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Abstract

Most downstream adaptation methods tune all
or part of the parameters of pre-trained models
(PTMs) through gradient descent, where the
tuning cost increases linearly with the growth
of the model size. By contrast, gradient-free
methods only require the forward computa-
tion of the PTM to tune the prompt, retain-
ing the benefits of efficient tuning and deploy-
ment. Though, past work on gradient-free tun-
ing often introduces gradient descent to seek a
good initialization of prompt and lacks versa-
tility across tasks and PTMs. In this paper, we
present BBTv2, an improved version of Black-
Box Tuning (Sun et al., 2022b), to drive PTMs
for few-shot learning. We prepend continuous
prompts to every layer of the PTM and propose
a divide-and-conquer gradient-free algorithm
to optimize the prompts at different layers al-
ternately. Extensive experiments across var-
ious tasks and PTMs show that BBTv2 can
achieve comparable performance to full model
tuning and state-of-the-art parameter-efficient
methods (e.g., Adapter, LoRA, BitFit, etc.) un-
der few-shot settings while maintaining much
fewer tunable parameters.

1 Introduction

The past few years have witnessed remarkable
progress of large language models (LLMs) (Devlin
et al., 2019; Raffel et al., 2020; Brown et al., 2020).
It has been repeatedly demonstrated that scaling
up the model size is promising to achieve better
performance. However, the growing model size
also leads to a linear increase in tuning cost. Fine-
tuning and deploying a separate copy of the LLM
for each downstream task become prohibitively ex-
pensive. To that end, much effort has been devoted
to parameter-efficient tuning (PET) (He et al., 2021;
Ding et al., 2022), which only tunes a small portion
of parameters while keeping most of the parame-
ters of the LLM unchanged. By PET, LLMs can
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Figure 1: BBTv2 achieves comparable results to
gradient-based methods on average performance over 7
language understanding tasks (§5.1) with much fewer
tunable parameters. Size of the circle is proportional
to the standard deviation of the performance. All the
methods are evaluated on RoBERTaLARGE.

be specialized to a downstream task at inference
time by activating a small number of task-specific
parameters. Though it is deployment-efficient, tun-
ing the small portion of parameters still requires
back-propagation through the entire LLM, which is
expensive or even infeasible for many practitioners.

To make LLMs benefit a wider range of au-
diences, a common practice is to release LLMs
as a service and allow users to access the pow-
erful LLMs through their inference APIs (Brown
et al., 2020). In such a scenario, called Languaged-
Model-as-a-Service (LMaaS) (Sun et al., 2022b),
users cannot access or tune model parameters but
can only tune their prompts to accomplish language
tasks of interest. Brown et al. (2020) propose to re-
cast downstream tasks as a language modeling task
and perform different tasks by conditioning on task-
specific text prompts. Further, they demonstrate
that LLMs exhibit an emergent ability of in-context
learning, i.e., LLMs can learn to perform tasks with
a few demonstrations provided in the input context
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without updating parameters. Nevertheless, its per-
formance has been shown to highly depend on the
choice of the prompt or the demonstrations (Zhao
et al., 2021; Liu et al., 2022) and still lags far be-
hind full model tuning.

Recently, Sun et al. (2022b) proposed Black-Box
Tuning (BBT), which optimizes continuous prompt
by only accessing model inference APIs. In con-
trast to gradient-based tuning that requires expen-
sive back-propagation1, BBT only requires model
forward computation, which can be highly opti-
mized by acceleration frameworks such as ONNX
Runetime and TensorRT. In addition, the optimiza-
tion cost of BBT is decoupled from the scale of the
model. Instead, larger models can be more favor-
able to BBT due to the lower intrinsic dimensional-
ity (Aghajanyan et al., 2021). Despite its efficiency
superiority and comparable performance to gradi-
ent descent, our pilot experiments (§3) show that
BBT lacks versatility across tasks and PTMs.

In this paper, we present BBTv2, an improved
version of BBT, to address these issues. Instead
of injecting continuous prompt tokens merely in
the input layer, BBTv2 prepends prompts to hid-
den states at every layer of the PTM (termed as
deep prompts), incorporating an order of magni-
tude more parameters to handle more difficult tasks.
However, the increased number of parameters also
poses a challenge for high-dimensional derivative-
free optimization (DFO, Shahriari et al. (2016);
Qian and Yu (2021)). Fortunately, we show that the
forward computation of modern PTMs can be de-
composed into an additive form w.r.t. hidden states
of each layer thanks to the residual connections (He
et al., 2016). Hence, the optimization of the deep
prompts can be decomposed into multiple low-
dimensional sub-problems, each corresponding to
the optimization of prompt at one layer. Based
on this insight, we propose a divide-and-conquer
algorithm to alternately optimize prompt at each
layer. For the optimization at each layer, we main-
tain a random linear transformation that projects
the prompt parameters into a low-dimensional sub-
space and perform DFO in the generated subspace.
To generalize BBTv2 to a variety of PTMs, we
generate the random projections using normal dis-
tributions with PTM-related standard deviations.

Experimental results show that BBTv2 signif-

1The computation and storage cost of back-propagation
is proportional to the forward compute. More widely used
variants of gradient descent, such as Adam (Kingma and Ba,
2015), even require higher compute resources.

icantly improves BBT on average performance
across 7 language understanding tasks. As shown
in Figure 1, BBTv2 achieves comparable perfor-
mance to full model tuning and state-of-the-art
PET methods including Adapter (Houlsby et al.,
2019), BitFit (Zaken et al., 2022), LoRA (Hu
et al., 2021), and P-Tuning v2 (Liu et al., 2021b)
while with much fewer tunable parameters. Code
is publicly available at https://github.com/
txsun1997/Black-Box-Tuning.

2 Black-Box Tuning

Black-Box Tuning (BBT) (Sun et al., 2022b) is a
derivative-free framework to drive PTMs for few-
shot learning. In particular, for a batch of training
data (X,Y ), we first convert the texts X with some
pre-defined templates (e.g., "It was [MASK]") into
X̃ , and the labels Y with a pre-defined map into
label words Ỹ (e.g., "great" and "terrible"). By
this, we can formulate various downstream tasks
into a general-purpose (masked) language model-
ing task and utilize the pre-trained (masked) lan-
guage modeling head to solve them. Assume the
PTM inference API f takes a continuous prompt
p and a batch of converted texts X̃ as input, and
outputs the logits of the tokens of interest (e.g.,
the [MASK] token). BBT seeks to find the optimal
prompt p⋆ = argminp∈P L(f(p, X̃), Ỹ ), where
P is the prompt space and L is some loss function
such as cross entropy. The closed form and the
gradients of f are not accessible to BBT.

The prompt p ∈ RD usually has tens of thou-
sands of dimensions, making it infeasible to be
optimized with derivative-free optimization (DFO)
algorithms. Hence, BBT adopts a random projec-
tion A ∈ RD×d to generate a low-dimensional
subspace Z ∈ Rd and performs optimization in the
generated subspace, i.e.,

z⋆ = argmin
z∈Z

L(f(Az+ p0, X̃), Ỹ ), (1)

where p0 is the initial prompt embedding. If not us-
ing pre-trained prompt embedding, p0 is the word
embeddings randomly drawn from the vocabulary.

BBT adopts the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) (Hansen and Oster-
meier, 2001; Hansen et al., 2003) to optimize Eq.(1)
and obtain the desired prompt p⋆ = Az⋆. The ran-
dom projection A is frozen during optimization.
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Figure 2: Performance on three entailment tasks. We
report F1 score for MRPC and accuracy for SNLI and
RTE. Without pre-trained prompt embedding, BBTv2
can still match the performance of full model tuning on
entailment tasks under the 16-shot setting.

3 Pilot Experiments

3.1 Limitations of BBT Across Tasks
Unsatisfactory Performance on Entailment
Tasks. As demonstrated by Sun et al. (2022b),
BBT can outperform model tuning on entailment
tasks when using pre-trained prompt embedding for
initialization. However, pre-trained prompt embed-
ding is not always available for many languages
and PTMs. Without pre-trained prompt embed-
ding, BBT still lags far behind model tuning on
entailment tasks. In other words, BBT does not
completely get rid of the dependence on gradients
to exceed model tuning. In contrast, as depicted
in Figure 2, BBTv2 can match the performance
of model tuning on three entailment tasks, namely
MRPC (Dolan and Brockett, 2005), SNLI (Bow-
man et al., 2015), and RTE (Wang et al., 2019)
without using pre-trained prompt embedding.

Slow Convergence on Many-Label Classifica-
tion Tasks. BBT suffers from slow convergence
rate when the number of labels becomes large. As
reported by Sun et al. (2022b), BBT cannot con-
verge within the budget of 8,000 API calls, which is
sufficient for common tasks to converge, on DBPe-
dia (Zhang et al., 2015), a topic classification task
with 14 labels. Figure 3 shows the cross entropy
loss and the training accuracy during optimization.
Compared with BBT, the proposed BBTv2 signifi-
cantly accelerates convergence on DBPedia.

3.2 Limitations of BBT Across PTMs
Overfitting on Training Data. When switching
the backbone model from RoBERTa (Liu et al.,
2019) to other PTMs, we find that BBT tends
to overfit training data. As shown in Figure 4,
the original BBT with BERTLARGE (Devlin et al.,

Figure 3: Comparison of the convergence rates of BBT
and BBTv2 on DBPedia (14 classes).

(a) BERTLARGE

(b) BARTLARGE

Figure 4: Accuracy on the 16-shot training and devel-
opment set of SST-2 with BERTLARGE and BARTLARGE.
The original BBT tends to overfit training data. By us-
ing normal distributions with the standard deviations
calculated by Eq.(6) to generate random projections,
the modified BBT and BBTv2 can generalize well to
development sets.

2019) and BARTLARGE (Lewis et al., 2020) can
achieve 100% accuracy on the SST-2 training set,
but achieves little improvement on the develop-
ment set. We conjecture that the random projection
adopted by the original BBT hinders its general-
ization. By generating random projections using
normal distributions with model-related standard
deviations (§4.2), our modified BBT and BBTv2
exhibit stronger generalization ability.

4 BBTv2

4.1 Deep Black-Box Tuning

Though BBT has achieved comparable perfor-
mance to model tuning on simple classification
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Figure 5: An illustration of (a) BBT (Sun et al., 2022b) and (b) BBTv2. is some derivative-free optimizer such
as CMA-ES. Compared with BBT, BBTv2 has 3 differences: (1) BBT requires pre-trained prompt embedding p0 to
match the performance of model tuning on entailment tasks, and therefore does not completely get rid of gradients.
In contrast, BBTv2 requires no prompt pre-training. (2) BBT generates the random projection using a uniform
distribution while BBTv2 adopts model-specific normal distributions. (3) Instead of optimizing the prompt merely
in the input layer, BBTv2 uses a divide-and-conquer algorithm to alternately optimize prompt at each layer.

Algorithm 1: DC Algorithm for BBTv2
Require: L-layer PTM Inference API f ,

Loss function L,
Budget of API calls B,
Derivative-free optimizers {Mj}Lj=1

1: Initialize random projections A1, . . . ,AL

2: Initialize parameters z(0)1 , . . . , z
(0)
L

3: Deep prompts p = ⟨A1z
(0)
1 , . . . ,ALz

(0)
L ⟩

4: for i = 1 to B/L do
5: for j = 1 to L do
6: Evaluate: loss = L(f(p))
7: Update: z(i)j ←Mj(z

(i−1)
j , loss)

8: Replace: pj ← Ajz
(i)
j

9: end for
10: end for
11: return Optimized deep prompts p

tasks (e.g., SST-2), our pilot experiments (§3) show
that it lacks versatility across tasks and PTMs. As
an improved variant of BBT, BBTv2 seeks to gen-
eralize BBT across tasks and PTMs.

Inspired by the recent success of deep prompt
tuning (Li and Liang, 2021; Qin and Eisner, 2021;
Liu et al., 2021b), we manage to inject continu-
ous prompt tokens to every layer of the PTM and
optimize them with derivative-free methods. Com-
pared to BBT that optimizes the prompt merely
in the input layer, BBTv2 has an order of mag-
nitude more parameters. For a PTM with L lay-
ers, BBTv2 seeks to optimize p = ⟨p1, . . . ,pL⟩,
where pi ∈ RD. Hence, the number of param-
eters to be optimized becomes LD. Say we are

using RoBERTaLARGE with 24 layers and insert 50
prompt tokens at each layer, the total number of
parameters to be optimized is 1.2M, posing a chal-
lenge of high-dimensional DFO. Instead of sim-
ply extending the dimensionality of the random
projection matrix A to RLD×d 2, we propose a
divide-and-conquer (DC) algorithm to handle the
increased parameters.

In fact, DC has been well explored in prior
work (Kandasamy et al., 2015; Mei et al., 2016)
to cope with high-dimensional DFO problems by
decomposing the original high-dimensional prob-
lem into multiple low-dimensional sub-problems,
and solving them separately. The key assumption
of applying DC is that, the objective f can be de-
composed into some additive form. Fortunately,
the forward computation of modern PTMs can be
expanded into an additive form due to the residual
connections (He et al., 2016). For instance, the
forward computation of a three-layered PTM can
be decomposed as

f(x1) = f3(x3) + x3 (2)

= f3(x3) + f2(x2) + x2 (3)

= f3(x3) + f2(x2) + f1(x1) + x1, (4)

where fi is the transformation function of the i-th
layer, xi is the input of the i-th layer, and x1 is
the input embedding. Thus, optimizing the con-
tinuous prompts {pi}Li=1 attached to the hidden
states at every layer {xi}Li=1 can be regarded as in-
dependent sub-problems.3 Since the assumption is

2In our preliminary experiments, we implement this ver-
sion but did not obtain positive results.

3We omit the classification head on the top of the PTM
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satisfied, we propose a DC-based algorithm, which
is described in Algorithm 1, to implement BBTv2.

The prompts at different layers are optimized
alternately from bottom to up. For the optimization
at each layer, we maintain a specific random pro-
jection Aj and a CMA-ES optimizerMj . When
alternating to layer j (Line 6-8 in Algorithm 1), a
single CMA-ES iteration is performed in the same
fashion as BBT, i.e., a new zj is generated byMj

and is then projected to pj using Aj . A graphical
illustration is shown in Figure 5.

During PTM inference, pj = Ajzj is first added
with an initial prompt embedding p0

j and then con-
catenated with the hidden states xj . Thus, ac-
cording to Eq.(4), the forward computation of a
L-layered PTM can be viewed as

f(x1,p1:L) =[A1z1 + p0
1;x1]

+

L∑

j=1

fj([Ajzj + p0
j ;xj ]), (5)

where [·; ·] means concatenation. Tunable param-
eters are highlighted in color. We set p0

1 as the
word embeddings randomly drawn from the PTM
vocabulary for all tasks. p0

j (1 < j ≤ L) is the
hidden states of the prompt tokens at the j-th layer.

4.2 Revisiting Random Projection

In the original BBT, each entry in the random
projection A is sampled from a uniform distribu-
tion (He et al., 2015). In their experiments, using
normal distribution N (0, 1/d) to generate the ran-
dom projection results in slow convergence and
inferior performance. However, we show in pilot
experiments that the uniform distribution exhibits
poor generalization on PTMs other than RoBERTa.
In this section, we shed some light on the effect
of the random projection, and propose to use nor-
mal distributions with model-related standard devi-
ations to generate random projections. In fact, most
prior works in high-dimensional DFO (Wang et al.,
2016; Qian et al., 2016) also adopt normal distribu-
tions to generate random projections. However,
they usually simply use N (0, 1) or N (0, 1/d),
both of which underperform in our scenario.

To take a closer look into the effect of the ran-
dom projection, we draw distribution of the initial
prompt p that is projected from z by the projec-
tion matrix A. Here, z is sampled from the normal

since it is usually a linear transformation and would not affect
the additive decomposition.

Figure 6: Distributions of RoBERTa word embeddings
and generated prompt p = Az where A is sampled
from different distributions. When using our designed
normal distribution to generate the random projection
A, the distribution of the projected prompt well matches
the shape of the word embedding distribution, leading
to faster convergence and stronger generalization.

distribution maintained by the CMA-ES, which is
initially set to N (0, 0.5) in BBT. By generating A
from different distributions, we simulate the dis-
tribution of the projected prompt p and compare
with the distribution of RoBERTaLARGE word em-
beddings.4 As revealed by Figure 6, when A is
sampled from the normal distribution used in the
original BBT, i.e.,N (0, 1/d), the projected prompt
p cannot cover the range of word embeddings, and
therefore suffers from slow convergence. In con-
trast, using uniform distribution can cover the range
of word embeddings, which explains why it per-
forms well on RoBERTaLARGE.

Thus, to generalize BBT (and BBTv2) across
different PTMs, we have to take into account the
distribution of word embeddings (and hidden states
for BBTv2) of the PTM for generating random
projections. In particular, we use the normal distri-
bution with standard deviation as follows,

σA =
ασ̂√
dσz

, (6)

where σ̂ is observed standard deviation of word
embeddings (or hidden states for BBTv2), σz is the
standard deviation of the normal distribution main-
tained by CMA-ES, α is a constant scalar to stretch
the distribution. Initially, we set µz = µA = 0
so that no prior knowledge about the optimization
direction is incorporated. The main idea behind the
above calculation is to match the distribution (more
specifically the variance) between the projected

4We hypothesis that a high-quality prompt p should lie
within the distribution of word embeddings (hidden states).
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prompt and word embeddings (or hidden states).
When α = 1, as we can see in Figure 6, the distri-
bution of the projected prompt can perfectly match
the distribution of the word embeddings. Detailed
derivation of Eq.(6) is provided in Appendix A.

5 Experiments

5.1 Datasets and Tasks

For comparison, we evaluate BBTv2 on the same
datasets as BBT, i.e., SST-2 (Socher et al., 2013),
Yelp (Zhang et al., 2015), AG’s News (Zhang et al.,
2015), DBPedia (Zhang et al., 2015), SNLI (Bow-
man et al., 2015), RTE (Wang et al., 2019), and
MRPC (Dolan and Brockett, 2005). SST-2 and
Yelp are sentiment analysis tasks, AG’s News
and DBPedia are topic classification tasks, SNLI
and RTE are natural language inference (NLI)
tasks, and MRPC is a paraphrase task. In addi-
tion, we include two Chinese tasks, ChnSent5 and
LCQMC (Liu et al., 2018), for evaluation on CPM-
2 (Zhang et al., 2021b), a Chinese PTM with∼11B
parameters. ChnSent is a sentiment analysis task
while LCQMC is a question matching task.

We follow the same procedure as Zhang et al.
(2021a); Gu et al. (2021); Sun et al. (2022b) to
construct the true few-shot learning settings (Perez
et al., 2021). In particular, we randomly draw k
samples for each class to construct a k-shot training
set Dtrain, and construct a development set Ddev by
randomly selecting another k samples from the
original training set such that |Dtrain| = |Ddev|. We
use the original development sets as the test sets.
For datasets without development sets, we use the
original test sets. Therefore, in our experiments we
have |Dtest| ≫ |Dtrain| = |Ddev|.

5.2 Baselines

We consider two types of methods as our baselines:
gradient-based methods and gradient-free methods.

For gradient-based methods, we compare with
(1) Model Tuning and state-of-the-art parameter-
efficient methods including (2) Adapter (Houlsby
et al., 2019), (3) BitFit (Zaken et al., 2022),
(4) LoRA (Hu et al., 2021), (5) Prompt Tun-
ing (Lester et al., 2021), and (6) P-Tuning v2 (Liu
et al., 2021b). We implement Adapter, BitFit, and
LoRA using OpenDelta6, and evaluate P-Tuning
v2 in our experimental settings based on the official

5https://github.com/SophonPlus/
ChineseNlpCorpus

6https://github.com/thunlp/OpenDelta

implementation7. The results of Model Tuning and
Prompt Tuning are taken from Sun et al. (2022b).

For gradient-free methods, we compare with two
non-learning prompt-based methods: (1) Manual
Prompt and (2) In-Context Learning (Brown
et al., 2020); two feature-based methods: (3)
Feature-MLP and (4) Feature-BiLSTM, which is
to train a MLP/BiLSTM classifier on the features
extracted by the PTM; and (5) BBT (Sun et al.,
2022b). The results of these gradient-free baselines
are taken from Sun et al. (2022b). One exception is
the performance of BBT on DBPedia. In the origi-
nal paper, BBT is performed given a larger budget
(20,000 API calls) on DBPedia for convergence. In
this work, we reimplement BBT on DBPedia with
the same budget (8,000 API calls) as other tasks
for fair comparison.

5.3 Implementation Details
Backbones. To compare with BBT, we mainly
use RoBERTaLARGE (Liu et al., 2019) as our back-
bone model. To verify the versatility, we also eval-
uate on other PTMs including BERTLARGE (Devlin
et al., 2019), GPT-2LARGE, BARTLARGE (Lewis
et al., 2020), and T5LARGE (Raffel et al., 2020). In
addition, we also evaluate BBTv2 on a supersized
Chinese PTM, CPM-2 (Zhang et al., 2021b), which
has ∼11B parameters.

Hyperparameters. Most of the hyperparameters
remain the same as BBT. We insert 50 continu-
ous prompt tokens at each layer. The subspace
dimensionality is set to 500. The CMA-ES with
population size of 20 and budget of 8,000 API calls
is applied to all the tasks. We adopt cross entropy
as the loss function. For generating random pro-
jections, we use normal distributions with standard
deviations calculated by Eq.(6) instead of uniform
distributions.

5.4 Results
Overall Comparison. As shown in Table 1,
BBTv2 outperforms BBT and other gradient-free
methods on 6/7 tasks. In contrast to BBT, the
improvement of BBTv2 mainly comes from DB-
Pedia, which has 14 classes, and hard entailment
tasks, namely MRPC and SNLI. On simple tasks
such as SST-2 and Yelp, BBT can perform on par
with BBTv2. When compared with gradient-based
methods, BBTv2 achieves the best result in av-
erage across the 7 tasks while maintaining much

7https://github.com/THUDM/P-tuning-v2
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Method Tunable SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE Avg.Params acc acc acc acc F1 acc acc

Gradient-Based Methods

Model Tuning 355M 85.39 ±2.84 91.82 ±0.79 86.36 ±1.85 97.98 ±0.14 77.35 ±5.70 54.64 ±5.29 58.60 ±6.21 78.88
Adapter 2.4M 83.91 ±2.90 90.99 ±2.86 86.01 ±2.18 97.99 ±0.07 69.20 ±3.58 57.46 ±6.63 48.62 ±4.74 76.31
BitFit 172K 81.19 ±6.08 88.63 ±6.69 86.83 ±0.62 94.42 ±0.94 66.26 ±6.81 53.42 ±10.63 52.59 ±5.31 74.76
LoRA 786K 88.49 ±2.90 90.21 ±4.00 87.09 ±0.85 97.86 ±0.17 72.14 ±2.23 61.03 ±8.55 49.22 ±5.12 78.01
Prompt Tuning 50K 68.23 ±3.78 61.02 ±6.65 84.81 ±0.66 87.75 ±1.48 51.61 ±8.67 36.13 ±1.51 54.69 ±3.79 63.46
P-Tuning v2 1.2M 64.33 ±3.05 92.63 ±1.39 83.46 ±1.01 97.05 ±0.41 68.14 ±3.89 36.89 ±0.79 50.78 ±2.28 70.47

Gradient-Free Methods

Manual Prompt 0 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56
In-Context Learning 0 79.79 ±3.06 85.38 ±3.92 62.21 ±13.46 34.83 ±7.59 45.81 ±6.67 47.11 ±0.63 60.36 ±1.56 59.36
Feature-MLP 1M 64.80 ±1.78 79.20 ±2.26 70.77 ±0.67 87.78 ±0.61 68.40 ±0.86 42.01 ±0.33 53.43 ±1.57 66.63
Feature-BiLSTM 17M 65.95 ±0.99 74.68 ±0.10 77.28 ±2.83 90.37 ±3.10 71.55 ±7.10 46.02 ±0.38 52.17 ±0.25 68.29
BBT 500 89.56 ±0.25 91.50 ±0.16 81.51 ±0.79 79.99⋆±2.95 61.56 ±4.34 46.58 ±1.33 52.59 ±2.21 71.90
BBTv2 12K 90.33 ±1.73 92.86 ±0.62 85.28 ±0.49 93.64 ±0.68 77.01 ±4.73 57.27 ±2.27 56.68 ±3.32 79.01

Table 1: Overall comparison on various language understanding tasks. We report mean and standard deviation of
performance over 3 different splits (§5.1). All of the results are obtained with pre-trained RoBERTaLARGE in the
16-shot (per class) setting. In each track, the best results are highlighted in bold and the second best results are
marked with underline. ⋆ We reimplement BBT on DBPedia given a budget of 8,000 API calls for fair comparison.

SST-2 AG’s News
(max seq len: 47) (max seq len: 107)

BBT BBTv2 BBT BBTv2

Accuracy 89.4 91.4 82.6 85.5

Training Time
PyTorch (mins) 14.8 11.0 28.3 25.0
ONNX (mins) 6.1 4.6 17.7 10.4

Memory
User (MB) 30 143 30 143
Server (GB) 3.0 3.0 4.6 4.6

Network
Upload (KB) 6 52 22 68
Download (KB) 0.25 0.25 1 1

Table 2: Comparison of BBT and BBTv2 on accuracy,
training time, memory use, and network load.

fewer tunable parameters. It is worth noting that
BBTv2, without any gradient-based components
(e.g., the pre-trained prompt embedding used in
BBT on entailment tasks (Sun et al., 2022b) or the
white-box prompt optimization required by Diao
et al. (2022)), is the first pure black-box method
that matches the performance of full model tuning
on various understanding tasks.

Detailed Comparison. In Table 2, we compare
BBTv2 with BBT in other dimensions than accu-
racy. In addition to the improvement in accuracy,
BBTv2 also confers faster convergence than BBT.
For fair comparison of training time, we perform
early stopping if the development accuracy does not
increase after 1,000 steps. We report training times
under two implementations, PyTorch (Paszke et al.,

2019) and ONNX Runtime8, on a single NVIDIA
GTX 3090 GPU. In terms of memory footprint and
network load, BBTv2 slightly increases the mem-
ory use on the user side and the amount of data to
be uploaded.

BBTv2 Across PTMs. To verify the universal-
ity of BBTv2 across PTMs, we also evaluate on
BERT, GPT-2, BART, T5, and CPM-2. As shown
in Table 3, BBTv2 achieves superior performance
over BBT on PTMs with varying architectures, i.e.,
encoder-only, decoder-only, and encoder-decoder
PTMs.9 In addition, we also verify the effective-
ness of BBTv2 on a supersized Chinese PTM,
CPM-2, which has ∼11B parameters. As shown
in Table 4, when using CPM-2 as the backbone,
BBTv2 outperforms full model tuning on two Chi-
nese tasks. The results of Vanilla PT, Hybrid PT,
and LM Adaption, which are three variants of
prompt tuning, are taken from Gu et al. (2021).

5.5 Ablations

Effect of Subspace Dimensionality. We explore
the subspace dimensionality d from 10 to 1000 us-
ing both BBT and BBTv2. The population size is
set to λ = 4 + 3 log(d) accordingly. Experimental
results on SST-2 and SNLI are demonstrated in Fig-
ure 7, from which we observe that: (1) Increasing
subspace dimensionality d generally confers im-
proved performance for both BBT and BBTv2, but

8https://onnxruntime.ai/
9We use the normal distribution (Eq.(6)) for BBT for gen-

eralizing to PTMs other than RoBERTa.
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LM Method SST-2 AG’s News DBPedia

Encoder-only PTMs

BERT
BBT 76.26 ±2.64 76.67 ±1.12 89.58 ±0.51

BBTv2 79.32 ±0.29 79.58 ±1.15 93.74 ±0.50

RoBERTa
BBT 89.56 ±0.25 81.51 ±0.79 79.99 ±2.95

BBTv2 90.33 ±1.73 85.28 ±0.49 93.64 ±0.68

Decoder-only PTMs

GPT-2
BBT 75.53 ±1.98 77.63 ±1.89 77.46 ±0.69

BBTv2 83.72 ±3.05 79.96 ±0.75 91.36 ±0.73

Encoder-Decoder PTMs

BART
BBT 77.87 ±2.57 77.70 ±2.46 79.64 ±1.55

BBTv2 89.53 ±2.02 81.30 ±2.58 87.10 ±2.01

T5
BBT 89.15 ±2.01 83.98 ±1.87 92.76 ±0.83

BBTv2 91.40 ±1.17 85.11 ±1.11 93.36 ±0.80

Table 3: Comparison of BBT and BBTv2 on the large
versions of BERT, RoBERTa, GPT-2, BART and T5.

Method Tunable ChnSent LCQMC
Params acc acc

Model Tuning 11B 86.1 ±1.8 58.8 ±1.8

Vanilla PT 410K 62.1 ±3.1 51.5 ±3.4

Hybrid PT 410K 79.2 ±4.0 54.6 ±2.3

LM Adaption 410K 74.3 ±5.2 51.4 ±2.9

BBTv2 4.8K 86.4 ±0.8 59.1 ±2.5

Table 4: Results on two Chinese tasks with CPM-2 as
the backbone PTM.

marginal effect is also observed when d > 100; (2)
BBTv2 almost always performs better than BBT
with the same subspace dimensionality.

Effect of Prompt Length. As reported in prior
work (Lester et al., 2021; Sun et al., 2022b), prompt
length can be a sensitive hyperparameter to model
performance. Hence, we explore the prompt length
from 5 to 100 using BBT and BBTv2. As shown
in Figure 7: (1) The optimal prompt length lies in
the range from 5 to 100 and varies across tasks; (2)
The effect of prompt length is somehow consistent
between BBT and BBTv2.

Effect of Model Scale. It has been demonstrated
that larger PTMs have a lower intrinsic dimension-
ality (Aghajanyan et al., 2021) and therefore, BBT
and BBTv2 should be more favorable to larger
PTMs. To verify this, we conduct experiments
on AG’s News using T5 (Raffel et al., 2020) with
varying scales, i.e., T5SMALL, T5BASE, T5LARGE,
and T5XL, corresponding to 60M, 220M, 740M,
and 3B parameters. As shown in Figure 8, in the
AG’s News 16-shot learning setting, the gradient-
based counterpart, namely deep prompt tuning

Figure 7: Ablation results on subspace dimensionality
and prompt length. We show mean and standard devia-
tion of performance over 5 different runs.

Figure 8: The power of scale for black-box tuning with
T5 on AG’s News. DPT: deep prompt tuning.

(DPT, Li and Liang (2021); Liu et al. (2021b);
Qin and Eisner (2021)), performs better than BBT
and BBTv2 on T5SMALL and T5BASE. When using
T5LARGE and T5XL, black-box tuning outperforms
DPT, demonstrating its power of scale.

6 Related Work

Parameter-Efficient Tuning (PET). PET is to
optimize only a small portion of parameters while
keeping the main body of the model unchanged.
PET has achieved comparable performance to full
model tuning when training data is sufficient (He
et al., 2021). The tunable parameters can be in-
jected into different positions of the PTM. Houlsby
et al. (2019) insert lightweight adapters to each
PTM layer; Lester et al. (2021) prepend continu-
ous prompt tokens to the input layer; Li and Liang
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(2021); Liu et al. (2021b) inject tunable prompt
tokens to hidden states of every layer; Zaken et al.
(2022) only optimize the bias-terms in the PTM;
Hu et al. (2021) learn to adapt attention weights via
low-rank matrices. Though the number of tunable
parameters is reduced, back-propagation through
the entire model is still required to calculate the gra-
dients to update the small portion of parameters. To
that end, gradient-free methods are also proposed
to optimize continuous prompt (Sun et al., 2022b;
Diao et al., 2022) or discrete prompt (Prasad et al.,
2022; Deng et al., 2022).

Prompt-Based Learning. Prompt-based learn-
ing is to formulate downstream tasks as a (masked)
language modeling task, and therefore reduces the
gap between PTM pre-training and fine-tuning (Liu
et al., 2021a; Sun et al., 2022a). The prompt can
be manually designed (Brown et al., 2020; Schick
et al., 2020; Schick and Schütze, 2021), mined
from corpora (Jiang et al., 2020), generated by gen-
erative PTMs (Gao et al., 2021), or be constructed
using gradient-guided search (Shin et al., 2020). In
this work, we also insert manually crafted textual
prompts into input samples but only optimize the
prepended continuous prompt tokens.

7 Conclusion

In this work, we present BBTv2, an improved ver-
sion of BBT (Sun et al., 2022b) with deep prompts
that are attached to every layer of the PTM. To
optimize the high-dimensional prompt parameters,
we propose a divide-and-conquer (DC) algorithm
combined with random projections to alternately
optimize the continuous prompt at each layer. Ex-
perimental results demonstrate that BBTv2, with-
out any gradient-based component, can achieve
comparable performance to state-of-the-art PET
methods and full model tuning while maintaining
much fewer tunable parameters.

Limitations

We summarize the limitations of this work as fol-
lows: (1) BBTv2 adopts a divide-and-conquer algo-
rithm to alternately optimize prompt at each PTM
layer. We use a unique CMA-ES optimizer, which
has two hyperparameters µz and σz, for the opti-
mization at each layer. As mentioned previously,
we set µz = 0 for not incorporating any prior to the
optimization direction. Therefore, we have totally
L (number of layers) hyperparameters for optimiza-

tion, i.e., [σ(1)
z , . . . , σ

(L)
z ]. For simplicity, we con-

strain the σz at different layers to be identical, i.e.,
σ
(1)
z = σ

(2)
z = · · · = σ

(L)
z . In addition, Eq.(6) in-

troduces another hyperparameter α, which can also
be different across different layers. Similarly, we
constrain α at all layers to be identical. Hence, in
contrast to BBT that has only one hyperparameter
for optimization, BBTv2 introduces an additional
hyperparameter and therefore increases the cost
for hyperparameter search. (2) We conduct experi-
ments on 9 language understanding tasks across 4
types (i.e., sentiment analysis, topic classification,
paraphrasing, and natural language inference) and
2 languages (i.e., English and Chinese). However,
the performance of BBTv2 on a wider range of
understanding tasks and generation tasks is still
under-explored. (3) We limit our work to few-shot
learning because the training data can be wrapped
into a single batch to be fed into the PTM such that
the model inference API is a deterministic func-
tion whose output only depends on the prompt. In
such a low-noise scenario, we can adopt the CMA-
ES to successfully perform optimization. In the
full data setting where the training samples are di-
vided into mini-batches, we need to explore other
derivative-free optimizers to handle the stochastic
(noisy) optimization. We leave the investigation of
adapting BBTv2 to a wider range of tasks and to
full data settings as future work, further removing
the remaining barriers to a gradient-free future.
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A Deviation of σ for Normal Distribution

Assume the variable z ∈ Rd is sampled from a
normal distribution N (µz, σz) that is maintained
by the CMA-ES, the random projection A ∈
RD×d is generated from another normal distribu-
tion N (µA, σA). Considering each entry of the
prompt pij =

∑
k Aikzkj , the variance is as fol-

lows,

V(
d∑

k=1

Aikzkj) =

d∑

k=1

V(Aikzkj)

+ 2
d−1∑

k=1

d∑

p=k+1

Cov(Aikzkj ,Aipzpj). (7)

Since A and z, and each entry in A and z are
independent random variables and therefore the
variance of

∑
k Aikzkj can be simplified as

V(
d∑

k=1

Aikzkj) =
d∑

k=1

V(Aikzkj) (8)

= dV(Aikzkj). (9)

It is easy to obtain that

V(Aikzkj) =V(Aik)V(zkj) + V(Aik)(E[zkj ])2

+ V(zkj)(E[Aik])
2 (10)

=σ2
Aσ

2
z + σ2

Aµ
2
z + σ2

zµ
2
A. (11)

Initially, we do not incorporate any prior on the
optimization direction of the embedding (or hidden
states) and therefore µA = µz = 0. So we have
V(Aikzkj) = σ2

Aσ
2
z . Combined with Eq.(9), the

variance of the entries in the randomly projected
prompt is as follows,

V(pij) = dσ2
Aσ

2
z . (12)

Ideally, we expect the generated prompt to lie
in a reasonable solution space (e.g., the space of
the embedding or hidden states) such that the em-
bedding (hidden states) added by the prompt can
still lie in a reasonable space. A natural idea is
to match the variance of the generated prompt p
and the embedding (or hidden states). Formally,
we expect that V(pij) = (ασ̂)2, where σ̂ is the
observed standard deviation of the embedding (or
hidden states) and α is a constant scalar that con-
trols the range (relative to that of the embedding
or hidden states) where p falls in. We can obtain a

recommendation value of the standard deviation of
the random projection, that is

σA =
ασ̂√
dσz

. (13)

In practice, α and σz are hyperparameters.10 It is
worth noting that the random projections are static
during the optimization process and therefore we
only need to observe the standard deviation of the
word embeddings and the hidden states at every
layer once at the beginning of the optimization. A
possible concern is that such observation breaks
the black-box and therefore it may be controversial
to call it "black-box tuning". We take a perspective
of feature-based approaches that views the embed-
dings and hidden states as features, which are the
outputs of the model. Thus, we do not really access
the inside information of the black-box model.

B Data Preprocessing

B.1 Statistics of Datasets

We list the statistics of the 7 English tasks and 2
Chinese tasks used in our experiments in Table 5.
Among the 9 tasks, 5 are single-sentence classifi-
cation tasks and 4 are sentence-pair classification
tasks. The types of the tasks range from sentiment
analysis, topic classification, paraphrase, and natu-
ral language inference (NLI).

Category Dataset Lang. | Y | |Train| |Test| Type

single-
sentence

SST-2 En 2 67k 0.9k sentiment
Yelp P. En 2 560k 38k sentiment
AG’s News En 4 120k 7.6k topic
DBPedia En 14 560k 70k topic
ChnSent Zh 2 6k 1.2k sentiment

sentence-
pair

MRPC En 2 3.7k 0.4k paraphrase
RTE En 2 2.5k 0.3k NLI
SNLI En 3 549k 9.8k NLI
LCQMC Zh 2 239k 8.8k NLI

Table 5: Statistics of datasets used in our experiments.
| Y |: number of classes. "En" means English and "Zh"
means Chinese.

B.2 Templates and Label Words

For both BBT and BBTv2, we convert input texts
X with pre-defined templates into X̃ , and convert
output labels Y into label words Ỹ , such that down-
stream tasks can be reformulated into a (masked)
language modeling task and therefore we can reuse

10The specific hyperparameters to reproduce the results
on each dataset can be found in our code: https://github.
com/txsun1997/Black-Box-Tuning.
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the pre-trained (masked) language modeling head.
In Table 6, we list the input and output formats for
different PTMs.

C Implementation Details

Clipping Hidden States In practice, we find that
the standard deviation σ̂ of hidden states (especially
at high layers) in some PTMs can be very large due
to a few outliers. As a result, our calculated σA
(Eq.(6)) becomes large accordingly, and therefore
the generated prompt has a wider range of values
than expected. To address this issue, we iteratively
clip hidden states into the range of µ̂ ± 3σ̂. We
perform clipping for 5 rounds and then compute
the standard deviation σ̂ of hidden states. Note that
the clipping is only performed for statistics but is
not applied during model forward compute.

D Additional Results

On Convergence of Normal Distributions Pre-
viously in Figure 4, we show that using our de-
signed normal distribution leads to better gener-
alization from training data to development data.
Nevertheless, as reported by Sun et al. (2022b),
using normal distributions can suffer from slow
convergence. Therefore, we compare the conver-
gence rates using random projections generated
from different distributions. As demonstrated in
Figure 9: (1) For BBT, the convergence rate of
using our designed normal distribution is signifi-
cantly faster than the normal distribution used in
the original BBT, and is comparable to uniform
distribution; (2) For BBTv2, using our normal dis-
tribution converges more stably on both SST-2 and
AG’s News. Especially, we observe that using our
normal distribution converges faster than uniform
distribution on AG’s News.

E Estimation of Memory Use and
Network Load

For measurement of memory footprint on user side,
we use psutil to monitor CPU memory when run-
ning CMA-ES. For memory footprint on service
side, we use nvidia-smi to monitor GPU memory
when serving PTM inference.

For estimation of network load, we measure
the amount of data to be uploaded and down-
loaded. For BBT and BBTv2, there are two
kinds of data to be uploaded: (1) training sam-
ples, and (2) continuous prompt. A training sam-
ple is comprised of two parts: input_ids and

Figure 9: Comparison of convergence rates with random
projections with different distributions. When using
our designed normal distribution to generate random
projections, both BBT and BBTv2 achieve fast and
stable convergence.

attention_mask. We can use the unsigned short
(representation range: 0∼65535, 2 bytes per value)
for input_ids and use the bool type (1 byte
per value) for attention_mask. For continuous
prompt, which contains hundreds of values for
BBT or tens of thousands of values for BBTv2,
we can use the float type (4 bytes per value) for
representation. Take SST-2 16-shot split as an ex-
ample, the input_ids and attention_mask are
in shape of 32 × 47, where 32 is the batch size
and 47 is the maximum sequence length, so there
are ∼2.9KB data for input_ids and ∼1.5KB data
for attention_mask. Assume the subspace di-
mensionality is 500, we need to upload additional
∼2KB data for prompt if using BBT and ∼48KB
data if using BBTv2. The data to be downloaded is
the output logits of the candidate words, which is a
dictionary containing | Y | float values. Take SST-
2 16-shot split as an example, the size of data to be
downloaded is 32× 2× 4bytes = 0.25KB. We as-
sume the random projections are generated on the
server side therefore there is no need to download
hidden states to compute standard deviations for
users.
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Dataset Input Output

Backbone: RoBERTa, BERT, BART

SST-2 ⟨P ⟩ ⟨S⟩. It was [MASK] great, bad
Yelp P. ⟨P ⟩ ⟨S⟩. It was [MASK] great, bad
AG’s News ⟨P ⟩ [MASK] News: ⟨S⟩ World, Sports, Business, Tech

DBPedia ⟨P ⟩ [Category: [MASK]] ⟨S⟩ Company, Education, Artist, Athlete, Office, Transportation, Building,
Natural, Village, Animal, Plant, Album, Film, Written

MRPC ⟨P ⟩ ⟨S1⟩ ? [MASK], ⟨S2⟩ Yes, No
RTE ⟨P ⟩ ⟨S1⟩ ? [MASK], ⟨S2⟩ Yes, No
SNLI ⟨P ⟩ ⟨S1⟩ ? [MASK], ⟨S2⟩ Yes, Maybe, No

Backbone: GPT-2

SST-2 ⟨P ⟩ ⟨S⟩. The sentiment is positive, negative
AG’s News ⟨P ⟩ ⟨S⟩. The news above is about world, sports, business, tech

DBPedia ⟨P ⟩ ⟨S⟩. The text above is about
company, education, artist, athlete, office, transportation, building,
natural, village, animal, plant, album, film, written

Backbone: T5

SST-2 ⟨P ⟩ ⟨S⟩. It was [X] [X] positive/negative
AG’s News ⟨P ⟩ [X] News: ⟨S⟩ [X] World/Sports/Business/Tech
DBPedia ⟨P ⟩ [Category: [X]] ⟨S⟩ [X] Company/Education/Artist/Athlete/Office/Transportation/Building/...

Backbone: CPM-2

ChnSent ⟨P ⟩ ⟨S⟩。总之很[X]。 [X]好 /差
LCQMC ⟨P ⟩判断：⟨S1⟩和⟨S2⟩两句话的意思是[X]的。 [X]矛盾 /相似

Table 6: Input templates and output label words used in our experiments. ⟨P ⟩ is a sequence of continuous prompt
tokens. ⟨S⟩ is the original input text. For BART, which outputs denoised input in an auto-regressive fashion, we
only use the prediction of the masked position such that it follows the same output format as BERT and RoBERTa.
For T5 and CPM-2, [X] is a special token similar to [MASK].
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