is 0.89. We conclude that
few-shot hardness may be intrinsic to datasets,
i.e., for a given pre-trained model, a dataset may
be “easy” or “hard” regardless of the adaptation
method used.

4 Automatic Metrics For Intrinsic
Few-Shot Hardness

Noting that the experiments of Section 3 suggest
that few-shot hardness may be intrinsic to datasets,
we define the “intrinsic few-shot hardness” (IFH)
of a dataset as the mean MFH values across a col-
lection of adaptation method M = {m1,m2, . . .},

IFH(f,D) ≜
∑

m∈MMFH(D, f,m)

|M| (1)

Clearly, computing IFH values for some dataset
is computationally intensive since it requires run-
ning multiple few-shot adaptation methods on f .
Thus, to automatically estimate IFH, an automatic
hardness metric h takes f and D and outputs a
(real-valued) score h(f,D) that is well-correlated
with IFH(f,D) across some collection of datasets
{D1,D2, . . .}.

4.1 Existing Metrics

We consider two recently proposed dataset hard-
ness metrics that have been applied in the context of
pre-trained models. hsensitivity (Hahn et al., 2021)
measures how many tokens of an input need to be

Metric Correlation Compute Time (s)

hsensitivity 0.06 80
hRDA 0.36 1,020

hSpread 0.47 10

Table 1: Compared to baseline hardness metrics, hSpread
is able to better account for intrinsic few-shot hardness
and is computationally lightweight. All experiments are
run on a single 1080ti GPU for profiling.

perturbed for model predictions to change, on av-
erage. A low sensitivity implies that model predic-
tions change only when a large subset of an input’s
tokens are perturbed, making the dataset “easy”.
hRDA (Perez et al., 2021) approximates hardness as
the area under the curve of the test loss obtained
by finetuning f on successively larger slices of the
training data—a large area implies that a large num-
ber of training samples are required to achieve low
test set loss, implying that the dataset is hard for f .

4.2 Our Approach
In the few-shot regime, one of the factors affecting
dataset hardness is the degree to which input fea-
tures for a given label in the test set differ from the
training set (Fig. 1b). Based on this intuition, we
propose a simple few-shot specific hardness metric
called Spread that computes the average euclidean
distance of test input features to the closest training
set input.

For some input z = (x, y) ∈ D, let f(z) denote
the vector valued features of the input x produced
by the model. We define the distance between some
example z(k) to the training set Dtr as,

d(f, z(k),Dtr) ≜ min
z

∥f(z(k))− f(z)∥ (2)

subject to: z = (x, y) ∈ Dtr

y = y(k).

Then, hSpread(f,D) can be computed as

hSpread(f,D) ≜ 1

|Dts|
∑

z(k)∈Dts

d(f, z(k),Dtr)

(3)

4.3 Experiments
We experiment with RDA, SA and Spread as our
few-shot hardness metrics. To obtain input features
for computing Spread, we use SimCSE (Gao et al.,
2021b) features of the input with a RoBERTa-large
base. Given a collection of datasets and methods,
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Method Correlation

LMBFF 0.72
AdaPET 0.58
Null Prompt 0.67
Prompt-Bitfit 0.79

Table 2: Correlation between hardness measurements
from using the same adaptation method with differ-
ent pre-trained models. We observe a high correla-
tion among hardness measurements from using different
base pre-trained models.

we measure the correlation between metric outputs
and IFH values for each dataset, and report the av-
erage across all datasets. We also report time taken
for computing the metric on a single 1080ti GPU
for each dataset, and report the average compute
time across all datasets.

Results. We report results on FS-NLI to ensure
uniformity of task formats and performance met-
rics. From Table 1, we observe that hsensitivity is
poorly correlated with IFH. Next, we note that
while hRDA produces better hardness judgements,
these come at the cost of increased computation
time. Finally, hSpread is able to best account for
intrinsic few-shot hardness while being ~100x com-
putationally lightweight compared to hRDA.

4.4 Measuring IFH across pre-trained models
While we define IFH of a dataset with respect to
a fixed pre-trained model, certain datasets or tasks
might be few-shot hard for a wider range of pre-
trained models. To investigate this further, we ex-
periment with Electra-large (Clark et al., 2020) as
the base pre-trained model. We obtain hardness
measurements on FS-NLI and compute the corre-
lation between methods with different base pre-
trained models (RoBERTa-large vs Electra-large).
From average correlation across datasets in Table 2,
we find that hardness measurements from the same
method with different pre-trained models are well-
correlated. We conclude that there may even be
“pre-trained model independent” factors behind in-
trinsic few-shot hardness, and we leave further anal-
ysis of this to future work.

5 Decreasing Few-Shot hardness via
dataset decomposition

We conclude experiments with a simple applica-
tion of Spread by proposing a training set sam-
pling strategy that minimizes Spread values for
improved few-shot performance. Our strategy is

Method Ours Control

LMBFF 17.1 19.7
AdaPET 32.3 8.5
Null Prompt 3.3 -7.7
Prompt-Bitfit 2.9 -9.0

Few-shot Avg. 13.9 2.9

Table 3: Comparing a Spread-inspired training set sam-
pling strategy to random sampling. We observe an av-
erage boost of 13.9 accuracy points compared to the
control where the ~3 point boost is due to ensembling.

based on performing a “clustering based decompo-
sition” of a dataset, similar to Murty et al. (2021).
In particular, we run k-means clustering on input
features from the pre-trained model to create P
clusters. Then, we train P distinct models on few-
shot training sets sampled from each of the clusters.
At test time, examples are classified into one of the
P clusters, and the corresponding model is used to
make predictions. To account for any effects due to
ensembling, we compare with an approach where
we randomly sample a model to make predictions,
instead of using the model corresponding to the
cluster.

Results. We experiment with the sampling strat-
egy described above on a named entity classifica-
tion based dataset from FS-NLI. From Table 3, we
note an improvement of ~14 accuracy points, while
the control increases by only a ~3 accuracy points.

6 Related Work and Discussion

Most notions of what makes datasets challeng-
ing are either model agnostic—example length
(Spitkovsky et al., 2010), order sensitivity (Nie
et al., 2019) etc, or indirect (Agarwal and Hooker,
2020). On the other hand, intrinsic hardness as
defined in this work, is both model-centric and di-
rectly measures the ability of a specific model fam-
ily to make good generalizations from a training
set. While measuring hardness of datasets has seen
some recent traction (Hahn et al., 2021; Perez et al.,
2021), to the best of our knowledge, we are the first
to study hardness in the context of few-shot adapta-
tion. We show that few-shot hardness of datasets
(as measured by test set performance normalized
against a random baseline) among an extensive set
of recently proposed methods is highly correlated,
suggesting that few-shot hardness may be a prop-
erty intrinsic to datasets. We then propose a simple
hardness metric called Spread, based on the in-
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tuition that a test set with input features close to
the few-shot training set is easy, since it allows a
model to exploit feature-space invariances. Com-
pared to other metrics, Spread provides hardness
judgements that are much better correlated with in-
trinsic few-shot hardness while being 8–100x faster
to compute, compared to prior hardness metrics.

Metrics for predicting fewshot hardness have
several applications. For the NLP practitioner,
Spread could be used as a simple plug-and-play
estimator of whether few-shot adaptation of a pre-
trained model might be successful for a given use
case. For the dataset developer, Spread could be
used to adversarially curate harder few-shot bench-
marks. Finally, a model developer can use Spread
to inform better training set sampling strategies
to improve test set performance in the few-shot
training regime, as well as for model selection by
selecting models with lower Spread.
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8 Reproduciblity

Our code is available at: https://github.com/
colinzhaoust/intrinsic_fewshot_hardness.

9 Limitations

Instance-level Analysis. We focus on discover-
ing and measuring intrinsic few-shot hardness at
the dataset level and do not study instance-level
hardness quantitatively or qualitatively. Under-
standing hardness at the instance level can further
help understand the recent successes behind few-
shot learning in NLP.

Base model selection. We compare few-shot per-
formance between a variety of methods with two
base models that have very different pre-training
objectives, yet have correlated few-shot behaviors
across tasks and adaptation methods. Of course,
there exist a much wider range of pre-trained mod-
els with very diverse pre-training data and objec-
tives. While beyond the scope of this work, we be-
lieve that studying factors such as the relationship
between few-shot performance and pre-training
data / objectives is worth further investigation.
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Dataset #Test Majority

event 4,342 0.50
ner 37,638 0.50
gender 464 0.50
puns 1,756 0.50
lexico_syntactic 15,236 0.51
relation_extraction 761 0.60
sentiment 600 0.50
semantic_role 1,821 0.59
paraphrase 2,109 0.55
anaphora 146 0.51
negation 1,000 0.67
boolean 1,000 0.73
quantifier 1,000 0.66
counting 1,000 0.66
conditional 1,000 0.66
comparative 1,000 0.65
monotonicity 2,000 0.67
monotonicity_simple 1,000 0.67
monotonicity_hard 1,000 0.68
rte 277 0.53
mnli 10,000 0.63

ner_merged 36,789 0.51
ner_person 9,032 0.55
ner_entity 5,086 0.58
ner_location 8,958 0.64
ner_event 96 0.5
ner_organization 7,851 0.5
ner_time 5,766 0.65

Table 4: Statistics of NLI datasets evaluated in this
work, all the datasets have two label classes (entailed
and not-entailed). The number of examples in support
and validation set are jointly 64/128 per label class, ex-
cept from ner_merged, where we use the support/test
examples from all other ner_x tasks. ner denotes the
named entity classification (NEC) task and ner_x de-
notes the NEC task with x as the label.

A Appendix

A.1 Dataset Details

We consider 11 tasks from the GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019)
benchmarks, namely SST-2 (Socher et al., 2013),
CoLA (Warstadt et al., 2018), MNLI (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016),
RTE (Dagan et al., 2010), MRPC (Dolan and
Brockett, 2005), QQP (Wang et al., 2017),
BoolQ (Clark et al., 2019), CB (de Marneffe
et al., 2019), COPA (Roemmele et al., 2011), and
WiC (Pilehvar and Camacho-Collados, 2019). We
exclude the datasets that contain passages longer
than the prompts.

We also take NLI datasets from White et al.
(2017); Poliak et al. (2018); Richardson et al.
(2019), giving us a collection of 28 datasets. If the
original dataset contains three labels (entailment,
contradiction, neutral), we merge contradiction and
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Figure 3: Average correlation between hardness mea-
surements from various few-shot adaptation methods on
FS-GLUE. We observe general good correlation among
various few-shot methods.

neutral to form a binary classification with entailed
and not-entailed as the examples. The statistics of
the datasets are shown in Table 4.

A.2 Implementation Details

Hyper-parameter Details: For grid search, we
choose a learning rate from the set 5e-6, 1e-5, 5e-
5 and train for 30 epochs. For each method, we
train for 1000 steps, evaluating every 100 steps. All
adaptation methods use RoBERTa-large as the base
model. All other hyperparameters are as used in
the original works. We follow the original work
to generate and select prompts for LMBFF. For
AdaPET, we use the same prompts as we used in
LMBFF.

A.3 Intrinsic few-shot hardness

In Fig. 2, we show averaged spearman correlations
of methods clustered according to their type. In
Fig. 3 and Fig. 4, we further show detailed correla-
tions between every pair of methods. We generally
observe high correlations across methods for both
FS-GLUE and FS-NLI tasks. In Fig. 4, we further
add hSpread, hRDA, and hsensitivity as references.

A.4 Decreasing Few-Shot hardness via dataset
decomposition (Addendum)

We present the strategy of clustering based decom-
position on named entity classification task from
FS-NLI and demonstrates its effectiveness in Ta-
ble 3. Since there naturally exist heuristics based
cluster (e..g., questions about location, organiza-
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Figure 4: Average correlation between hardness mea-
surements from various few-shot adaptation methods
on FS-NLI. We observe general good correlation among
various few-shot methods.

Clusters 1 2 3 4 5 6

person 0.21 0.05 0.06 0.11 0.05 0.19
entity 0.07 0.14 0.12 0.09 0.09 0.02
location 0.04 0.17 0.12 0.11 0.05 0.26
event 0.03 0.03 0.01 0.03 0.02 0.02
organization 0.06 0.12 0.11 0.07 0.05 0.26
time 0.20 0.07 0.05 0.15 0.05 0.02

Table 5: Jaccard index between each pair of clusters,
where 1 to 6 denote the 6 clusters generated by k-means
clustering over the representation space and person, en-
tity, and etc denote the heuristics based clusters.

tion, and person) in NEC, we here show the rele-
vance between model-generated clusters and these
heuristics based cluster by computing the Jaccard
index. From Table 5, we can observe that model-
based clusters are not decomposing the dataset in a
similar way as the heuristics.
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