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Abstract
In the presented study, we discover that the so-
called “transition freedom” metric appears su-
perior for unsupervised tokenization purposes
in comparison to statistical metrics such as mu-
tual information and conditional probability,
providing F-measure scores in range from 0.71
to 1.0 across explored multilingual corpora. We
find that different languages require different
offshoots of that metric (such as derivative, vari-
ance, and “peak values”) for successful tok-
enization. Larger training corpora do not neces-
sarily result in better tokenization quality, while
compressing the models by eliminating statis-
tically weak evidence tends to improve perfor-
mance. The proposed unsupervised tokeniza-
tion technique provides quality better than or
comparable to lexicon-based ones, depending
on the language.

1 Introduction

Unsupervised language learning, framed as a prob-
lem of language modeling based on unannotated
corpora, has attracted great attention in recent
years, having achieved significant results with
transformer-based models such as BERT and GPT
that rely on deep neural networks (DNNs) (Vaswani
et al., 2017; Brown et al., 2020). At the same
time, the idea of unsupervisedly learning a lan-
guage grammar represented “interpretably” via a
formal grammar such as Link Grammar has been
suggested by Vepstas and Goertzel (2014). Kolonin
(2015) proposed yet another approach for the prob-
lem: using so-called “deep patterns” with hierar-
chical “symbolic” grammatical pattern structures
learned from texts as a way to model grammars
and ontologies for natural languages suiting a wide
range of practical applications. Further studies on
this path performed by Glushchenko et al. (2018,
2019) have indicated the possibility of learning
grammars as well as domain ontologies given high-
quality parse trees of texts obtained from unanno-
tated training corpora. Unfortunately, the critical

part of the pipelines described in the aforemen-
tioned studies was the unsupervised generation of
the parses, which turned out to be low-quality by
virtue of being based on simple “minimum span-
ning trees” either based on mutual information
(MI) (see Yuret, 1998) or “contextual information”
(see Glushchenko et al., 2019) extracted from a
BERT-based deep learning model (Vaswani et al.,
2017). Still further studies by Ramesh and Kolonin
have demonstrated the possibility of building dif-
ferent natural language processing (NLP) applica-
tions based on a language model represented by a
formal grammar (Link Grammar in the explored
cases) (Ramesh and Kolonin, 2020, 2021, 2022).
Throughout the course of these studies, the con-
cept of “interpretable natural language processing”
(INLP) has been introduced to indicate the domain
of NLP explorations involving both the learning
of language models represented in an interpretable
form and the application of these models to dif-
ferent tasks such as text segmentation, language
generation, and question answering.

Yet another problem which has its place in
the case of conventional language model learn-
ing based on DNNs (see Vaswani et al., 2017;
Brown et al., 2020) as well as in relation to in-
terpretable unsupervised language learning (see
Kolonin, 2015; Glushchenko et al., 2018, 2019) is
tokenization. In most cases, tokenization is based
on predetermined rules and dictionaries, which
does not quite fit the “grand plan” of completely un-
supervised language learning from scratch with no
prior knowledge of the language, including its lexi-
con and punctuation (Vepstas and Goertzel, 2014).
Thus, the objective of our proposed study is to eval-
uate the possibility of learning the sets of tokens
representing both punctuation and lexicons without
any prior knowledge regarding the language, so
that the set of valid combinations of letters or char-
acters specific to punctuation marks or valid lexical
entities such as words for a language is learned
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along with the tokenization process.

Starting points were found in works of Kearsley
(2016) and Wrenn et al. (2007), who explored the
possibility of unsupervised segmentation applied to
different languages and domain-specific literature.

The former work (see Kearsley, 2016) provides
an exhaustive overview of different tokenization
techniques applied to different languages, explor-
ing different methods and metrics. Unfortunately,
the F1 scores reported in this work for completely
unsupervised tokenization based on statistical mea-
sures appear not high enough, so we further follow
this approach in order to outperform these scores
on the set of languages relevant and available to
us—English, Russian, and Simplified (Mainland)
Chinese—focusing on unsupervised tokenization
only.

The latter work (see Wrenn et al., 2007) focuses
on unsupervised tokenization based on statistical
measures such as conditional probability (CP) as
well as introduces the so-called “freedom of transi-
tion” (we henceforth call it “transition freedom” or
TF) metric, which appears fundamentally consis-
tent with the notion of “free energy” suggested by
Friston (2010) as a key for an artificial intelligence
concept. TF in the context of Wrenn et al.’s (2007)
work corresponds to the number of symbolic states
(characters, letters, or N-grams) that follow or pre-
cede the current state. Then, a sharp increase
of the TF level along the temporal sequence of
states might correspond to a loss of Friston’s (2010)
“equilibrium,” and so “tokens” might be considered
as chains of states resting in conditions of mutual
equilibrium framed with transitions, with loss of
this equilibrium marked by the TF level bursts. Fur-
thermore, we explore both statistical measures and
TF metrics, finding the latter substantially more
practical. In particular, we explore different met-
rics based on CP and TF such as derivative, vari-
ance, and “peak values” as introduced in Wrenn
et al.’s (2007) work (which indicate expressed local
maximums on the derivative curve along the text
being tokenized).

Interestingly, Kearsley (2016) writes that,
“Given that the human ability to successfully read
any natural language provides an existence proof
that a generalized segmentation system (as imple-
mented in the human mind) is possible, it is rea-
sonable to investigate the feasibility of a language-
agnostic segmentation system that could be easily
integrated into larger natural language processing

systems.” Extending this statement, we anticipate
that advances in this area could be also beneficial
to deal with any sequential data such as flows of
events and states in experiential or reinforcement
learning. In particular, the “global feedback” con-
cept suggested in Kolonin’s (2022) work demon-
strates good learning rates in cases when the cog-
nitive schema leading to the feedback or reward
can be reliably associated with entire sequences of
preceding actions, which is difficult to deal with in
existing reinforcement learning frameworks. The
ability to segment sequences of cognitive experi-
ences unsupervisedly might potentially advance re-
search on experiential and reinforcement learning
with delayed reward or with no explicit feedback
in any subject domain beyond NLP. The impor-
tance of the latter goal is also outlined in Gopalakr-
ishnan et al.’s (2022) work, where it was stated
that the “discovery of reusable sub-routines sim-
plifies decision-making and planning in complex
reinforcement learning problems.”

As will be presented further, we find the TF to
be superior over MI (see Glushchenko et al., 2018,
2019; Yuret, 1998; Kearsley, 2016) and CP (see
Wrenn et al., 2007) for the task of unsupervised
text segmentation (tokenization). We find that the
English and Russian languages require one specific
way of handling the TF (variance) while Chinese
requires a slightly different way (derivative-based
“peak values”) for the same purpose. Tokenization
quality for English and Russian may have F1 scores
as high as 0.96-1.0 depending on training and test-
ing corpora, while for Chinese the best score is
F1 = 0.71 with precision of lexical word discovery
reaching 0.92. Larger training corpora do not nec-
essarily result in better tokenization quality, while
compressing the models by eliminating statistically
weak evidence typically improves the quality. Un-
supervised TF-based tokenization provides quality
that is the same as or better than lexicon-based
tokenization for English and Russian, while for
Chinese it appears to be the opposite (as could be
anticipated); however, the precision of lexicon dis-
covery for Chinese using TF-based tokenization
appears close to reference tokenization.

2 Data Sets

We have used different training data sets for three
different languages (English, Russian, and Chi-
nese), while the same parallel corpus has been used
for testing.
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For English training corpora we have used the
Brown (http://www.sls.hawaii.edu/ble
y-vroman/brown_nolines.txt), Gutenberg
(https://www.gutenberg.org) Children, and
Gutenberg Adult collections, as well as mixed col-
lections such as Gutenberg Children and Adult
blended together and all three corpora blended to-
gether. The sizes of the above corpora are 6M,
29M, and 140M, respectively.

For Russian training corpora we have used the
RusAge collection (https://www.kaggle.com/d
atasets/oldaandozerskaya/fiction-corpus-
for-agebased-text-classification) as two
separate pieces: Test (141M size) and Previews
(825M size), each used as an independent training
corpus.

For Chinese training corpora we have used the
CLUE Benchmark News 2016 dataset (https:
//github.com/brightmart/nlp_chinese_cor
pus), which contains two pieces: Train and Valida-
tion. Each piece was used as an individual training
dataset. The raw data encoded in JSON format have
been processed so that title, desc, and content
fields were extracted individually and each of the
three fields was saved on a separate line in the text
file used as input for further processing. After such
preprocessing, we obtained an 8, 500M-size train-
ing dataset and a 270M-size Validation dataset.

For the test corpus across all three lan-
guages above, we have used a parallel Chi-
nese/English/Russian corpus of 100 multi-sentence
statements within the financial domain, as de-
rived from the dataset released by Magic Data
(https://magichub.com/datasets/chines
e-english-parallel-corpus-finance). The
original corpus is parallel Chinese/English, but the
Russian version of all 100 statements have been
added with the help of Google Translate, with Chi-
nese proper names manually replaced with Russian
or English proper names used in the appropriate
subject domain context.

English and Russian reference lexicons have
been obtained from the Aigents/Pygents open
source project: English (https://raw.github
usercontent.com/aigents/aigents-java/m
aster/lexicon_english.txt), Russian (https:
//raw.githubusercontent.com/aigents/aige
nts-java/master/lexicon_russian.txt).

A few different Chinese lexicons were obtained
for reference: Chinese Lexical Database, or CLD
(http://www.chineselexicaldatabase.com

/download.php) (see Sun et al., 2018); BLCU
Chinese Corpus, or BLC (https://www.plec
oforums.com/threads/word-frequency-lis
t-based-on-a-15-billion-character-co
rpus-bcc-blcu-chinese-corpus.5859); and
SUBTLEX-CH (http://crr.ugent.be/progr
ams-data/subtitle-frequencies/subtlex-
ch).

3 Exploration Methodology

3.1 Overview
Our study involved the following phases:

• Models were trained on each training corpora
across all three languages.

• Tokenization was performed for each of the
languages with the models created in the
previous phase, using different training cor-
pora with different metrics and hyperparame-
ters as will be discussed further. The same
parallel test corpus was used for each lan-
guage. While performing tokenization, F1

scores were evaluated for every set of hyper-
parameters and selected metrics, comparing
the tokenization outputs with the outputs of a
“standard” lexicon-based reference tokenizer.
At this point, the corpora and sets of hyper-
parameters leading to the best F1 scores per
language have been identified.

• The tokenization configurations correspond-
ing to “winning” (superior) F1 scores were
evaluated in comparison to the reference
lexicon-based tokenizer specific to each of
the three languages.

• The winning configurations were evaluated
based on precision of lexicon discovery. This
process included determining the fraction of
tokens identified by the best unsupervised tok-
enizer setup that actually correspond to entries
in reference lexicon dictionaries for each lan-
guage.

3.2 Model Structure and Building
Each of the models created for a corpus was rep-
resented by three pieces, based on N-grams with
N in range from 1 (unigrams or individual charac-
ters/letters) to Nmax (up to 7, according to discus-
sion in Wrenn et al.’s (2007) work), with the latter
being one of the hyperparameters discussed further.
These pieces are described below.
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• N-gram frequencies or counts of N-grams ex-
perienced through the corpus.

• Counts of all N-grams appearing after every
specific N-gram (we call them “forward tran-
sitions”).

• Counts of all N-grams appearing before ev-
ery specific N-gram (we call them “backward
transitions”).

The model building process has been applied to
corpus data on a line-by-line basis according to
the original text layout of the corpora, without any
other preprocessing.

For transition counts, two different models were
built for every language corpus. First, there was
N-gram-to-symbol counts, where the number of
single symbols (unigrams) following or preced-
ing every possible N-gram were counted. Second,
there was N-gram-to-N-gram transitions, where
the number of N-grams following or proceeding a
given N-gram were counted (N being the same).
Preliminary studies on English corpora run at the
beginning of our exploration have shown inferior
performance of the latter kind of models, so further
studies involved the N-gram-to-symbol models
only.

The value of N varied from 1 to 7 for each lan-
guage except Chinese, where Nmax = 3 for the
smaller Validation dataset and Nmax = 2 for the
larger Training dataset due to memory restrictions
of 32G RAM which made it impossible to process
larger models for Chinese corpora.

The described model of a language based on
given corpora can be represented as a bidirected
graph, with transitions on graph edges pointing
both forward and backward independently. Every
symbolic unit was involved in multiple overlaid
subgraphs due to multiple contexts represented by
embedding the same N-gram in multiple transitions
on the graph as well as by embedding N-grams of
lower rank into multiple N-grams of higher rank.
The bidirected graph was weighted by frequency
counts associated with vertices corresponding to
N-grams as well as with edges corresponding to
transitions. The same graph might be viewed in
three ways: as an excessive container including a
graph-based grammatical model expressed in a for-
mal grammar such as Link Grammar (Vepstas and
Goertzel, 2014; Glushchenko et al., 2018, 2019);
as a bottom layer of the heterarchical system of

“deep patterns” which can be used to infer higher-
level abstractions (Kolonin, 2015); or as a set of
interconnected symbolic “instances” underlying an
abstract higher-level language model consisting of
interconnected symbolic “invariants” correspond-
ing to parts of speech (Vityaev et al., 2022).

3.3 Tokenization Methods and Metrics

The following tokenization methods and respective
metrics were used:

• Greedy aggregation of symbols into tokens ac-
cording to the mutual information computed
for pairwise symbol associations, as described
by Yuret (1998) and Kearsley (2016). This did
not work well in the initial cursory study on
English corpora (proper English words were
systematically broken into pieces), so it was
not further considered as a tokenization ap-
proach.

• Probability (P) of an N-gram. N-grams
with lexicon-wise probabilities above certain
thresholds serve as delimiters breaking the
stream of symbols into tokens.

• Conditional Probability (CP) computed on
derivatives of N-gram-to-N-gram transitions
in both forward and backward directions as
described by Kearsley (2016) and Wrenn
et al. (2007), with local maximums on
N-gram-to-N-gram transitions correspond-
ing to token breaking points.

• CP variance, the difference between the CP
and its mean value for a given input sequence.

• Transition Freedom (TF), the number of possi-
ble transitions on forward or backward model
graph traversal at a specific N-gram accord-
ing to methodology described by Wrenn et al.
(2007), with values exceeding the threshold
breaking the stream of symbols into tokens.

• TF variance, defined as the difference between
the TF and its mean value for a given input
sequence.

• TF derivative in both directions, with local
maximums on N-gram-to-N-gram transitions
corresponding to token breaking points.

• TF “peak values” defined in Wrenn et al.’s
(2007) work as a value of TF derivative on
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Figure 1: Using probabilities (p) and derived metrics
such as variance (dvp) and derivatives in forward (dp+)
and backward (dp-) traversals. It is clearly seen that
punctuation marks cannot be isolated from words.

the previous transition minus the value of TF
derivative on the following transition. Such
peak values outline sharp positive extremums
of the TF curve along the processed sequence
of N-grams, indicating the token boundaries.
They can be interpreted as negative second
derivatives shifted one point back.

• Lexicon-based tokenization in “greedy” mode,
so that either the longest or most frequent to-
ken entry present in the language-specific lex-
icon dictionary is identified as a next token
when traversing the input text forward from
left to right (blending the two criteria of length
and the logarithm of frequency has also been
explored). As this is not an unsupervised ap-
proach, being based on a pre-created lexicon,
this tokenization was used only for reference.

• Reference “hardcoded tokenizer” used to as-
sess the F1 scores of the unsupervised tok-
enizer. In the cases of English and Russian,
it was a simple text splitter based on white
spaces with quotes, brackets, periods, com-
mas, semicolons, and other punctuation sym-
bols detached from the split token sequence.
For Chinese, it was the Jieba Tokenizer, which
uses a combination of hardcoded rules, built-
in dictionaries, and probabilistic measures
(Jiang and Li, 2018).

For all methods relying on CP and TF metrics
above, two alternative ways of identifying token
boundaries are possible. First, as suggested by
Wrenn et al. (2007), the “mean” metric is com-
puted on forward and backward traversals over the

Figure 2: Using conditional probabilities (p) and de-
rived metrics such as derivative in forward (dp+) and
backward (dp-) transitions and variance (dvp+ and dvp-,
respectively) computed on bigrams. It is clearly seen
that punctuation marks cannot be isolated from words,
and some of the words are disassembled into pieces.

Figure 3: Using transition freedoms in forward (f+)
and backward (f-) directions and their variances (dvf+
and dvf-) computed on unigrams. All words as well as
punctuation marks are identified clearly, with threshold
values of 0.25 and 0.35.

sequence of N-grams referring to corresponding
subgraphs in the model. Second, the token break
is identified as a metric derived from either P, CP,
or TF exceeding the threshold on either forward or
backward transitions along the text (i.e., the “max”
was used instead of the “mean”). Cursory checks
across corpora have shown that the “mean” method
is not quite reliable compared to the “max” alter-
native, so the latter method was used in the studies
presented below.

In trying to reach superior F1 scores during the
studies, we also explored if it would help to “com-
press” the model by eliminating edges on the graph
with weights below a certain threshold measured
relative to the maximum N-gram or transition fre-
quency in the local subgraph segment—that is, if
a model derived from the raw model with removal

3653



Figure 4: Using TF derivatives in forward (df+) and
backward (df-) directions and their “peak values” (peak+
and peak-) computed on unigrams. Some words are
not identified clearly and punctuation marks are not
separated. Threshold values are 0.25 and 0.35.

Figure 5: Variances of transition freedoms in forward
(dvf+) and backward (dvf-) directions with N-grams of
varying N -values. It is clearly apparent that N = 1 al-
lows for the most accurate identification of whitespaces
as well as punctuation marks.

of all low-frequency N-grams and low-frequency
transitions for any given N-gram can increase F1.

3.4 Tokenization F1 Score and Precision of
Lexicon Discovery

F1 scores were calculated to evaluate our unsu-
pervised tokenizer by comparing its performance
to that of the reference tokenizer based on “hard-
coded” logic. The scores were computed based
on a non-unique set of tokens with counted occur-
rences (e.g., each repetition of the determiner “the”
in a tokenized text is considered separately).

The other evaluative metric we used was the un-
supervised tokenizer’s capacity to discover lexical
entities for an unknown language, called precision
of lexicon discovery. This metric was evaluated as
the ratio of all tokens found in an input text present
in a reference lexicon dictionary to the total number

of tokenized entries.

3.5 Tokenization Hyperparameters
As mentioned above, there were a few hyper-
parameters explored in further experiments on un-
supervised tokenization in a unified manner across
all three languages studied:

• Tokenization metric: use either P/CP or TF
as a base metric and then use either the base
metric value itself or an offshoot of it such as
variance, derivative, or “peak value.”

• The combination of N ranks used to perform
model graph traversal and the “mean” met-
ric computation based on a specified subset
of N-grams. We have explored every possi-
ble individual value of N as well as arbitrary
combinations of N -values.

• Model compression threshold used to remove
low-frequency N-grams (corresponding to ver-
tices and transitions between them on the
model graph). We have used the following
values: 0.0 (corresponding to no compression
at all), 0.0001, 0.001, 0.01, and 0.1.

• Tokenization metric threshold: the value of a
metric exceeding this level would correspond
to a token boundary. We have used the fol-
lowing values: 0.0001, 0.0005, 0.001, 0.005,
0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9.

“Grid search” was employed to find the best
configuration of these four hyperparameters—that
is, the setup providing superior F1 scores.

The “winning” configuration of the hyperparam-
eters obtained for the full test set of 100 sentences
per language was validated as follows: independent
splits of the test set into two sets of 50 sentences
obtained nearly the same results for the same com-
binations of hyperparameters without changing the
configuration.

4 Experimental Results

4.1 English
We obtained a maximum tokenization F1 score
of 0.99 using the TF variance metric after train-
ing on the smallest Brown corpus; N = 1 (uni-
grams); model compression thresholds of 0.0001
and 0.001; and tokenization thresholds of 0.4 and
0.5. Using larger or blended corpora allowed for

3654



Figure 6: Heat-maps rendering F1 scores obtained for
unsupervised tokenization after training on the Brown
corpus with no model compression (top) and model
compression with a threshold of 0.0001 (bottom) with
different combinations of N (vertical axes) and different
tokenization thresholds (horizontal axes). It is seen that
the highest F1 scores above 0.96 correspond to models
compressed with threshold 0.0001, N = 1 (unigrams),
and tokenization thresholds from 0.3 to 0.4. Model
parameters are indicated in the plot titles, where each
parameter corresponds to the weight or frequency count
for either N-grams or transitions between N-grams.

F1 scores above 0.93 but below 0.99 with similar
hyperparameter configurations.

Lexicon-based tokenization in “greedy” mode,
driven by token lengths, provided the same level
of performance with F1 = 0.99, after having de-
limiting symbols added to the reference lexicon
dictionary.

Precision of word discovery with unsupervised
tokenization turned out to be 0.99 (after correction
for proper English words missed in the reference
lexicon dictionary)—a result comparable to refer-
ence delimiter-based tokenization (1.0). The 0.01
error was caused primarily by the unsupervised
tokenizer’s inability to recognize question marks
attached to the ends of words as separate tokens.
This expectedly might be solved with larger cor-
pora involving a greater variety of question marks
included in different contexts, because all other
punctuation marks have been identified correctly
as separate tokens.

4.2 Russian

We obtained a maximum tokenization F1 score of
1.0 using the TF variance metric after training on
any corpora; N = 1 (unigrams); a model compres-
sion threshold of 0.0001 for all training corpora
(and even no compression at all for smaller cor-
pora); and a tokenization threshold of 0.7.

Lexicon-based tokenization in “greedy” mode
provided a lower level of performance (F1 = 0.94)
due to the words missed in the lexicon, after having

Figure 7: Heat-maps rendering F1 scores obtained for
unsupervised tokenization after training on the Chinese
CLUE Benchmark News 2016 corpus with no model
compression (top) and model compression thresholds
from 0.0001 to 0.1 (top down) with different combi-
nations of N (vertical axes) and different tokenization
thresholds (horizontal axes).

delimiting symbols added to the reference lexicon
dictionary.

Precision of word discovery with unsupervised
tokenization turned out to be 1.0 (after correc-
tion for proper Russian words missed in the refer-
ence lexicon dictionary), equal to that of reference
delimiter-based tokenization.

4.3 Chinese
We obtained a maximum tokenization F1 score of
0.71 using the TF “peak” metric; N = 2 (bigrams);
model compression thresholds of 0.001 on larger
training corpora; and any tokenization threshold
between 0.0 and 0.05, inclusive. Unfortunately, we
were not able to explore N-grams with N > 3 for
smaller lexicons and N > 2 for larger lexicons due
to the 32G memory limit on our model, which was
implemented in Python using plain dictionaries for
graph model storage.

Lexicon-based tokenization in “greedy” mode
provided a higher level of performance (F1 =
0.83).

Regardless, it seems that the mistakes made by
the tokenizer for Chinese tests did not significantly
impact the meaning of the tokenized output, assum-
ing that translations of alternative combinations of
symbols looked up in Google Translate were accu-
rate (the authors have minimal firsthand knowledge
of the Chinese language).

5 Conclusion

F1 scores for TF-based unsupervised tokeniza-
tion—for English and Russian, especially—appear
high enough for this technique to inform future
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Language Tokenizer Tokenization F1 Lexicon Discovery Precision
English Freedom-based 0.99 0.99 (vs. 1.0)
English Lexicon-based 0.99 -
Russian Freedom-based 1.0 1.0 (vs. 1.0)
Russian Lexicon-based 0.94 -
Chinese Freedom-based 0.71 0.92 (vs. 0.94)
Chinese Lexicon-based 0.83 -

Table 1: Summary of the presented research on tokenizers relying on Transition Freedom (“Freedom-based”) or
on loaded lexicons (“Lexicon-based”). The last column provides reference numbers for rule-based tokenizers
(models based on hardcoded rules)/hybrid tokenizers (models combining hardcoded rules, lexicons, and/or statistical
measures such as mutual/conditional probabilities) in parentheses. English: Both tokenization and lexicon discovery
are solved with freedom-based tokenizers no worse than with lexicon-based ones (F1 and Precision = 0.99).
Russian: Both tokenization and lexicon discovery tasks are solved better (F1 and Precision = 1.0) with freedom-
based tokenizers than with lexicon-based ones (F1 = 0.94). Chinese: Tokenization is solved less accurately by
freedom-based tokenizers than by lexicon-based ones (0.71 vs. 0.83). However, freedom-based tokenizers perform
lexicon discovery relatively well compared to rule-based/hybrid tokenizers (0.92 vs. 0.94).

Figure 8: Using transition freedoms in forward (f+)
and backward (f-) directions computed on bigrams for
Chinese. All proper words and punctuation marks are
identified clearly with a threshold value of 0.15 (top
chart). When probabilities (p+ and p- on the bottom
chart) computed on bigrams are used, the Chinese pe-
riod “。” is not correctly identified as a separate token
(rightmost bounding box at the bottom); however, the
“token” containing these two symbols still appears se-
mantically valid in the broader context of the sentence
(“is true” makes sense as used above). As with ques-
tion marks in English, this problem might be solved
using richer training corpora with a greater diversity of
contexts in which the given punctuation is used.

experiments in self-reinforcement learning or inter-
pretable unsupervised grammar/language learning.

A new state-of-the art (SOTA) baseline for un-
supervised tokenization has been introduced. This
baseline may be further reinforced by increasing
the complexity and richness of the test corpora.

Optimal thresholds and offshoots of the TF met-
ric vary by language. The process and policy of
their discovery and adjustment in an unsupervised

manner should be further explored.
Hybridization of TF-based tokenization ap-

proaches with lexicon-based ones might be efficient
for low-resource and domain-specific languages.

Further unsupervised grammar learning experi-
ments, advancing earlier studies such as those by
Glushchenko et al. (2018) and Glushchenko et al.
(2019), can be run on the basis of our proposed
unsupervised tokenization framework.

Using TF-based segmentation to identify natural
boundaries of states and actions for the applica-
tion of “global feedback” may be explored in the
context of reinforcement or experiential learning
environments such as in Kolonin’s (2022) work,
including ones with delayed/sparse reward.

Limitations

The following limitations are known and should be
considered when applying the results of this work
or relying on them in future studies:

• In some cases, tokenization with N = 1 will
not work (e.g., decimal points and dots in
web addresses are used as token boundaries).
This might be improved with N > 1, but
given the slightly worse performance of such
a setup on the explored test set, further studies
are needed. Potentially, the notion of “broad
tokenization context” (a variant of Vaswani
et al.’s (2017) “attention” concept) should be
introduced to scale the proposed technology
when dealing with richer test corpora.

• The test corpus of 100 sentences covers a
quite limited subject domain (personal fi-
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nance), so evaluation on larger and richer cor-
pora is recommended for further studies and
applications.

• While the use of unsupervised parsing based
on MI has been found impractical, no full-
scale evaluation of this approach has been per-
formed, so no firm claim of its futility can
be made; it should be explored and verified
further.

• While the use of TF “peak values” has been
explored, no similar “peak values” have been
systematically tried for CP (Kearsley, 2016;
Wrenn et al., 2007). Cursory checks rendering
low performance of CP offshoots for English
and Russian tests indicate that CP “peak val-
ues” will not be useful, but a more systematic
study is needed for final confirmation.

• The lack of available memory (32G) made it
impossible to explore N > 3 for the smaller
Chinese training corpus and N > 2 for the
larger corpus. While the smaller Chinese cor-
pus has shown N = 2 providing higher scores
compared to N = 1, and the larger Chinese
corpus has shown N = 2 to be likewise supe-
rior, it would be best to confirm this by testing
tokenization with N = 3 on the larger corpus
with a >32G memory limit.

• The authors’ lack of Chinese knowledge has
prevented reliable interpretations of and judg-
ments regarding the tokenization F1 score,
so further exploration involving Chinese tok-
enization might be required for a more reliable
assessment of the presented study’s applica-
bility to the Chinese language.

Ethics Statement

The presented work appears to have an immediate
ethical benefit, due to its contribution to increased
inclusiveness in respect to cultures relying on so-
called “low-resource” languages and dialects which
cannot easily be studied via contemporary linguis-
tic approaches. Presumably, the proposed technol-
ogy might simplify the study of such languages,
providing initial lexicon dictionaries based on raw
field data and thereby opening the way for further
studies of these languages and their grammars.

The other long-term positive ethical impact is
associated with the “interpretable” nature of this
work. Our model contributes to the movement

towards open, transparent, and human-friendly lin-
guistic models that can be developed for any human
language and delivered to production, thereby pre-
cluding “black-box” NLP models from potentially
decreasing quality of life.

No negative ethical impacts appear to be con-
nected with this work.
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A Additional Experiments

A.1 Symbol Category Clustering

A.1.1 Exploration Methodology
We have tried to explore the extent to which our
TF-based model can be used to identify categories
of different symbols. For this purpose, we have per-
formed agglomerative clustering of symbols into
a dendrogram based on the similarity of symbols
(N-grams with N = 1) stored in the model in the
vector space of their adjacent transitions both in
forward and backward transitions, based on Cosine
and Jaccard similarity measures.

A.1.2 Experimental Results
Symbol category clustering experiments have
shown a general ability to identify proper groups
of English and Russian symbols and letters as well
as universal language-agnostic punctuation marks.
It is interesting that, even using the Russian corpus,
the model was able to properly categorize English
letters. It is even more interesting that the symbol
category trees for English, when obtained while
relying on the Russian corpus, had a cleaner sep-
aration of vowels and consonants into individual
tree branches, as well as cleaner categorization of
punctuation marks (like opening/closing brackets
and quotation marks), digits, etc. This can be prob-
ably explained by the increased “cleanness” of the
English texts embedded in the Russian texts (recall
that the best unsupervised tokenization results for
English reported above were obtained on the small-
est Brown corpus). Both the Cosine and Jaccard
similarity measures delivered similar results, while
the categorical trees based on the Jaccard measure
appeared more well-balanced and reliable.

A.1.3 Conclusion
Clustering of parts of speech may provide insights
on the morphology and punctuation structure of
low-resource and domain-specific languages.

A.2 Spaceless (“Fluent”) Text Segmentation

A.2.1 Exploration Methodology
We ran tokenization experiments on the input En-
glish and Russian texts with white spaces removed
to understand the limits of our approach given cor-
pora with continuous (“fluent”) text or speech with
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Figure 9: Symbol category agglomerative clustering
trees using Jaccard similarity based on the RusAge cor-
pus identifying vowels, consonants, digits, and punctua-
tion mark groups.

no regular and explicit punctuation (as is the case
for all Chinese text).

A.2.2 Experimental Results

English Unsupervised tokenization on fluent text
resulted in F1 = 0.42, while lexicon-based tok-
enization on the same text yielded F1 = 0.79 (com-
parable to the F1 score of 0.82 on Chinese text) if
obtained with search driven by the product γ of
token length and the logarithm of token frequency.
Such results can be explained by the lack of empha-
sis, articulation, and pauses in spoken communica-
tions. In the case of dictionary-based tokenization,
as expected, results can be improved by concur-
rently constructing an alternative tokenization tree
that maximizes γ across the entire tree, as is being
done in Link Grammar and MST Parser (see Vep-
stas and Goertzel, 2014; Glushchenko et al., 2018,
2019) in the case of phrase structure parsing at the
sentence level.

Russian Unsupervised tokenization on fluent text
resulted in F1 = 0.26, while lexicon-based tok-
enization on the same text yielded F1 = 0.72, if
obtained with search driven by γ. The same com-
ments as with spaceless tokenization in English
apply here.

B Reproducibility

B.1 Summary
The following summary addresses the items from
Dodge et al. (2019) and Joelle Pineau’s repro-
ducibility checklist.

A clear description of the mathematical set-
ting, algorithm, and/or model: the models de-
scribed by Kearsley (2016) and Wrenn et al. (2007)
were extended and used as described in subsec-
tion 3.2 of the paper.

Source code, with specification of all depen-
dencies, including external libraries: All source
code is contained in the Aigents/Pygents open
source project (https://github.com/aigents
/pygents), with usage instructions contained in
the following sections of Appendix B.

Description of computing infrastructure used:
MacBook Pro 2018, 2.9 GHz Intel Core i9 Pro-
cessor, 32 GB 2400 MHz DDR4, Macintosh HD
2TB.

The average runtime for each model or al-
gorithm (e.g., training, inference, etc.), or esti-
mated energy cost: Model building took between
1 and 11 hours per corpus, corresponding to 300-
3300 watts of energy consumption. Tokenization
for each hyperparameter search trial for a single
metric and 3D grid of 3 parameters was less than 2
hours, corresponding to 600 watts.

Number of parameters in each model: Chi-
nese: 143M and 250M. English: 12M and 45M.
Russian: 29M and 208M. For each language, the
first number corresponds to the smaller corpus, and
the second number corresponds to the larger cor-
pus.

Corresponding validation performance for
each reported test result: Cross validation was
performed in two different yet complementary
ways. First, we evaluated different models built
upon different independent data sets (smaller and
larger corpora) against the same test set indepen-
dent from the models. In this kind of validation
scenario, the best tokenization metrics and N-gram
ranks for the best-performing configurations were
the same across different corpora and splits for a
specific language; model compression thresholds
in the range [0, 0.01] provided less than 2% vari-
ance for the best-performing configurations across
corpora and splits for a specific language; and the
best-performing tokenization threshold for a spe-
cific language provided less than 3% variance. Sec-
ond, as mentioned in subsection 3.5 of the main
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paper body, we performed tokenization on the same
model with the original test set of 100 sentences
split into two independent subsets of 50 sentences
each; in this kind of validation scenario, the differ-
ence in F1 scores for the best-performing config-
urations of hyperparameters turned out to be less
than 1% (for English, we had F1 = 0.99 for both
test subsets).

Explanation of evaluation metrics used, with
links to code: Descriptions of the evaluation met-
rics can be found in subsection 3.3 of the paper.
F1 score assessments were performed using the
evaluate_tokenizer_F1 function (available in
https://github.com/aigents/pygents/blob/
main/pygents/token.py) relying on set-based
F1 assessment (i.e., calculating the harmonic mean
of precision and recall) performed by the calc_F1
function (https://github.com/aigents/pygen
ts/blob/main/pygents/util.py).

The exact number of training and evaluation
runs: Each training set (smaller corpus, larger cor-
pus, and splits of both) was given a single “clean”
run, with a certain number of trial/debugging runs
before the final one.

Bounds for each hyperparameter: N : [1, 7].
Model compression threshold: [0, 0.1]. Tokeniza-
tion threshold: [0, 0.9].

Hyperparameter configurations for the best-
performing models: Reported in subsections 4.1,
4.2, and 4.3 in the body of the paper.

Number of hyperparameter search trials: The
goal of the presented study was to find the top F1

values possible for completely unsupervised tok-
enization along with the best-performing hyperpa-
rameters, so each unique combination of training
corpus, test corpus (or subset of it), and combi-
nation of hyperparameters was given exactly one
final “clean” run (not counting a certain number of
trial/debugging runs before the final one).

The method of choosing hyperparameter val-
ues (e.g., uniform sampling, manual tuning, etc.)
and the criterion used to select among them (e.g.,
accuracy): We employed 3D grid search to find the
best configurations of hyperparameters, with grid
parameters adjusted based on the tokenization F1

scores produced by experimental trial/debugging
runs.

Summary statistics of the results (e.g., mean,
variance, error bars, etc.): Top results are shown
in Table 1. The variance of F1 scores within in-
tervals of best-performing hyperparameters across

corpora was under 3%.
For all datasets used, relevant details such as

languages, and number of examples: Reported
in section 2 of the paper.

Details of train/validation/test splits: Reported
in subsection 3.5 of the paper.

Explanation of any data that were excluded,
and all preprocessing steps: No data were ex-
cluded. Preprocessing steps are briefly covered in
section 2 of the paper and explained with more
detail in the following section of Appendix B.

Data or link to a downloadable version of the
data: All data and links to data are contained in
https://github.com/aigents/pygents, with
usage instructions contained in the following sec-
tion of Appendix B.

B.2 Obtaining the Corpora
B.2.1 English Training Data
The Brown training corpus (6M size) was down-
loaded from http://www.sls.hawaii.edu/ble
y-vroman/brown_nolines.txt (6026059 bytes,
19810 lines). For extra validation purposes not pre-
sented in the paper, we have used random subsets
of 100 sentences selected from the Brown corpus.

The Gutenberg Children training corpus (29M
size) was obtained from https://www.gutenb
erg.org, based on the books used in the Babi
CBT corpus (https://research.fb.com/do
wnloads/babi). As in Castillo-Domenech and
Suarez-Madrigal’s (2018) work, we downloaded
the books’ raw text from UTF8 links such as https:
//www.gutenberg.org/cache/epub/35688/pg3
5688.txt, without their original formatting.

The Gutenberg Adult training corpus (140M
size) was obtained from https://www.gutenb
erg.org, based on the selection of 361 Gutenberg
project books with IDs in the range [53000, 53499].
Once again, raw text was downloaded manually
from UTF8 links such as https://www.gutenb
erg.org/files/53000/53000-0.txt without
formatting.

B.2.2 Russian Training Data
Training corpora was downloaded from https:
//www.kaggle.com/datasets/oldaandozers
kaya/fiction-corpus-for-agebased-text-
classification. The two enclosed folders, Test
(141M size) and Previews (825M size), were used
independently as alternative training corpora. In
further discussion the corpora can be referred to as
RusAge Test and RusAge Previews, respectively.
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B.2.3 Chinese Training Data
The CLUE Benchmark News 2016 dataset was
downloaded from https://github.com/bri
ghtmart/nlp_chinese_corpus. When down-
loaded, the folder new2016zh will have two files,
news2016zh_valid.json (283711020 bytes) and
news2016zh_train.json (8930014780 bytes),
corresponding to smaller and larger training
datasets in the scope of our work, respectively.
Each of the two files was processed program-
matically (parsing JSON; selecting title, desc,
and content fields; and saving each of the fields
as individual lines), so two plain text files were
produced: news2016zh_valid.txt (269553996
bytes, 230391 lines) and news2016zh_train.txt
(8481842006 bytes, 7292256 lines). In further dis-
cussion these corpora can be referred to as “CLUE
News 2016 Valid” and “CLUE News 2016 Train,”
respectively. (Note that both corpora were used as
training datasets, irrespective of their names.)

B.2.4 Test Data
The parallel Chinese/English corpus of 100 multi-
sentence statements related to personal finance can
be downloaded from Magic Data (https://ma
gichub.com/datasets/chinese-english-pa
rallel-corpus-finance). It is a tab-delimited
text file with individual columns for Chinese and
English versions, entitled zh and en, respectively.
The Russian extension to it, with only one column
entitled ru containing the Russian translations, is
contained in the file (https://github.com/aig
ents/pygents/blob/main/data/corpora/Ru
ssian/magicdata/zh_en_ru_100/CORPUS_Z
H_EN_RU.txt) in the Aigents/Pygents open source
project project.

B.2.5 Reference Lexicons
Reference lexicon dictionaries for English and
Russian are available as text files from the
Aigents/Pygents open source project. English: ht
tps://raw.githubusercontent.com/aigents/
aigents-java/master/lexicon_english.txt,
Russian: https://raw.githubusercontent.co
m/aigents/aigents-java/master/lexicon_r
ussian.txt.

Reference lexicon dictionaries for Chinese can
been downloaded from the following sources: Chi-
nese Lexical Database, or CLD (http://www.ch
ineselexicaldatabase.com/download.php)
(see Sun et al., 2018); BLCU Chinese Corpus, or
BLC (https://www.plecoforums.com/thre

ads/word-frequency-list-based-on-a-1
5-billion-character-corpus-bcc-blcu-
chinese-corpus.5859); and SUBTLEX-CH
(http://crr.ugent.be/programs-data/subti
tle-frequencies/subtlex-ch). Each of these
links contains comma-separated or tab-separated
files with lists of words representing Chinese lexi-
cons with different attributions. Individual columns
corresponding to words were extracted (along with
frequencies of those words, if present), and then a
unified Chinese lexicon was created.

B.3 Experimental Environment
The Python3 code used to run the experiments can
be obtained from the Aigents/Pygents open source
project (https://github.com/aigents/pyg
ents/). The external dependencies on Python
packages are: math, copy, pandas, seaborn,
matplotlib, html, urllib, abc, pickle, re,
jieba, and numpy. In order to run the following
code, four imports are expected, as follows:

from pygents.token import *
from pygents.text import *
from pygents.util import *
from pygents.plot import *

B.4 Model Building
To build the model on the CLUE News 2016
Valid and CLUE News 2016 Train corpora for
Chinese, the following code has been used to
perform line-by line training on a single file us-
ing the FreedomTokenizer class from https:
//github.com/aigents/pygents/blob/main
/pygents/token.py. The number of parameters,
corresponding to number of weights or frequency
count for either N-grams or transitions between N-
grams, was found to be 143129564 (corresponding
to Valid corpus and N = {1, 2, 3}) and 249859247
(corresponding to Train corpus and N = {1, 2}).

max_n = 3 # 2 for larger Train corpus,
# 3 for smaller Valid corpus

zh_chars=FreedomTokenizer(max_n=max_n,
mode='chars', debug=False)

with open(join(path, <corpus filename>),
errors='ignore') as f:

while True:
line = f.readline()
if not line:

break
zh_chars.train([line])

zh_chars.store(<model file name>)
print(zh_chars.count_params())

To build the model on the Brown corpus for
English, the following code has been used to train
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the model on the entire corpus at once (number of
model parameters = 52502749).

brown_text = url_text(“http://www.sls.hawaii
.edu/bley-vroman/brow
n_nolines.txt”)

brown_chars =
FreedomTokenizer(<model file name>,

max_n=7,
mode='chars',
debug=False)

brown_chars.train([brown_text])
brown_chars.store(<model file name>)
print(brown_chars.count_params())

To build the model on the Gutenberg Children
and Adult corpora for English, the following code
has been used to train the model on the entire
corpus at once (number of model parameters =
12321620 and 44900866, respectively).

def tokenizer_train_folder(t,path):
onlyfiles = [f for f in listdir(path)
if isfile(join(path, f))]

for file in onlyfiles:
with open(join(path, file),
errors='ignore') as f:

lines = f.readlines()
t.train(lines)

mode = ‘chars’
child_chars = FreedomTokenizer(max_n=7,

mode=mode,
debug=False)

tokenizer_train_folder(child_chars,
<corpus folder

name>)
child_chars.store(<model file name>)
print(child_chars.count_params())

Model building is performed via the train
function in the FreedomTokenizer class con-
tained in https://github.com/aigen
t s / p y g e n t s / b l o b / m a i n / p y g e n t s / t
o k e n . p y. The train function calls the
grams_count_with_gram_freedoms function re-
siding in the internal module https://github.c
om/aigents/pygents/blob/main/pygents/tex
t.py.

Two different kinds of models could be built
based on the mode parameter, which could be
either chars or grams (corresponding to either
N-gram-to-N-char or N-gram-to-N-gram, re-
spectively).

The same code as for the Gutenberg Children
and Adult corpora was used to build the model on
the RusAge Test and RusAge Previews corpora
(number of model parameters = 28998065 and
207808799, respectively).

Each phase of model building took up to 1 hour
for smaller corpora and several hours for larger

corpora. While building the CLUE News 2016
Valid model the maximum N-gram rank was N =
3, and while building the CLUE News 2016 Train
model, it was N = 2, due to the given memory
limit. Building the largest model (CLUE News
2016 Train, N = 2) took 11 hours, which was
the maximum training time across all models and
languages.

B.5 Performing Tokenization
All tokenization experiments were run via the
evaluate_freedom_tokenizer_options func-
tion (https://github.com/aigents/pygen
ts/blob/main/pygents/token_plot.py).
The primary argument passed to the function is
the tokenizer class (FreedomBasedTokenizer),
which is supplied with the metrics used for
tokenization in forward and backward directions, a
list of different combinations of N , and a list of
tokenization thresholds, as shown in the following
example of English tokenization.

test_df=pd.read_csv(os.path.join(path,
'CORPUS_ZH_EN_RU.txt'),delimiter='\t')

test_texts = list(test_df['en'])
# or ‘zh’/‘ru’

ref_tokenizer = DelimiterTokenizer()
ngram_params = [[1],[2],[3],[4],[5],[6],

[7],[1,2],[2,3],[1,2,3],
[1,2,3,4],[4,5,6,7],
[1,2,3,4,5],
[1,2,3,4,5,6,7]]

compression_thresholds = [0,0.0001,0.001,
0.01,0.1]

tokenization_thresholds = [0.1,0.2,0.3,
0.4,0.5,0.6,
0.7,0.8,0.9]

base=FreedomTokenizer(name=<model file
name>,

max_n=7,
mode='chars',
debug=False)

title = '$F_1$ - Brown ddf- & ddf+'
for filter_threshold in
compression_thresholds:

if filter_threshold > 0:
model_compress_with_loss(
base.model,
filter_threshold

)
parameters = base.count_params()
title="{} filter={} parameters={}"
.format(title,

filter_threshold,
parameters)

evaluate_freedom_tokenizer_options(
test_texts,
ref_tokenizer,
FreedomBasedTokenizer(base,'ddf-',

'ddf+'),
ngram_params,
tokenization_thresholds,
title=title
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)

Hyper-parameters for metrics passed to the
FreedomBasedTokenizer class constructor above
could be ‘p+’ or ‘p-’ for conditional probabilities
in forward and backward directions, ‘dp+’ or ‘dp-’
for derivatives of CP, ‘dvp+’ or ‘dvp-’ for vari-
ances of CP, ‘f+’ or ‘f-’ for TFs in forward and
backward directions, ‘df+’ or ‘df-’ for derivatives
of TF, ‘dvf+’ or ‘dvf-’ for variances of TF, and
‘peak+’ or ‘peak-’ for “peak values” of TF.

For English and Russian, the reference tokenizer
DelimiterTokeinzer (https://github.com/a
igents/pygents/blob/main/pygents/token.p
y) was used for rule-based tokenization (separating
words by spaces and detaching any punctuation
marks, counting the latter along with spaces and
words as individual tokens):

ref_tokenizer = DelimeterTokenizer()

The following combinations of N-gram ranks,
model compression thresholds, and tokenization
thresholds were used as hyperparameters for En-
glish and Russian.

ngram_params = [[1],[2],[3],[4],[5],[6],[7],
[1,2],[2,3],[1,2,3],[1,2,3,
4],[4,5,6,7],[1,2,3,4,5],
[1,2,3,4,5,6,7]]

compression_thresholds = [0,0.0001,0.001,
0.01,0.1]

tokenization_thresholds = [0.1,0.2,0.3,0.4,
0.5,0.6,0.7,0.8,
0.9]

For Chinese, JiebaTokenizer (available in ht
tps://github.com/aigents/pygents/blob/ma
in/pygents/token.py) was used as a reference
tokenizer.

ref_tokenizer = JiebaTokenizer()

The following combinations of N-gram ranks,
model compression thresholds, and tokenization
thresholds were used as hyperparameters for Chi-
nese.

ngram_params = [[1],[2],[3],[1,2],[2,3],
[1,2,3]]

compression_thresholds = [0,0.0001,0.001,
0.01,0.1]

tokenization_thresholds = [0.0001,0.0005,
0.001,0.005,
0.01,0.02,0.05,
0.1,0.2,0.4,
0.8]

All sets of hyperparameters, including metrics
based on CP and TF, different N-gram ranks, model

compression thresholds, and tokenization thresh-
olds, were applied for different models across all
languages against the same test set.

For additional validation purposes, in order to
confirm the reliability of hyperparameters provid-
ing the best F1 scores, the same tokenization exper-
iments were run using different splits of the test set
(all 100 lines, first 50 lines, last 50 lines) as well as
random sets of 100 lines selected from the Brown
corpus, ensuring that the same hyper-parameters
were providing the highest F1 scores with close
score values.

Each tokenization trial for an indi-
vidual pre-built model given the se-
lected tokenization metrics, involving a
3-dimensional hyperparameter grid search
(ngram_params, compression_thresholds, and
tokenization_thresholds), took no more than
2 hours per trial with 1 hour as an average.

B.6 Evaluation
The evaluate_freedom_tokenizer_options
function used to run the experiments discussed
previously performed F1 score assessments
internally by calling the evaluate_tokenizer_F1
function (https://github.com/aigents/pyg
ents/blob/main/pygents/token.py), which
calculated the average F1 score across all input
test texts by comparing outputs of the evaluated
and reference tokenizers.

Evaluation of lexicon-based tokenization for
reference was done by merging the refer-
ence lexicon dictionary with a list of con-
ventional punctuation symbols and using the
LexiconIndexedTokenizer class (https://gi
thub.com/aigents/pygents/blob/main/pygen
ts/token.py), as shown in the below code. The
sortmode variable denotes whether greedy search
is based on token length (0), token frequency (1),
or the product of token length and the logarithm of
frequency (2).

test_df = pd.read_csv(os.path.join(path,
'CORPUS_ZH_EN_RU.txt'),delimiter='\t')

test_texts = list(test_df['en']) # or ‘zh’
# or ‘ru’

ref_tokenizer = DelimiterTokenizer()
# use JiebaTokenizer() for Chinese

# Get raw lexicon list, use respective
# source lexicons for English/Russian/
# Chinese
en_lex = list(pd.read_csv("https://raw.\

githubusercontent.com/aigents/\
aigents-java/master/lexicon_english\
.txt",
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sep='\t',
header=None,
na_filter=False
).to_records(

index=False
)

)

# Add delimiters to the list
delimiters = ' \t\n\r\'`"“”+=-_&/|\*()[]

<>#^@~,;:.!?'
lex = en_lex + [(i, top_weight) for i

in list(delimiters)]
en_lex0_tokenizer =

LexiconIndexedTokenizer(
lexicon=lex, sortmode=0, cased=True

)
en_lex1_tokenizer =

LexiconIndexedTokenizer(
lexicon=lex, sortmode=1, cased=True

)
en_lex2_tokenizer =

LexiconIndexedTokenizer(
lexicon=lex, sortmode=2, cased=True

)
print(t,en_lex0_tokenizer.count_params())

# sort by token length
print(evaluate_tokenizer_F1(test_texts,

del_tokenizer,en_lex0_tokenizer,
debug=False))

# sort by frequency
print(evaluate_tokenizer_F1(test_texts,

del_tokenizer,en_lex1_tokenizer,
debug=False))

# sort by token length and frequency
print(evaluate_tokenizer_F1(test_texts,

del_tokenizer,en_lex2_tokenizer,
debug=False))

Calculation of lexicon discovery precision was
achieved by passing extra parameters to the
evaluate_tokenizer_F1 function, so that all to-
kens identified by the evaluated (freedom-based)
and reference (lexicon-based or rule-based) tok-
enizers could be collected. Upon the collection of
the actual (evaluated tokenizer) and expected (ref-
erence tokenizer) tokens, the precision values of
both the actual and expected counts of tokens were
computed (in the below code, “relevant” tokens are
those present in the lexicon).

base = FreedomTokenizer(
name=<model file name>,
max_n=7,mode='chars',
debug=False

)
model_compress_with_loss(base.model,

0.0001)
test_tokenizer = FreedomBasedTokenizer(

base,'dvf-','dvf+') # for English/Russian
test_tokenizer.set_options(nlist = [1],

threshold=0.4) # for English and Russian

expected = {}
actual = {}
tokenization_F1 =
evaluate_tokenizer_F1(

test_texts,
del_tokenizer,
test_tokenizer,
expected_collector=expected,
actual_collector=actual

)

expected_count = sum([expected[key]
for key in expected])

relevant_count = sum([expected[key]
for key in expected if key.lower()
in en_lex_delimited_dict])

irrelevant_count = sum([expected[key]
for key in expected if not key.lower()
in en_lex_delimited_dict])

print(expected_count,
relevant_count,
irrelevant_count,
relevant_count/expected_count,
(relevant_count)/expected_count)

actual_count = sum([actual[key]
for key in actual])

relevant_count = sum([actual[key]
for key in actual if key.lower()
in en_lex_delimited_dict])

irrelevant_count = sum([actual[key]
for key in actual if not key.lower()
in en_lex_delimited_dict])

print(actual_count,
relevant_count,
irrelevant_count,
relevant_count/actual_count,
(relevant_count)/actual_count)
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