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Abstract

The emergent cross-lingual transfer seen in
multilingual pretrained models has sparked
significant interest in studying their behavior.
However, because these analyses have focused
on fully trained multilingual models, little is
known about the dynamics of the multilingual
pretraining process. We investigate when these
models acquire their in-language and cross-
lingual abilities by probing checkpoints taken
from throughout XLM-R pretraining, using a
suite of linguistic tasks. Our analysis shows
that the model achieves high in-language per-
formance early on, with lower-level linguis-
tic skills acquired before more complex ones.
In contrast, the point in pretraining when the
model learns to transfer cross-lingually differs
across language pairs. Interestingly, we also
observe that, across many languages and tasks,
the final model layer exhibits significant perfor-
mance degradation over time, while linguistic
knowledge propagates to lower layers of the
network. Taken together, these insights high-
light the complexity of multilingual pretraining
and the resulting varied behavior for different
languages over time.

1 Introduction

Large-scale language models pretrained jointly on
text from many different languages (Delvin, 2019;
Lample and Conneau, 2019; Lin et al., 2021) per-
form very well on various languages and on cross-
lingual transfer between them (e.g., Kondratyuk
and Straka, 2019; Pasini et al., 2021). Due to this
success, there has been a great deal of interest in
uncovering what these models learn from the mul-
tilingual pretraining signal (§6). However, these
works analyze a single model artifact: the final
training checkpoint at which the model is consid-
ered to be converged. Recent work has also studied
monolingual models by expanding the analysis to
multiple pretraining checkpoints to see how model
knowledge changes across time (Liu et al., 2021).

We analyze multilingual training checkpoints
throughout the pretraining process in order to
identify when multilingual models obtain their in-
language and cross-lingual abilities. The case of
multilingual language models is particularly inter-
esting, as the model learns both to capture individ-
ual languages and to transfer between them just
from unbalanced multitask language modeling for
each language.

Specifically, we retrain a popular multilingual
model, XLM-R (Conneau et al., 2020a), and run a
suite of linguistic tasks covering 59 languages on
checkpoints from across the pretraining process.1

This suite evaluates different syntactic and seman-
tic skills in both monolingual and cross-lingual
transfer settings. While our analysis primarily fo-
cuses on the knowledge captured in model output
representations over time, we also consider how
the performance of internal layers changes during
pretraining for a subset of tasks.

Our analysis uncovers several insights into mul-
tilingual knowledge acquisition. First, while the
model acquires most in-language linguistic infor-
mation early on, cross-lingual transfer is learned
across the entire pretraining process. Second, the
order in which the model acquires linguistic infor-
mation for each language is generally consistent
with monolingual models: lower-level syntax is
learned prior to higher-level syntax and then se-
mantics. In comparison, the order in which the
model learns to transfer linguistic information be-
tween specific languages can vary wildly.

Finally, we observe significant degradation of
performance for many languages at the final layer
of the last, converged model checkpoint. However,
lower layers of the network often continue to im-
prove later in pretraining and outperform the final
layer, particularly for cross-lingual transfer. These
observations indicate that there is not a single time

1The XLM-Rreplica checkpoints are available at https:
//nlp.cs.washington.edu/xlmr-across-time.
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Task Setup Num. Langs (Pairs) ExampleIn-lang. X-lang.

BPC Masked LM 94 – The [MASK] brown fox jumps
quick

POS Tagging Token Labeling 44 18 → 18 The quick brown fox jumps
ADJ

Dependency Arc Pred. Token Pair Labeling 44 18 → 18 The quick brown fox jumps

✖ ✔ 

Dependency Arc Class. Token Pair Labeling 44 18 → 18 The quick brown fox jumps
amod

XNLI Sent. Pair Labeling 15 15 → 15
The quick brown fox jumps
The fox is fast Entails

SimAlign Unsupervised Alignment – 1 → 6 The quick brown fox jumps
Le renard brun rapide saute

Table 1: Summary of the linguistic information we probe XLM-Rreplica for throughout pretraining.

step (or layer) in pretraining that performs the best
across all languages and suggest that methods that
better balance these tradeoffs could improve multi-
lingual pretraining in the future.

2 Analyzing Knowledge Acquisition
Throughout Multilingual Pretraining

Our goal is to quantify when information is learned
by multilingual models across pretraining. To
this end, we reproduce a popular multilingual pre-
trained model, XLM-R – referred to as XLM-
Rreplica – and retain several training checkpoints
(§2.1). A suite of linguistic tasks is then run on
the various checkpoints (§2.2). For a subset of
these tasks, we also evaluate at which layer in the
network information is captured during pretraining.

Since we want to identify what knowledge is
gleaned from the pretraining signal, each task is
evaluated without finetuning. The majority of our
tasks are tested via probes, in which representations
are taken from the final layer of the frozen check-
point and used as input features to a linear model
trained on the task of interest (Belinkov et al.,
2020). Additional evaluations we consider for
the model include an intrinsic evaluation of model
learning (BPC) and unsupervised word alignment
of model representations. Each of the tasks in our
evaluation suite tests the extent to which a training
checkpoint captures some form of linguistic infor-
mation, or a specific aspect of linguistic knowledge,
and they serve as a proxy for language understand-
ing in the model.

2.1 Replicating XLM-R
Analyzing model learning throughout pretraining
requires access to intermediate training check-

points, rather than just the final artifact. We repli-
cate the base version of XLM-R and save a num-
ber of checkpoints throughout the training process.
Our pretraining setup primarily follows that of the
original XLM-R, with the exception that we use
a smaller batch size (1024 examples per batch in-
stead of 8192) due to computational constraints.
All other hyperparameters remain unchanged.

XLM-Rreplica is also trained on the same data as
the original model, CC100. This dataset consists
of filtered Common Crawl data for 100 languages,
with a wide range of data quantities ranging from
0.1 GiB for languages like Xhosa and Scottish
Gaelic to over 300 Gib for English. As with XLM-
R, we train on CC100 for 1.5M updates and save
39 checkpoints for our analysis, with more frequent
checkpoints taken in the earlier portion of training:
we save the model every 5k training steps up to
the 50k step, and then every 50k steps. Further de-
tails about the data and pretraining scheme can be
found in Conneau et al. (2020a). We compare the
final checkpoint of XLM-Rreplica to the original
XLM-Rbase and find that while XLM-Rreplica per-
forms slightly worse in-language, the two models
perform similarly cross-lingually (Appendix A).

2.2 Linguistic Information Tasks

The analysis suite covers different types of syntac-
tic knowledge, semantics in the form of natural
language inference, and word alignment (Table 1).
These tasks evaluate both in-language linguistics
as well as cross-lingual transfer with a wide variety
of languages and language pairs. Unless other-
wise stated (§5), we evaluate the output from the
final layer of XLM-Rreplica. Additionally, most
tasks (POS tagging, dependency structure tasks,
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Figure 1: Best in-language performance of XLM-Rreplica on various tasks and languages across all checkpoints.

and XNLI) are evaluated with accuracy; the MLM
evaluation is scored on BPC, and SimAlign is eval-
uated on F1 performance. Appendix A details the
languages covered by each of these tasks and fur-
ther experimental details.

MLM Bits per Character (BPC) As an intrinsic
measure of model performance, we consider the
bits per character (BPC) on each training language
of the underlying MLM. For a sequence s, BPC(s)
is the (average) negative log-likelihood (NLL) of
the sequence under the model normalized by the
number of characters per token; lower is better for
this metric. These numbers are often not reported
for individual languages or across time for multilin-
gual models, making it unclear how well the model
captures each language on the pretraining task. We
evaluate BPC on the validation split of CC100.

Part-of-Speech (POS) Tagging We probe XLM-
Rreplica with a linear model mapping the repre-
sentation for each word to its corresponding POS
tag; words that are split into multiple subword to-
kens in the input are represented by the average
of their subword representations. The probes are
trained using the Universal Dependencies (UD)
treebanks for each language (Nivre et al., 2020).
For cross-lingual transfer, we evaluate a subset of
languages that occur in Parallel Universal Depen-
dencies (PUD; Zeman et al., 2017), a set of parallel
test treebanks, to control for any differences in the
evaluation data.

Dependency Structure We evaluate syntactic de-
pendency structure knowledge with two pair-wise
probing tasks: arc prediction, in which the probe
is trained to identify pairs of words that are linked
with a dependency arc; and arc classification,
where the probe labels a pair of words with their
corresponding dependency relation. The two word-
level representations r1 and r2 are formatted as a
single concatenated input vector [r1; r2; r1 ⊙ r2],
following Blevins et al. (2018). This combined

representation is then used as the input to a linear
model that labels the word pair. Probes for both
dependency tasks are trained and evaluated with
the same set of UD treebanks as POS tagging.

XNLI We also consider model knowledge of nat-
ural language inference (NLI), where the probe is
trained to determine whether a pair of sentences
entail, contradict, or are unrelated to each other.
Given two sentences, we obtain their respective
representation r1 and r2 by averaging all represen-
tations in the sentence, and train the probe on the
concatenated representation [r1; r2; r1 ⊙ r2]. We
train and evaluate the probes with the XNLI dataset
(Conneau et al., 2018); for training data outside
of English, we use the translated data provided by
Singh et al. (2019).

Word Alignment In the layer-wise evaluation
(§5), we evaluate how well the model’s internal
representations are aligned using SimAlign (Sabet
et al., 2020), an unsupervised algorithm for align-
ing bitext at the word level using multilingual repre-
sentations. We evaluate the XLM-Rreplica training
checkpoints with SimAlign on manually annotated
reference alignments for the following language
pairs: EN-CS (Mareček, 2008), EN-DE2, EN-FA
(Tavakoli and Faili, 2014), EN-FR (WPT2003, Och
and Ney, 2000), EN-HI3, and EN-RO3.

3 In-language Learning Throughout
Pretraining

We first consider the in-language, or monolingual,
performance of XLM-Rreplica on different types of
linguistic information across pretraining. We find
that in-language linguistics is learned (very) early
in pretraining and is acquired in a consistent or-
der, with lower-level syntactic information learned
before more complex syntax and semantics. Addi-
tionally, the final checkpoint of XLM-Rreplica often

2Gold alignments on EuroParl (Koehn, 2005), http://www-
i6.informatik.rwth-aachen.de/goldAlignment/

3 WPT2005, http://web.eecs.umich.edu/ mihalcea/wpt05/
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Figure 2: Learning progress of XLM-Rreplica on POS
tagging, up to 200k training steps. Each point represents
the step at which the model achieves x% of the best
overall performance of the model on that task; arrows
indicate languages that reach the 98% mark after 200k
steps.

experiences performance degradation compared to
the best checkpoint for a language, suggesting that
the model is forgetting information for a number
of languages by the end of pretraining.

3.1 Monolingual Performance for Different
Languages

Figure 1 presents the overall best performance of
the model across time on the considered tasks
and languages. We observe a large amount of
variance in performance on each task. Across
languages, XLM-Rreplica performance ranges be-
tween 1.86 and 0.36 BPC for language modeling,
88.3% and 96.5% accuracy for dependency arc
prediction, 77.67% and 98.3% accuracy for POS
tagging, 54.7% and 93.3% accuracy for arc classi-
fication, and 53.8% and 62.9% accuracy for XNLI.
Overall, these results confirm previous findings that
multilingual model performance varies greatly on
different languages (§6).

3.2 When Does XLM-R Learn Linguistic
Information?

Figure 2 shows the step at which XLM-Rreplica

reaches different percentages of its best perfor-
mance of the model on POS tagging. Figures for
the other tasks are given in Appendix D.

Monolingual linguistics is acquired early in pre-
training We find that XLM-Rreplica acquires the
majority of in-language linguistic information early

Figure 3: Heatmap of relative performance over time
for dependency arc prediction and classification. Lan-
guages are ordered by performance degradation in the
final training checkpoint.

in training. However, the average time step for ac-
quisition varies across tasks. For dependency arc
prediction, all languages achieve 98% or more of
total performance by 20k training steps (out of
1.5M total updates). In contrast, XNLI is learned
later with the majority of the languages achieving
98% of the overall performance after 100k train-
ing updates. This order of acquisition is in line
with monolingual English models, which have also
been found to learn syntactic information before
higher-level semantics (Liu et al., 2021).

We also observe that this order of acquisition is
often maintained within individual languages. 12
out of 13 of the languages shared across all tasks
reach 98% of the best performance consistently in
the order of POS tagging and arc prediction (which
are typically learned within one checkpoint of each
other), arc classification, and XNLI.

Model behavior later in pretraining varies
across languages For some languages and tasks,
XLM-Rreplica never achieves good absolute perfor-
mance (Figure 1). For others, the performance of
XLM-Rreplica decreases later in pretraining, lead-
ing the converged model to have degraded perfor-
mance on those tasks and languages (Figure 3).
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We hypothesize that this is another aspect of
the “curse of multilinguality,” where some lan-
guages are more poorly captured in multilingual
models due to limited model capacity (Conneau
et al., 2020a; Wang et al., 2020), that arises during
the training process. We also find that the ranking
of languages by performance degradation is not cor-
related across tasks. This suggests the phenomenon
is not limited to a subset of low-resource languages
and can affect any language learned by the model.

More generally, these trends demonstrate that
the best model state varies across languages and
tasks. Since BPC continues to improve on all in-
dividual training languages throughout pretraining
(Appendix D), the results also indicate that perfor-
mance on the pretraining task is not directly tied to
performance on the linguistic probes. This is some-
what surprising, given the general assumption that
better pretraining task performance corresponds to
better downstream task performance.

4 Cross-lingual Transfer Throughout
Pretraining

Another question of interest is: when do multilin-
gual models learn to transfer between languages?
We find that cross-lingual transfer is acquired later
in pretraining than monolingual linguistics and that
the step at which XLM-Rreplica learns to transfer a
specific language pair varies greatly. Furthermore,
though the order in which XLM-Rreplica learns to
transfer different linguistic information across lan-
guages is on average consistent with in-language
results, the order in which the model learns to trans-
fer across specific language pairs for different tasks
is much more inconsistent.

4.1 Overall Transfer Across Language Pairs

Which languages transfer well? Figure 4 shows
cross-lingual transfer between different language
pairs; most source languages perform well in-
language (the diagonal). We observe that some
tasks, specifically dependency arc prediction, are
easier to transfer between languages than others;
however, across the three tasks with shared lan-
guage pairs (POS tagging, arc prediction, and arc
classification) we see similar behavior in the extent
to which each language transfers to others. For
example, English and Italian both transfer well to
most of the target languages. However, other lan-
guages are isolated and do not transfer well into
or out of other languages, even though in some

cases, such as Japanese, the model achieves good
in-language performance.

On XNLI there is more variation in in-language
performance than is observed on the syntactic tasks.
This stems from a more general trend that some
languages appear to be easier to transfer into than
others, leading to the observed performance con-
sistency within columns. For example, English
appears to be particularly easy for XLM-Rreplica

to transfer into, with 12 out of the 14 non-English
source languages performing as well or better on
English as in-language.

Cross-lingual transfer is asymmetric We also
find that language transfer is asymmetric within
language pairs (Figure 5). There are different trans-
fer patterns between dependency arc prediction and
the other syntactic tasks: for example, we see that
Korean is worse relatively as a source language
than as the target for POS tagging and arc classi-
fication, but performs better when transferring to
other languages in arc prediction. However, other
languages such as Arabic have similar trends across
the syntactic tasks. On XNLI, we find that Swahili
and Arabic are the most difficult languages to trans-
fer into, though they transfer to other languages
reasonably well.

These results expand on observations in Turc
et al. (2021) and emphasize that the choice of
source language has a large effect on cross-lingual
performance in the target. However, there are fac-
tors in play in addition to linguistic similarity caus-
ing this behavior, leading to asymmetric transfer
within a language pair. We further examine these
correlations with overall cross-lingual performance
and asymmetric transfer in §B.2.

4.2 When is Cross-lingual Transfer Learned
During Pretraining?

We next consider when during pretraining XLM-
Rreplica learns to transfer between languages (Fig-
ure 6; the dotted line indicates the 200k step cutoff
used in Figure 2 for comparison). Unlike the case
of monolingual performance, the step at which the
model acquires most cross-lingual signal (98%)
varies greatly across language pairs. We also find
that (similar to the in-language setting) higher-level
linguistics transfer later in pretraining than lower-
level ones: the average step for a language pair
to achieve 98% of overall performance occurs at
115k for dependency arc prediction, 200k for POS
tagging, 209k for dependency arc classification,
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Figure 4: Overall performance of XLM-Rreplica on each analysis task when transferring from various source to
target languages.

Figure 5: Heatmap of the asymmetry of cross-lingual transfer in XLM-Rreplica. Each cell shows the difference in
performance between language pairs (l1 → l2) and (l2 → l1).

Figure 6: Cross-lingual learning progress of XLM-Rreplica across pretraining. Each red point represents the step to
98% of the best performance for a language pair; the purple represents the mean 98% transfer step for the source
language.

Figure 7: Degradation of cross-lingual transfer performance of XLM-Rreplica across pretraining. Each blue point
represents the change in performance from the overall best step to the final model checkpoint for a language pair;
the navy represents the mean decrease for the source language.

3580



Figure 8: Heatmap of XLM-Rreplica performance for
Japanese arc classification and Bulgarian XNLI. Addi-
tional heatmaps are given in Appendix C.

and 274k for XNLI. In contrast, when the model
learns to transfer different linguistic information be-
tween two specific languages can vary wildly: only
approximately 21% of the language pairs shared
across the four tasks transfer in the expected order.

We also investigate the amount to which the
cross-lingual abilities of XLM-Rreplica decrease
over time (Figure 7; more detailed across time re-
sults for transferring out of English are given in Ap-
pendix D). Similarly to in-language behavior, we
find that the model exhibits notable performance
degradation for some language pairs (in particular
on POS tagging and dependency arc classification),
and the extent of forgetting can vary wildly across
target languages for a given source language.

5 Layer-wise Learning Throughout
Pretraining

In the experiments above we show that in many
cases the final layer of XLM-Rreplica forgets in-
formation by the end of pretraining. Motivated
by this, we investigate whether this information
is retained in a different part of the network by
probing how information changes across layers dur-
ing pretraining. We find a surprising trend in how
the best-performing layer changes over time: the
model acquires knowledge in higher layers early
on, which then propagates to and improves in the
lower layers later in pretraining.

5.1 In-language Knowledge Across Layers

We first look at the layer-wise performance of
XLM-Rreplica on a subset of languages for depen-

Figure 9: Heatmap of XLM-Rreplica cross-lingual per-
formance by layer for arc classification (JA → EN) and
SimAlign (EN-CS).

dency arc classification (CS, EN, HI, and JA) and
XNLI (BG, EN, HI, and ZH) (Figure 8). We find
that the last layer is often not the best one for each
task, with lower layers often outperforming the fi-
nal one. On average, the best internal layer state
outperforms the final layer of XLM-Rreplica by
7.59 accuracy points on arc classification and 2.93
points on XNLI.

We also observe a trend of lower layers acquiring
knowledge later in training than the final one. To
investigate this, we calculate the expected best layer
(i.e., the average layer weighted by performance)
at each checkpoint and find that it decreases over
time, by up to 2.79 layers for arc classification and
2.49 layers for XNLI (Appendix C), indicating that
though the final layer quickly fits to the forms of in-
language information we test for, this information
then shifts to lower layers in the network over time.

5.2 Cross-lingual Knowledge Across Layers
Next, we consider how cross-lingual transfer skills
are captured across layers during pretraining. Every
other XLM-Rreplica layer is evaluated on the sub-
sets of languages for arc classification and XNLI in
§5.1. We also use SimALign to test how well word
representations at these layers align from English
to {CS, DE, FA, FR, HI, RO}.We observe simi-
lar trends with respect to layer performance over
time to the in-language results (Figure 9; additional
results given in Appendix C). Specifically, we ob-
serve an average decrease in the expected layer of
1.10 (ranging from 0.67 to 2.20) on arc classifica-
tion, 1.02 (ranging from 0.37 to 2.01) on XNLI,
and 1.66 (ranging from 0.83 to 2.41) on SimAlign.
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We also observe that while most layers perform
relatively well in-language performance, the lowest
layers of XLM-Rreplica (layers 0-4) often perform
much worse than the middle and final layers for
cross-lingual transfer throughout the pretraining
process – for example, in the case of Japanese to
English on arc classification. We hypothesize that
this is due to better alignment across languages in
later layers, similar to the findings in Muller et al.
(2021).

6 Related Work

Linguistic knowledge in multilingual models
There have been several different approaches
to quantifying the linguistic information that is
learned by multilingual models. One direction has
performed layer-wise analyses to quantify what in-
formation is stored at different layers in the model
(de Vries et al., 2020; Taktasheva et al., 2021; Pa-
padimitriou et al., 2021). Others have examined
the extent to which the different training languages
are captured by the model, finding that some lan-
guages suffer in the multilingual setting despite the
overall good performance exhibited by the models
(Conneau et al., 2020a; Wang et al., 2020).

Cross-lingual transfer in multilingual models
Another line of analysis seeks to understand the
cross-lingual abilities of multilingual models. Chi
et al. (2020) show that subspaces of mBERT rep-
resentations that capture syntax are approximately
shared across languages, suggesting that portions
of the model are cross-lingually aligned. A similar
direction of interest is whether multilingual mod-
els learn language-agnostic representations. Singh
et al. (2019) find that mBERT representations can
be partitioned by language, indicating that the rep-
resentations retain language-specific information.
Similarly, other work has shown that mBERT rep-
resentations can be split into language-specific
and language-neutral components (Libovickỳ et al.,
2019; Gonen et al., 2020; Muller et al., 2021).

Other work has investigated the factors that af-
fect cross-lingual transfer. These factors include
the effect of sharing subword tokens on cross-
lingual transfer (Conneau et al., 2020b; K et al.,
2020; Deshpande et al., 2021) and which languages
act as good source languages for cross-lingual trans-
fer (Turc et al., 2021). Notably, Lauscher et al.
(2020), K et al. (2020) and Hu et al. (2020) find
that multilingual pretrained models perform worse

when transferring to distant languages and low-
resource languages.

Examining Pretrained Models Across Time A
recent direction of research has focused on probing
multiple checkpoints taken from different points in
the pretraining process, in order to quantify when
the model learns information. These works have
examined the acquisition of syntax (Pérez-Mayos
et al., 2021) as well as higher-level semantics and
world knowledge over time (Liu et al., 2021) from
the RoBERTa pretraining process. Similarly, Chi-
ang et al. (2020) perform a similar temporal anal-
ysis for AlBERT, and Choshen et al. (2022) find
that the order of linguistic acquisition during lan-
guage model training is consistent across model
sizes, random seeds, and LM objectives.

Most work on probing pretrained models across
the training process has focused on monolingual,
English models. There are some limited excep-
tions: Dufter and Schütze (2020) present results
for multilingual learning in a synthetic bilingual
setting, and Wu and Dredze (2020) examine perfor-
mance across pretraining epochs for a small num-
ber of languages. However, this paper is the first
to report a comprehensive analysis of monolingual
and cross-lingual knowledge acquisition on a large-
scale multilingual model.

7 Conclusion

In this paper, we probe training checkpoints across
time to analyze the training dynamics of the
XLM-R pretraining process. We find that although
the model learns in-language linguistic information
early in training – similar to findings on monolin-
gual models – cross-lingual transfer is obtained all
throughout the pretraining process.

Furthermore, the order in which linguistic in-
formation is acquired by the model is generally
consistent, with lower-level syntax acquired be-
fore semantics. However, we observe that for in-
dividual language pairs this order can vary wildly,
and our statistical analyses demonstrate that model
learning speed and overall performance on specific
languages (and pairs) are difficult to predict from
language-specific factors.

We also observe that the final model artifact of
XLM-Rreplica performs often significantly worse
than earlier training checkpoints on many lan-
guages and tasks. However, layer-wise analysis of
the model shows that linguistic information shifts
lower in the network during pretraining, with lower
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layers eventually outperforming the final layer. Al-
together, these findings provide a better understand-
ing of multilingual training dynamics that can in-
form future pretraining approaches.

8 Limitations

We note some potential limitations of this work.
We consider a single pretraining setting (replicat-
ing the training of XLM-Rbase), and the extent to
which our findings transfer to other multilingual
pretraining settings remains an open question. In
particular, pretraining a language model with more
parameters or on different multilingual data could
lead to other trends, though many of our findings
are consistent with prior work.

Additionally, despite our attempts to use diverse
datasets for evaluating these models, the language
choices available in annotated NLP data are skewed
heavily towards Indo-European, especially English
and other Western European, languages. This
means that many of the low-resource languages
seen in the pretraining data are unaccounted for in
this study. Due to this, we only evaluate word align-
ment between six languages paired with English,
and a number of the non-English datasets we use
are translated from English.

Another product of limited multilingual re-
sources is our ability to compare across languages;
in UD, each treebank is annotated on different do-
mains with different dataset sizes. This limits the
comparisons we can make across probe training
settings, though we focus on changes within in-
dividual languages in this work. To address this
limitation, we use the parallel test sets from Paral-
lel Universal Dependencies for our cross-lingual
transfer experiments, which allows us to compare
performance on different target languages from the
same source language directly.
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A Linguistic Probe Details

Table 2 presents the languages that are included
in each of the probing tasks. We filter the Roman-
ized versions of languages from the CC100 dataset,
leaving us with 94 for evaluation.

A.1 Experimental Setup
Each evaluation is run on the frozen parameters of
a training checkpoint of XLM-Rreplica. All repre-
sentations are taken from the final (12th) layer of
the encoder, except for the experiments presented
in §5, which consider the performance of different
layers within the model over time.

For the linguistic information tasks involving
probing, each probe consists of a single linear layer,
trained with a batch size of 256 for 50 epochs with
early stopping performed on the validation set. The
probes therefore consist of a limited number of
parameters m ∗ l, where m = 768 is the output
dimension of the model and l is the size of the task
label set. Following Liu et al. (2019), the probes
are optimized with a learning rate of 1e-3. Each
probe is trained on a single Nvidia V100 16GB
GPU and takes between <1 minute and 6 minutes
to train (depending on dataset size, which varies
by language and task). The reported results for
each probe are the averaged performance across
five runs.

For SimAlign, we use the default settings pro-
vided in the SimAlign implementation.4 We re-
port word-level alignment performance (instead of
sub-word alignment) using the itermax alignment
algorithm.

A.2 XLM-R Replication Details
XLM-Rreplica consists of the same model architec-
ture as XLM-Rbase, with a total of 270M param-
eters. We train the model for 1.5 million updates
on 64 Nvidia V100 32 GB GPUs using the fairseq

4https://github.com/cisnlp/simalign

Task Languages
BPC af, am, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da,

de, el, en, eo, es, et, eu, fa, fi, fr, fy, ga, gd, gl,
gu, ha, he, hi, hr, hu, hy, id, is, it, ja, jv, ka, kk,
km, kn, ko, ku, ky, la, lo, lt, lv, mg, mk, ml, mn,
mr, ms, my, ne, nl, no, om, or, pa, pl, ps, pt, ro,
ru, sa, sd, si, sk, sl, so, sq, sr, su, sv, sw, ta, te, th,
tl, tr, ug, uk, ur, uz, vi, xh, yi, zh, zh

UD af, ar, bg, ca, cs, cy, da, de, el, en, es, et, eu, fa,
fi, fr, ga, gd, he, hi, hr, hu, hy, is, it, ja, ko, la,
lv, nl, pl, pt, ro, ru, sk, sl, sr, sv, tr, ug, uk, ur,
vi, zh

XNLI ar, bg, de, el, en, es, fr, hi, ru, sw, th, tr, ur, vi,
zh

Table 2: Table summarizing the languages considered
for each task. Languages in bold are also used for the
cross-lingual setting of the task. UD covers all of the
languages used for POS tagging, dependency arc pre-
diction, and dependency arc classification.
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Task XLM-Rbase XLM-Rreplica

In-lang
BPC 0.609* 0.652
POS 89.65* 87.20

XNLI 58.08∗ 55.73

X-lang
POS 66.01* 64.94

XNLI 53.26 53.77∗

Table 3: Average performance across languages of
XLM-Rbase and the final checkpoint of XLM-Rreplica.

library (Ott et al., 2019). Notably, the language
sampling alpha for up-weighting less frequent lan-
guages is set to α = 0.7: this matches the value
used for the XLM-R, though it was reported as
α = 0.3 in the original paper.

A.3 Comparison with XLM-Rbase

We also compare the performance of our retrained
XLM-Rreplica model against the original XLM-
Rbase on a subset of the tasks in our evaluation
suite (Table 3). We find that on average, the original
XLM-R model achieves better BPC than the repli-
cated model; this is likely due to the decrease in
batch size while retraining the model. The replica
model also performs slightly worse than the orig-
inal on in-language tasks but comparably cross-
lingually (and outperforms the original model on
cross-lingual XNLI).

B What Factors Affect Multilingual
Learning?

This section presents extended results analyzing
the correlations between different factors and the
in-language and cross-lingual learning exhibited by
XLM-Rreplica.

B.1 In-language Correlation Study
We consider whether the following factors correlate
with various measures of model learning (Table 4):
pretraining data, the amount of text in the CC100
corpus for each language; task data, the amount of
in-task data used to train each probe; and language
similarity to English, which is the highest-resource
language in the pretraining data. We use the syn-
tactic distances calculated in Malaviya et al. (2017)
as our measure of language similarity; these scores
are smaller for more similar language pairs.

Overall Performance The amount of pretraining
data and in-task training data are strongly corre-
lated with overall task performance for most of the
considered tasks; this corroborates similar results

from Wu and Dredze (2020). Language similarity
with English is also correlated with better in-task
performance on all tasks except for dependency
arc prediction, suggesting that some form of cross-
lingual signal supports in-language performance
for linguistically similar languages.

Learning Progress Measures We also consider
(1) the step at which XLM-Rreplica achieves 95%
of its best performance for each language and task,
which measures how quickly the model obtains a
majority of the tested linguistic information, and
(2) how much the model forgets from the best per-
formance for each language by the final training
checkpoint. We find that language similarity to
English is strongly correlated with how quickly
XLM-Rreplica converges on BPC and dependency
arc classification. This suggests that cross-lingual
signal helps the model more quickly learn lower-
resource languages on these tasks, in addition to
improving overall model performance. However,
we observe no strong trends as to what factors af-
fect forgetting across tasks.

B.2 Cross-lingual Correlation Study

Table 5 presents a correlation study of differ-
ent measures for cross-lingual transfer in XLM-
Rreplica. We consider the effect of source and tar-
get pretraining data quantity, the amount of in-task
training data (in the source language), and the sim-
ilarity between the source and target language on
the following transfer measures: overall task per-
formance, asymmetry in transfer (the difference
in model performance on l1 → l2 compared to
l2 → l1), the step at which the model achieves 95%
or more of overall performance on the language
pair, and forgetting – the (relative) degradation of
overall performance in the final model checkpoint.

Correlations of Transfer with Language Factors
For overall cross-lingual performance, we observe
that language similarity is highly correlated with
task performance for all tasks and is similarly cor-
related with speed of acquisition (the step to 95%
of overall performance) for three of the four con-
sidered tasks. This is in line with prior work that
has also identified language similarity as a strong
indicator of cross-lingual performance (Pires et al.,
2019). However, all considered factors are less
correlated with the other measures of knowledge
acquisition, such as the asymmetry of transfer and
the forgetting of cross-lingual knowledge; this sug-
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Variable Factors Spearman (ρ)
BPC POS Arc Pred. Arc Class. XNLI

Task Perf.
Pretraining Data -0.597** 0.258 0.267 0.411* 0.767**

Task Data -0.597** 0.462* 0.276 0.527**
Lang Sim. 0.427** -0.315* -0.170 -0.427* -0.779**

Steps to 95%
Pretraining Data 0.135 -0.290 -0.193 -0.301* -0.239

Task Data 0.135 -0.065 -0.260 -0.209
Lang Sim. -0.385** 0.156 0.268 0.325* 0.316

Forgetting
Pretraining Data 0.230 0.218 0.437* 0.564*

Task Data -0.322* -0.338* -0.015
Lang Sim. 0.172 -0.158 -0.181 -0.795**

Table 4: Correlation study of different factors against measures of in-language knowledge. * p < 0.05, ** p < 0.001

Variable Factors Spearman (ρ)
POS Arc Pred. Arc Class. XNLI

Task Perf.

Src. Pretraining Data 0.113* 0.107 0.117* 0.178*
Trg. Pretraining Data 0.038 0.144* 0.015 0.625**

Task Data 0.245** 0.124* 0.129*
Lang Sim. -0.598** -0.575** -0.593** -0.321**

Asymmetry
Src. Pretraining Data 0.116* -0.045 0.140* -0.423*
Trg. Pretraining Data -0.116* 0.045 -0.140* 0.423*

Task Data 0.123* -0.016 -0.077

Steps to 95%

Src. Pretraining Data -0.290** -0.023 -0.132* -0.195*
Trg. Pretraining Data -0.123* -0.066 -0.106 -0.057

Task Data 0.073 -0.057 0.115*
Lang Sim. 0.475** 0.518** 0.492** 0.076

Forgetting

Src. Pretraining Data -0.208** -0.123* 0.000 0.137*
Trg. Pretraining Data 0.042 0.015 0.122* -0.079

Task Data 0.009 -0.004 0.078
Lang Sim. 0.165* 0.186* -0.025 0.164*

Table 5: Correlation study of different factors against measures of cross-lingual transfer. * p < 0.05, ** p < 0.001

gests that there could be other factors that explain
these phenomena.

Interactions Between Learning Measures We
also consider the correlations between the different
measures of model performance on cross-lingual
transfer. For example, overall transfer performance
is strongly correlated (p«0.001) with earlier acqui-
sition (step to 95% of overall performance) for all
syntactic tasks: ρ = −0.50 for both POS tagging
and dependency arc prediction and −0.55 for arc
classification. To a lesser extent, overall transfer
performance and model forgetting are negatively
correlated, ranging from ρ = −0.13 to −0.42
across considered tasks. This indicates that XLM-
Rreplica forgets less of the learned cross-lingual
signal for better-performing language pairs, at the
expense of already less successful ones.

C Expanded Layer-wise Analysis

This section expands on the layer-wise analysis of
XLM-Rreplica presented in §5. Figure 10 gives
additional layer-wise heatmaps over time. Fig-
ure 11 shows the expected layer (i.e., average
layer weighted by relative performance) of XLM-

Figure 10: Layer-wise performance heatmaps for Czech
arc classification and Chinese XNLI.
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Figure 11: The expected best layer for in-language
dependency arc classification and XNLI over time on
XLM-Rreplica.

Figure 12: Additional heatmaps of cross-lingual transfer
at different layers and timesteps of XLM-Rreplica.

Figure 13: Change in the expected best layer for word
alignment via SimAlign over time in XLM-Rreplica

Rreplica at different time steps. The expected layer
decreases over time: by 1.79, 1.61, 1.08, and 2.79
for CS, EN, HI, and JA respectively on dependency
arc classification; and by 2.49, 2.25, 0.43, and 0.77
for BG, EN, HI, and ZH respectively on XNLI.

We also provide additional examples of layer-
wise cross-lingual transfer in Figure 12; we find
that for cross-lingual transfer, the best internal layer
outperforms the best final layer state on average by
7.67 on arc classification transfer, 3.39 on XNLI,
and 14.2 F1 on Simalign. Figure 13 shows the
change in the expected best layer over time for
SimAlign.

D Additional Across Time Analyses

This section includes additional results from our
analysis of knowledge acquisition during multilin-
gual pretraining:

• Figure 14 presents BPC learning curves for
each language in the CC100 training data.

• Figure 16 covers the learning progress of
XLM-Rreplica on dependency arc prediction,
arc classification, and XNLI, expanding on
the results in §3.2.

• Figure 15 gives the relative performance for
in-language POS and XNLI across training
checkpoints discussed in §3.2.

• Figure 17 presents more detailed results for
relative performance over time when trans-
ferring out of English. This expands on the
summary figures discussed in §4.2.
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Figure 14: Learning Curves for BPC in each training
language. Lines are colored by the amount of pretrain-
ing data available for that language.

Figure 15: Heatmap of relative performance over time
for different languages for POS tagging and XNLI. Lan-
guages are ordered by the amount of performance degra-
dation at the final checkpoint.
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Figure 16: Learning Progress of XLM-Rreplica across training, up to 200k training steps. Each point represents the
step at which the model achieves x% of the best overall performance of the model on that task.

Figure 17: Heatmap of relative performance over time for cross-lingual transfer with English as the source language.
Languages are ordered by the amount of performance degradation at the final checkpoint.
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