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Abstract

English pretrained language models, which
make up the backbone of many modern NLP
systems, require huge amounts of unlabeled
training data. These models are generally pre-
sented as being trained only on English text
but have been found to transfer surprisingly
well to other languages. We investigate this
phenomenon and find that common English
pretraining corpora actually contain significant
amounts of non-English text: even when less
than 1% of data is not English (well within
the error rate of strong language classifiers),
this leads to hundreds of millions of foreign
language tokens in large-scale datasets. We
then demonstrate that even these small percent-
ages of non-English data facilitate cross-lingual
transfer for models trained on them, with tar-
get language performance strongly correlated
to the amount of in-language data seen during
pretraining. In light of these findings, we ar-
gue that no model is truly monolingual when
pretrained at scale, which should be considered
when evaluating cross-lingual transfer.

1 Introduction

Pretrained language models have become an in-
tegral part of NLP systems. They come in two
flavors: monolingual, where the model is trained
on text from a single language, and multilingual,
where the model is jointly trained on data from
many different languages. Monolingual pretrained
models are generally applied to tasks in the same
language, whereas multilingual ones are used for
cross-lingual tasks or transfer.

Recent work has claimed that monolingual
pretrained models are also surprisingly good at
transferring between languages, despite ostensi-
bly having never seen the target language before
(Gogoulou et al., 2021; Li et al., 2021, inter alia).
However, because of the large scale of pretrain-
ing data and because many pretraining corpora are
not publicly available, it is currently unknown how

Figure 1: Estimated non-English data in English pre-
training corpora (token count and total percentage); even
small percentages lead to many tokens. C4.En (†) is es-
timated from the first 50M examples in the corpus.

much foreign language data exists in monolingual
pretraining corpora. In this paper, we show that (1)
these data are almost certainly contaminated with
very small percentages of text from other languages
and that (2) cross-lingual transfer is possible from
such data leakage in the pretraining corpus.

More specifically, we quantify how multilingual
English pretrained models are in two steps. First,
we analyze common English pretraining corpora
with a large-scale automatic evaluation to estimate
their language composition, as well as a smaller-
scale manual analysis. Second, we perform ex-
periments across fifty languages on masked lan-
guage modeling and part-of-speech (POS) tagging
to measure how well the models trained on these
pretraining corpora perform outside of English.

Our analysis finds that these corpora include very
small percentages that amount to overall significant
amounts of non-English text (Figure 1), particularly
those derived from web-crawled data. Furthermore,
the models trained on this data perform surprisingly
well on other languages; this transfer is strongly
correlated with the amount of target language data
seen during pretraining. Notably, we find that the
English T5 outperforms mBERT on POS tagging
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in multiple languages with no finetuning.
Overall, these results indicate that the consid-

ered models are actually multilingual and that their
ability to transfer across languages is not zero-shot,
despite what has been recently claimed. Given the
effort required to fully remove all non-English data,
we question whether it is practically possible to
train truly monolingual models at scale.

2 Pretraining Data Composition

We first measure how much non-English text exists
in commonly used English pretraining corpora with
two analyses: an automatic language identification
to estimate the amount of foreign language data in
these corpora, and a manual qualitative analysis of
the text classified as non-English.

We consider the following pretraining datasets:
ENGLISH WIKIPEDIA (11.8GB); BOOKCORPUS

(Zhu et al. 2015, 4.2GB); STORIES (Trinh and Le
2018, 31GB); OPENWEBTEXT (Gokaslan and Co-
hen 2019, 38GB), which is an open-source version
of WEBTEXT (Radford et al., 2019); CC-NEWS
(Liu et al. 2019, 76 GB); and C4.EN (Raffel et al.
2020, 305GB), as provided by Dodge et al. (2021).
We use the versions of WIKIPEDIA, BOOKCOR-
PUS, and CC-NEWS used to pretrain RoBERTa.

2.1 Automatic Evaluation of Language
Composition

We use the FastText language identification
model (Joulin et al., 2017) to label every line in
each corpus and keep lines as non-English if they
score above a set confidence threshold (0.6). Due
to the large size of C4, we subsample the first
50M examples (or 14%); we classify the entirety
of all other datasets. Since language detection is
imperfect, particularly for low-resource languages
(Caswell et al., 2021), we present the results of this
analysis as an estimate of the non-English data in
each dataset and perform a qualitative analysis of
potential errors in the following section.

A summary of the language identification exper-
iments is presented in Figure 1.1 We see that every
corpus contains notable quantities of non-English
data, with our estimates ranging between 300k to
406M tokens. An obvious factor that affects the
amount of non-English data in each corpus is the
overall size of the dataset; however, even when
controlling for size by looking at the percentage of

1Full results of this evaluation are detailed in Appendix C.

Type Num. of Lines in...
Book Wiki Stories OpenWeb CCNews C4

156 129 99 175 193 169
Ex: Moraliska argument utgår ifrån våra moraliska intuitioner

att rätt och fel inte endast är förankrade i människors vilja.NE

(OPENWEBTEXT)
13 11 15 4 1 22

Ex: The German blazon reads: "Von Silber über SchwarzBiL geteilt..." (WIKI)
2 7 4 2 0 4

Ex: Εκείνη δεν μπορούσε να πληρώσειTrans.
[She couldn’t pay.] (BOOKCORPUS)

1 28 5 1 0 1
Ex: 2012 Playhouse Presentsウィルシリーズ1、Ent.

エピソード1: "The Minor Character" (C4)

26 22 55 12 6 3En Ex: "Dere’s buzzards circlin’ ova dem trees." (BOOKCORPUS)
2 3 22 6 0 1XX Ex: M D | X O X | O O O = A (WIKI)

Table 1: Results of the qualitative analysis of the non-
English lines in various pretraining corpora. Type ab-
breviations are defined in Section 2.2.

non-English data, we still see that the smaller cor-
pora (WIKIPEDIA, BOOKCORPUS, and STORIES)
have relatively less non-English data.

Indeed, a major factor of language leakage is
the method in which the data was collected: the
datasets derived from web crawls contain higher
percentages of non-English text (OPENWEBTEXT

andCCNEWS). This is true even for C4, where
the dataset was filtered with a classifier to exclude
non-English text (Raffel et al., 2020). Since au-
tomatic methods for language identification are
imperfect, the datasets with more manual filtering
(such as WIKIPEDIA, which has human editors cu-
rating its content) are less prone to non-English
data than those relying on classifiers. Due to these
challenges, it is likely impossible to fully remove
non-English text from a web-crawled dataset at
scale.

We also see that non-English text makes up
small percentages of the overall data, though this
still leads to millions of tokens in large datasets.
The largest individual languages after English only
make up 0.01%, 0.15%, and 0.05% of the BERT,
RoBERTa, and T5 training data, respectively. Mul-
tilingual pretraining work has shown that models
generalize to new languages from varying amounts
of data (Delvin, 2019; Lample and Conneau, 2019;
Conneau et al., 2020); however, these approaches
intentionally select data across languages, and most
upsample low-resource languages during training.
Without these considerations, it is an open ques-
tion how well the models trained on these relatively
small amounts of non-English data generalize.
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(a) MLM (b) POS (probing) (c) POS (finetuned)

Figure 2: Average performance by each model across all languages for the task. Lower is better for BPC.

2.2 Qualitative Analysis of Non-English Texts

We also perform a closer analysis on a random sub-
set (200 per corpus) of non-English lines predicted
by the language classifier (Table 1). Each example
is manually coded into one of six categories. The
first set covers various kinds of foreign language
data: NE, where the line contains only non-English
language text; BiL, or bilingual, where the line con-
tains both English and non-English text; Trans., in
which the English and non-English data that are
translations of each other; and Ent., where the line
is primarily English but contains non-English en-
tities. The last two codes pertain to errors made
by the language classifier: En., where the line only
contains English text, and XX, which refers to lines
that contain no natural language.

The majority of lines across datasets consist
only of non-English text. The next most com-
mon type of non-English data is BiL; this con-
tains many subtypes of data, such as codeswitch-
ing and foreign language dialogue within English
text. These datasets also include parallel data at
both the sentence- and word-level.2 We note that
all observed translations are between English and
another language. Finally, some of the examples
classified as non-English are actually English texts
with non-English phrases.

Our analysis also shows that the language classi-
fier performs worse on the non-web crawled data.
For example, it misclassified a quarter of the sam-
pled lines from STORIES as non-English when they
in fact only contain English text; many of these
lines stem from snippets of dialogue in the dataset.
We generally observe that lines coded as En tend
to be shorter than the correctly labeled lines and
often contain non-standard English. The language
classifier also struggles to handle noisy lines, for
which it has no appropriate language label.

2e.g., "大学【だい・がく】– college", OPENWEBTEXT

3 Cross-lingual Transfer of English
Pretrained Models

We now ask: how well do models pretrained on
these putatively English corpora perform on non-
English tasks? While the English data is more mul-
tilingual than previously thought, there are many
differences between monolingual and multilingual
pretraining; non-English data are often tokenized
into more subword units3 and are much less fre-
quently observed during monolingual training.

We evaluate popular English pretrained models
on tasks in more than 50 languages: (masked) lan-
guage modeling, POS probing, and finetuned POS
tagging. We compare the performance of monolin-
gual BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and T5 (Raffel et al., 2020) against
multilingual mBERT (Delvin, 2019) and XLM-R
(Conneau et al., 2020). We report average perfor-
mance across five runs with different random seeds
for the POS evaluations. The full results and all
languages can be found in Appendix D.

3.1 Non-English MLM Evaluation

We first measure the perplexity of English pre-
trained MLMs in other languages. We use Wiki-
40B, a multilingual language modeling dataset that
covers 41 languages (Guo et al., 2020). Following
the Wiki-40B paper, we report bits per character
(BPC) to allow comparison between models with
different tokenizations of the text.

We find that both BERT models perform no-
tably worse on modeling other languages; however,
RoBERTa, reduces the gap with the multilingual
models from 2.51 BPC to 0.87 BPC (Figure 2a).
This finding is consistent with Tran (2020), who
also found RoBERTa transfers well cross-lingually.

3For example, the Basque UD treebank requires on average
1.78, 2.59, and 2.66 tokens per word to be encoded by XLMR,
RoBERTa, and BERT, respectively.
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Task Model Corr. (ρ) with...
lang. data ↑ en sim. ↓

MLM
(BPC) ↓

BERTbase -0.258 0.097
BERTlg -0.258 0.118
RoBERTabase -0.667∗∗ 0.326∗

RoBERTalg -0.685∗∗ 0.345∗

Frozen POS
(Acc.) ↑

BERTbase 0.335∗ -0.332∗

BERTlg 0.314∗ -0.375∗

RoBERTabase 0.594∗∗ -0.260
RoBERTalg 0.674∗∗ -0.304∗

T5base 0.131 -0.271
Finetuned POS

(Acc.) ↑
BERTbase 0.373∗ -0.340∗

RoBERTabase 0.507∗∗ -0.292∗

Table 2: Spearman correlations between task perfor-
mance and (a) in-language data amounts in pretraining
corpora (lang. data) and (b) language similarity with
English (en sim.). ∗p < 0.05 and ∗∗p < 0.001.

3.2 POS Performance Across Languages

Next, we evaluate how well monolingual English
models perform on non-English downstream tasks,
using part-of-speech (POS) tagging as a case study.

Probing We first consider the performance of the
encoders when probed for POS knowledge (Fig-
ure 2b).4 Unsurprisingly, on average all of the En-
glish models underperform the multilingual models.
Similar to MLM, we find that RoBERTa performs
better than BERT when probed for POS features on
other languages; surprisingly, it also strongly out-
performs T5, despite C4 containing more absolute
non-English data than the RoBERTa corpus.

This difference is likely due to two factors. First,
in terms of relative percentages, RoBERTa is ex-
posed to more non-English text than T5 (0.78%
compared to only 0.22%). Secondly, RoBERTa’s
subword vocabulary is robust to unexpected inputs
and does not substitute an UNK token any input
tokens; in contrast, T5 and BERT have high rates
of UNK tokens for some non-Latin languages (Ap-
pendix B).5 However, for many high-resource lan-
guages the English models perform competitively,
with T5 outperforming mBERT on German and
Portuguese, among others.

Fine-tuning To test if the effects of foreign
language data carry through after finetuning, we
also finetune a subset of the models (BERTbase,
RoBERTabase, mBERT, XLMRbase) for non-
English POS tagging (Figure 2c). After finetun-

4For T5, this means that we evaluate the output of the
encoder and discard the decoder.

5UNK tokens refer to placeholder tokens used when the
model receives an input not covered by its vocabulary.

ing, the gap between the mono- and multilingual
models is much smaller: RoBERTa only averages
2.65 points worse than XLM-R, compared to 12.5
points when probing.

3.3 Potential Reasons for Cross-lingual
Generalization

We then investigate the correlation between poten-
tial transfer causes and model performance (Table
2). Specifically, we consider the quantity of tar-
get language data found in the model’s pretraining
corpus and the language similarity to English as
potential causes of cross-lingual transfer.

We find that across tasks, RoBERTa task perfor-
mance is most strongly correlated with the amount
of target language data seen during pretraining.
BERT and T5 task performance are less correlated
with observed pretrained data, likely due to tok-
enization artifacts (Appendix B). Indeed, when we
control for languages not written with Latin script
on T5, the correlation between performance and
the amount of target pretraining data increases to
ρ = 0.313.

We also consider the effect of language similarity
on task performance, which is often hypothesized
to facilitate cross-lingual transfer. We use the syn-
tactic distance of languages calculated by Malaviya
et al. (2017); more similar languages score lower.
However, we generally find that this is less corre-
lated with performance than the quantity of target
text, particularly for RoBERTa.

4 Discussion

In this paper, we demonstrate that English pre-
trained models are exposed to a considerable
amount of non-English data during pretraining, par-
ticularly in the case of more recent models that are
trained on larger corpora derived from web crawls.
We also find that this non-English text acts as a sig-
nificant source of signal for cross-lingual transfer.

Other recent work has focused on document-
ing the composition of pretraining corpora (Dodge
et al., 2021; Gururangan et al., 2022). Caswell
et al. (2021) manually audit a variety of multilin-
gual datasets, finding data quality issues that are
worse for low-resource languages and, similarly to
our work, that texts for many languages are misclas-
sified. In contrast, our focus is on the presence of
foreign language data in primarily English corpora.

Prior work has also shown the ability of mono-
lingual models to transfer to other languages across
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a wide range of tasks (Gogoulou et al., 2021; Li
et al., 2021; Tran, 2020; Artetxe et al., 2020; Chi
et al., 2020), but these works do not consider the ef-
fect of foreign language data leakage as a source of
signal. Notably, de Souza et al. (2021) mention the
presence of foreign language data in their corpora
but assume the small amounts observed will not
affect model performance. However, our findings
demonstrate that the amount of foreign language
data directly correlates with cross-lingual transfer.

An obvious follow-up to our findings would be to
retrain the models with text that is verified to only
contain English data; this would confirm the effect
the leaked non-English data has on the models.
We reiterate that the standard method for filtering
these datasets, automatic language classifiers, is
imperfect. This, and the infeasibility of manual
filtering due to the scale of the data, means that
controlling for the language the model is pretrained
on is nearly impossible.

However, the presence of foreign language data
in pretraining corpora is not inherently problematic.
Models trained on these datasets perform exceed-
ingly well on their target languages and general-
ize to other languages much better than expected.
Rather, it is important to remember that these mod-
els are not performing zero-shot transfer when used
in other languages, given the scale and data with
which they were pretrained.

5 Limitations

Our work has a number of limitations. First, we
measure the quantities of non-English data using
a language classifier. The amounts of foreign lan-
guage data we report are estimates for each dataset,
as the classifier likely misclassified some examples.
We manually audit the types of mistakes made by
the language classifier in Section 2. Additionally,
we evaluate downstream performance via POS tag-
ging, and it is possible that the models would ex-
hibit different behavior on other NLP tasks.

We also only consider the effect of foreign lan-
guage contamination for English pretrained mod-
els. It is unclear to what extent this phenomenon
affects monolingual models for other languages;
however, since many of the resources evaluated
in this work are also used to pretrain non-English
monolingual models (e.g., Wikipedia), similar ef-
fects would likely be observed.
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probing but unfreeze the encoder weights to allow
them to update during training. The POS models
are trained and evaluated on Universal Dependen-
cies (UD) treebanks for each language (Nivre et al.,
2020).

We use a batch size of 256 for the frozen ex-
periments and batch sizes of 16 for the finetuned
models; we used a learning rate of 0.001 for the
probing task and 5e-6 for finetuning. Due to the
large number of experiments, we did not tune these
parameters. For both POS tagging experiments, we
use an Adam optimizer (Kingma and Ba, 2015),
and train each probe for 50 passes over the data
(with early stopping on the validation set and a
patience of 5). The pretrained models for all exper-
iments are downloaded from Huggingface (Wolf
et al., 2019).

Each of our models was trained on a single
Nvidia V100 GPU: 16GB for the frozen models
and 32GB for the finetuned ones. The frozen
probes each took between <1 and 8 minutes to
train, and the finetuned probes were trained for be-
tween 5 minutes and 7.5 hours (depending on the
dataset size, which varies by language, and early
stopping epoch).

B The Effect of Tokenization

A factor that varies across the considered models
is how they tokenize the input text for different
languages. Table 4 gives the number of subword
tokens per (white-space separated) word in the val-
idation split of Wiki40b (Guo et al., 2020), as well
as the percentage of tokens that are unked out by
the tokenizer. We see that in general, all of the mod-
els (including explicitly multilingual ones) require
more subword tokens per word for languages other
than English.6 We can also see that T5 is more effi-
cient at encoding French, German, and Romanian
than the other monolingual models (without a high
UNK rate), likely because the T5 tokenizer was
explicitly trained on English data mixed with those
languages (Raffel et al., 2020).

We also examine how many tokens are unked
out by each tokenizer across languages. We see
that BERT and T5 in particular have a high UNK
rate (> 10%) for many languages not written in
Latin script. This is in part due to the different tok-
enization schemes used by the models: RoBERTa

6We note that the number of subword tokens per “word”
in Japanese is much larger than in other languages, as words
in Japanese are not whitespace-separated.

uses a byte-level BPE encoding (Radford et al.,
2019), which produces no UNK tokens for Unicode
text, whereas the tokenization methods used by
BERT and T5 (SentencePiece, Kudo and Richard-
son (2018)) will unk out tokens not seen while
training the tokenizer. Additionally, there are other
potential decisions made during tokenization that
could affect these UNK rates, including filtering on
non-Latin tokens or learning the subword tokenizer
on a subset of the training data.

High UNK rates in the tokenized text for a lan-
guage affect performance on downstream tasks.
With regards to evaluating BPC, high frequencies
of UNK tokens in the data likely make the lan-
guage modeling task artificially easy, leading to
lower BPC scores. Because of this, we note the
cases where a model UNKs out more than 10%
of the considered data in the BPC results given in
Table 5 with an asterisk (*). High UNK rates likely
also lead to degraded performance on downstream
tasks (including the considered POS tagging task
in this work).

C Full Results of the Automatic
Language Identity Analysis

We present a more complete set of results for the
automatic language composition analysis (Section
2) in Table 3. We include every language that has
10,000 or more tokens in at least one of the consid-
ered corpora; we additionally report numbers for
Basque and Frisian, as both languages are included
in the experiments in Section 3.

D Full Results of Transfer Experiments

Full results for whole word MLM are given in Table
5; results for POS probing can be found in Table 6
and results for finetuned POS tagging are detailed
in Table 7.
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ISO Language Number of Tokens
Wiki Book Stories OpenWebText CCNews C4 BERT RoBERTa

en English 2.0B 802.4M 6.2B 6.4B 13.0B 17.8B 2.8B 28.3B
sq Albanian 3.3K 0 195 8.8K 42.5M 14.4K 3.3K 42.5M
es Spanish 112.8K 120.4K 150.6K 3.4M 36.6M 5.9M 233.2K 40.3M
de German 176.2K 5.4K 104.8K 3.1M 34.4M 9.0M 181.5K 37.8M
ro Romanian 19.6K 174 6.4K 1.4M 28.7M 164.0K 19.8K 30.2M
pt Portugese 43.2K 760 44.2K 1.5M 10.0M 1.9M 44.0K 11.5M
it Italian 102.9K 3.9K 46.1K 1.6M 9.2M 2.6M 106.7K 10.9M
fr French 201.1K 88.1K 126.6K 2.5M 7.2M 6.0M 289.2K 10.1M
pl Polish 56.2K 51 5.0K 239.9K 5.3M 686.9K 56.2K 5.6M
nl Dutch 28.0K 1.0K 37.3K 254.7K 4.4M 1.7M 29.0K 4.8M
vi Vietnamese 25.5K 98 2.8K 10.5K 3.5M 277.6K 25.6K 3.6M
tl Tagalog 3.2K 3.7K 28.7K 124.3K 3.1M 312.1K 6.9K 3.3M
cs Czech 8.8K 12 2.1K 152.7K 2.0M 295.0K 8.8K 2.1M
fi Finnish 6.9K 119 4.7K 243.2K 1.7M 214.5K 7.0K 1.9M

no Norwegian 9.5K 170 6.4K 204.3K 1.6M 300.5K 9.7K 1.8M
hu Hungarian 8.9K 51 5.6K 32.5K 1.6M 194.2K 9.0K 1.7M
hi Hindi 6.7K 0 520 32.2K 1.5M 328.0K 6.7K 1.6M
hr Croatian 4.0K 0 482 313.2K 1.2M 30.8K 4.0K 1.5M
id Indonesian 1.5K 100 12.9K 83.5K 1.3M 997.7K 1.6K 1.4M
ru Russian 17.4K 606 3.9K 956.3K 64.8K 2.3M 18.0K 1.0M
sv Swedish 11.1K 567 9.3K 784.9K 236.3K 743.5K 11.6K 1.0M
sr Serbian 753 0 709 39.0K 976.2K 36.8K 753 1.0M
et Estonian 2.8K 0 288 8.0K 817.1K 32.0K 2.8K 828.2K
tr Turkish 6.3K 541 9.4K 131.4K 535.0K 401.9K 6.9K 682.6K
af Afrikaans 852 0 2.7K 6.7K 584.1K 145.3K 852 594.3K
ku Kurdish 185 0 0 6.7K 468.0K 3.5K 185 474.9K
da Danish 3.1K 20 5.3K 249.8K 157.8K 271.1K 3.1K 415.9K
gl Galican 101 0 309 637 317.5K 9.6K 101 318.6K
ja Japanese 5.8K 3.4K 23.8K 188.7K 76.3K 3.0M 9.2K 298.1K
ca Catalan 5.2K 99 418 28.2K 258.8K 108.3K 5.3K 292.8K
ar Arabic 5.3K 0 665 154.2K 89.6K 601.7K 5.3K 249.7K
ko Korean 3.2K 20 45 208.1K 8.0K 4.1M 3.3K 219.4K
el Greek 15.2K 777 1.8K 123.8K 28.4K 288.7K 16.0K 169.9K
sl Slovenian 262 0 250 102.1K 14.5K 46.8K 262 117.1K
is Icelandic 1.5K 65.8K 758 10.4K 11.1K 114.7K 67.2K 89.5K
ga Irish 1.2K 0 839 8.7K 77.9K 468.4K 1.2K 88.6K
uk Ukranian 3.5K 10 232 63.4K 3.5K 232.1K 3.5K 70.7K
he Hebrew 5.2K 0 4.6K 46.5K 9.6K 138.0K 5.2K 66.0K
lt Lithuanian 3.4K 12 1.1K 2.8K 54.9K 56.8K 3.4K 62.2K
sk Slovak 1.9K 0 76 16.2K 43.9K 64.7K 1.9K 62.0K
ms Malay 896 29 1.4K 1.8K 45.9K 42.8K 925 50.0K
sw Swahili 44 16 533 143 47.7K 5.9K 60 48.5K
eo Esperanto 461 114 2.6K 34.9K 7.2K 37.2K 575 45.2K
zh Chinese 4.1K 12 5.5K 30.8K 4.5K 410.2K 4.1K 44.8K
lv Latvian 1.4K 0 367 4.0K 38.5K 47.0K 1.4K 44.3K
bn Bengali 2.5K 24.8K 51 6.2K 10.1K 48.6K 27.3K 43.6K
fa Persian 3.0K 0 261 28.2K 5.8K 668.9K 3.0K 37.2K
nn Norysk 283 0 0 4.5K 32.5K 4.6K 283 37.2K
la Latin 6.0K 641 3.8K 19.4K 4.7K 34.7K 6.6K 34.5K
az Azerbaijani 2.0K 0 55 884 27.1K 12.9K 2.0K 30.0K
th Thai 7.6K 0 592 15.1K 5.5K 131.8K 7.6K 28.7K
bg Bulgarian 6.7K 20 284 18.7K 2.8K 96.7K 6.7K 28.5K
cy Welsh 1.2K 84 440 18.5K 7.4K 59.5K 1.3K 27.6K
ilo Iloko 19 0 16 628 18.8K 1.1K 19 19.5K
ur Ukranian 5.0K 0 24 6.4K 7.0K 27.9K 5.0K 18.4K
ta Tamil 5.4K 0 234 5.9K 5.8K 42.2K 5.4K 17.4K
mt Maltese 177 0 0 371 13.9K 20.3K 177 14.5K
hy Armenian 2.6K 0 0 7.5K 2.9K 21.5K 2.6K 13.0K
gd Gaelic 198 0 52 874 8.8K 117.6K 198 10.0K
eu Basque 99 5 1.8K 2.8K 2.4K 19.3K 104 7.0K
fy Frisian 80 0 1.3K 1.5K 601 9.8K 80 3.4K

Total (Non-En) 983k 322k 682k 18.6M 201M 406M† 1.3M 222M

Table 3: Full results for the automatic language composition analysis of pretraining corpora presented in Section 2.
The last two columns include the total data that BERT and RoBERTa were trained on, respectively; C4 contains the
data T5 was trained on, and contains the estimates for the first 50M examples in the full C4 dataset; † represents the
projected estimate for the full dataset.
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ISO Monolingual Multilingual
BERT RoBERTa T5 mBERT XLMR

ar 2.91 (0.60%) 3.11 (0.0%) 1.91 (41.26%) 1.95 (0.05%) 1.73 (9.8e-4%)
bg 3.03 (0.06%) 3.25 (0.0%) 2.88 (17.83%) 1.93 (0.67%) 1.72 (1.2e-3%)
ca 1.95 (0.01%) 1.83 (0.0%) 2.08 (1.23%) 1.55 (0.12%) 1.56 (4.6e-4%)
cs 2.64 (0.03%) 2.64 (0.0%) 2.85 (10.30%) 2.00 (0.22%) 1.86 (5.6e-4%)
da 2.19 (0.01%) 2.07 (0.0%) 2.42 (3.56%) 1.74 (0.14%) 1.63 (4.5e-4%)
de 2.21 (0.02%) 2.14 (0.0%) 1.85 (0.26%) 1.65 (0.37%) 1.67 (1.5e-3%)
el 2.74 (0.36%) 2.96 (0.0%) 1.82 (40.30%) 2.05 (0.05%) 1.73 (1.4e-3%)
en 1.38 (0.03%) 1.32 (0.0%) 1.44 (0.15%) 1.37 (0.22%) 1.42 (1.3e-3%)
es 1.76 (0.01%) 1.67 (0.0%) 1.88 (1.48%) 1.37 (0.11%) 1.37 (8.2e-4%)
et 3.02 (0.03%) 2.92 (0.0%) 3.35 (1.55%) 2.47 (0.33%) 2.21 (1.5e-3%)
fa 2.80 (1.12%) 3.34 (0.0%) 2.00 (42.14%) 1.70 (0.05%) 1.55 (6.1e-3%)
fi 3.18 (8.3e-3%) 3.06 (0.0%) 3.48 (0.13%) 2.45 (0.35%) 2.24 (9.9e-4%)
fr 1.90 (0.01%) 1.81 (0.0%) 1.78 (0.26%) 1.53 (0.43%) 1.57 (8.5e-4%)
he 2.82 (0.72%) 3.08 (0.0%) 1.97 (40.30%) 2.05 (0.06%) 1.89 (4.2e-4%)
hi 1.98 (12.06%) 2.84 (0.0%) 1.64 (42.82%) 1.64 (0.05%) 1.39 (1.3e-3%)
hr 2.38 (7.1e-3%) 2.27 (0.0%) 2.57 (3.71%) 1.85 (0.08%) 1.73 (1.1e-3%)
hu 2.78 (0.02%) 2.72 (0.0%) 3.00 (2.60%) 2.12 (0.28%) 1.93 (1.1e-3%)
id 2.34 (0.05%) 2.22 (0.0%) 2.54 (0.13%) 1.70 (0.12%) 1.59 (4.5e-3%)
it 1.92 (0.01%) 1.83 (0.0%) 2.05 (0.42%) 1.51 (0.10%) 1.52 (1.0e-3%)
ja 34.41 (39.97%) 47.67 (0.0%) 9.50 (22.19%) 35.22 (0.05%) 31.30 (0.03%)
ko 1.60 (59.65%) 4.78 (0.0%) 2.32 (38.63%) 2.65 (0.25%) 2.53 (0.03%)
lt 3.06 (0.80%) 3.12 (0.0%) 3.41 (8.78%) 2.48 (0.97%) 2.23 (7.7e-3%)
lv 2.89 (0.48%) 2.84 (0.0%) 3.13 (12.52%) 2.36 (0.30%) 2.06 (2.8e-3%)
ms 2.34 (0.03%) 2.21 (0.0%) 2.53 (0.10%) 1.71 (0.10%) 1.58 (1.9e-3%)
nl 2.18 (8.0e-3%) 2.04 (0.0%) 2.31 (0.21%) 1.64 (0.08%) 1.62 (4.6e-4%)
no 2.24 (0.03%) 2.10 (0.0%) 2.49 (3.01%) 1.74 (0.13%) 1.66 (2.0e-3%)
pl 2.60 (9.3e-3%) 2.60 (0.0%) 2.83 (6.50%) 1.96 (0.44%) 1.88 (7.2e-4%)
pt 1.86 (0.02%) 1.76 (0.0%) 2.01 (2.05%) 1.45 (0.11%) 1.43 (1.0-3%)
ro 2.03 (0.01%) 2.02 (0.0%) 1.73 (0.18%) 1.63 (0.25%) 1.54 (7.9e-4%)
ru 3.05 (0.02%) 3.25 (0.0%) 2.90 (21.1%) 1.92 (0.53%) 1.82 (2.1e-3%)
sk 2.86 (0.05%) 2.81 (0.0%) 3.14 (7.08%) 2.20 (0.19%) 2.00 (1.4e-3%)
sl 2.37 (9.7e-3%) 2.24 (0.0%) 2.53 (3.45%) 1.91 (0.06%) 1.73 (1.1e-3%)
sr 3.01 (0.71%) 3.33 (0.0%) 2.95 (17.14%) 1.95 (0.19%) 1.77 (4.8e-4%)
sv 2.57 (7.9e-3%) 2.40 (0.0%) 2.77 (2.08%) 1.90 (0.15%) 1.80 (8.5e-4%)
th 2.13 (36.91%) 11.79 (0.0%) 2.73 (28.58%) 8.34 (0.12%) 5.42 (1.6e-3%)
tl 2.14 (0.10%) 2.02 (0.0%) 2.44 (0.18%) 1.81 (0.12%) 1.70 (2.9e-3%)
tr 2.94 (0.01%) 2.87 (0.0%) 3.19 (7.36%) 2.13 (0.31%) 1.91 (2.0e-3%)
uk 3.36 (0.52%) 3.73 (0.0%) 3.23 (24.12%) 2.11 (0.54%) 1.94 (1.4e-3%)
vi 1.76 (1.44%) 1.95 (0.0%) 1.89 (15.12%) 1.19 (0.08%) 1.16 (3.2e-3%)

Table 4: The average number of subword tokens per white-spaced word (and the percentage of UNKed out tokens)
in the Wiki40b validation set for each language. Cases where more than 10% of tokens are unked out are in bold.
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ISO Monolingual Multilingual
BERTba BERTlg RoBERTaba RoBERTalg mBERT XLMRba XLMRlg

ar 6.214 9.331 3.319 3.899 1.849 1.871 1.691
bg 6.334 7.883 3.544 3.587 1.553 1.494 1.358
ca 3.382 3.565 1.834 1.640 1.108 1.477 1.329
cs 4.316 4.738 2.634 2.493 1.703 1.715 1.533
da 3.560 3.832 2.104 1.931 1.420 1.427 1.272
de 3.430 3.644 1.815 1.634 1.102 1.361 1.218
el 6.934 8.915 3.852 3.885 1.793 1.588 1.440
en 1.285 1.377 0.595 0.516 0.938 1.249 1.131
es 3.281 3.551 1.526 1.345 1.036 1.284 1.165
et 3.846 4.108 2.448 2.318 1.878 1.858 1.671
fa 5.813 8.501 3.614 4.113 1.723 1.567 1.418
fi 3.732 4.064 2.357 2.240 1.633 1.618 1.451
fr 3.213 3.439 1.586 1.414 1.038 1.434 1.305
he 6.490 9.074 3.530 3.831 1.817 1.976 1.739
hi 4.240* 5.503* 1.487 1.407 1.876 1.641 1.516
hr 3.972 4.298 2.267 2.109 1.563 1.644 1.484
hu 4.203 4.585 2.741 2.632 1.778 1.713 1.548
id 3.436 3.665 1.976 1.838 1.221 1.243 1.129
it 3.263 3.536 1.661 1.475 1.098 1.402 1.256
ja 1.840* 2.065* 5.481 6.775 2.082 6.827 8.016
ko 0.781* 0.846* 4.204 4.639 3.144 3.504 3.241
lt 3.953 4.271 2.746 2.633 1.840 1.789 1.604
lv 4.231 4.512 2.833 2.730 1.890 1.750 1.548
ms 3.461 3.698 2.010 1.886 1.280 1.365 1.257
nl 3.445 3.693 1.855 1.680 1.222 1.397 1.257
no 3.580 3.873 2.052 1.872 1.398 1.469 1.312
pl 4.020 4.505 2.506 2.365 1.495 1.604 1.437
pt 3.442 3.718 1.658 1.465 1.128 1.316 1.190
ro 3.641 3.929 1.950 1.772 1.402 1.435 1.286
ru 6.747 8.122 3.624 3.673 1.385 1.491 1.344
sk 4.263 4.628 2.714 2.594 1.804 1.753 1.594
sl 3.972 4.294 2.415 2.273 1.642 1.563 1.391
sr 6.081 7.216 3.610 3.661 1.772 1.783 1.681
sv 3.774 4.081 2.196 2.019 1.460 1.523 1.372
th 1.551* 1.689* 3.312 3.535 3.861 2.119 2.237
tl 3.250 3.458 1.763 1.623 1.616 1.713 1.572
tr 4.102 4.427 2.715 2.585 1.635 1.603 1.460
uk 6.542 7.912 3.763 3.823 1.566 1.635 1.488
vi 5.134 5.794 2.590 2.574 1.046 1.191 1.055

Table 5: Full results for the zero-shot BPC experiments in Section 3. Results noted with * correspond to cases of
high UNK rates in the tokenization of the data (Section B).
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ISO Baselines Monolingual Multilingual
Maj. Label Word Maj. BERTba BERTlg Roba Rolg T5-base mBERT XLMRba XLMRlg

af 21.650 83.335 81.695 84.855 88.858 92.324 90.464 93.590 97.490 96.381
ar 33.297 90.148 79.595 79.994 78.939 79.242 43.182 93.724 95.659 95.533
bg 21.834 86.091 85.617 84.238 78.514 81.147 85.304 94.977 97.240 97.103
ca 17.868 90.984 93.208 93.432 94.333 94.545 95.863 97.610 98.222 98.202
cs 24.708 91.284 82.312 80.591 89.272 93.488 86.560 96.554 97.548 97.744
cy 31.099 73.587 69.625 72.641 69.171 70.309 76.220 81.713 76.690 77.215
da 18.606 77.841 81.137 81.485 85.308 91.057 86.832 91.901 96.757 96.087
de 17.784 81.992 86.663 88.306 91.266 93.074 92.878 92.022 94.851 94.020
el 21.148 81.128 79.996 79.110 66.604 76.795 37.050 92.509 95.435 95.371
en 16.999 82.920 93.803 92.903 94.785 94.418 96.286 93.666 95.366 95.342
es 17.734 90.734 89.639 92.860 97.652 93.171 97.222 97.699 98.418 98.497
et 26.462 78.486 74.987 78.524 74.460 81.150 79.287 91.891 90.717 91.143
eu 24.422 77.591 73.152 75.663 72.713 72.254 80.294 84.712 88.744 88.023
fa 33.521 91.916 78.545 78.202 67.668 66.767 46.485 93.025 96.310 96.597
fi 27.965 74.378 71.083 72.301 77.318 82.587 77.630 92.621 95.823 95.872
fr 18.749 89.584 90.960 90.197 93.690 95.278 96.612 95.963 95.837 95.813
fy 14.815 85.190 79.749 82.128 78.766 78.216 86.351 90.898 87.908 89.405
ga 29.122 81.512 72.470 77.009 76.983 79.169 82.430 87.097 91.493 92.583
gd 21.166 80.114 78.264 79.641 74.989 76.281 79.590 78.387 84.102 85.609
gl 22.969 86.294 87.727 89.058 92.638 93.176 93.647 92.559 95.145 95.548
he 23.601 85.491 75.040 75.393 69.930 70.160 45.758 93.206 96.403 94.864
hi 22.128 89.365 68.650 68.861 77.250 80.597 38.185 94.054 95.524 94.250
hr 24.182 83.533 80.408 82.370 92.955 94.742 87.784 96.164 98.011 98.313
hu 22.429 60.356 72.619 73.444 76.403 83.633 79.868 88.273 93.404 91.868
hy 24.995 68.931 50.956 52.033 58.560 58.792 44.142 89.001 90.403 93.937
id 21.642 81.278 4.151 4.151 79.539 81.664 4.151 4.151 4.151 4.151
is 17.286 90.407 80.969 84.217 79.792 82.154 84.121 91.414 97.459 97.778
it 19.920 89.758 89.497 91.317 93.991 95.521 94.715 96.662 97.454 96.854
ja 30.137 85.592 76.268 75.659 83.491 85.013 39.409 92.362 90.844 91.080
ko 30.011 67.715 48.090 47.683 67.852 70.745 47.288 76.359 80.372 80.704
la 21.355 94.888 91.416 94.079 92.133 92.489 95.928 95.008 98.250 97.548
lt 31.345 61.009 67.026 70.382 67.892 66.602 77.164 90.542 91.641 94.710
lv 27.108 79.198 71.889 77.190 72.061 74.857 81.630 87.627 93.565 92.775
mt 19.489 76.131 75.582 78.313 75.199 75.156 80.854 76.877 70.113 74.191
nl 16.799 81.878 79.448 84.540 90.126 92.816 89.207 94.356 95.920 95.990
pl 24.900 83.868 82.357 81.721 91.563 92.491 90.494 94.184 98.231 97.840
pt 18.117 83.517 85.594 86.801 91.591 92.114 95.120 94.066 96.981 94.810
ro 24.849 85.537 82.630 84.414 93.830 95.332 93.407 95.284 97.443 97.229
ru 23.843 88.593 84.258 85.526 82.713 86.811 88.812 95.299 96.943 94.714
sk 19.264 61.821 80.441 83.025 86.850 89.339 86.872 92.414 96.290 95.810
sl 21.289 77.815 82.459 80.959 88.357 88.176 87.189 96.388 97.953 98.144
sr 24.378 82.523 84.930 85.434 94.762 94.769 89.884 92.727 98.638 98.333
sv 17.579 78.993 71.818 79.061 78.523 88.662 83.226 92.826 96.246 95.350
ta 29.389 53.042 43.992 40.563 38.361 43.228 43.147 74.912 76.521 75.606
tr 36.494 82.343 78.115 73.015 67.656 67.340 80.830 88.633 91.392 89.939
uk 23.213 71.964 78.214 78.950 65.442 69.780 80.780 91.836 96.213 96.823
ur 23.564 85.736 68.112 68.819 69.202 67.458 34.116 88.954 91.170 92.341
vi 32.019 75.901 54.764 54.267 54.054 56.402 60.768 75.844 85.855 81.554
zh 27.478 78.696 49.462 51.400 64.537 67.238 44.479 87.363 88.565 85.921

Table 6: Full results for the frozen POS tagging experiments in Section 3.
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ISO Monolingual Multilingual
BERTba Roba mBERT XLMRba

af 92.108 94.528 96.802 97.158
ar 92.896 93.417 96.151 96.673
bg 97.185 96.797 98.714 99.145
ca 98.058 98.264 98.813 98.845
cs 98.191 98.306 98.803 98.952
cy 82.152 72.484 92.109 84.927
da 93.134 93.872 97.037 97.556
de 93.285 93.554 95.178 95.189
el 92.725 90.452 96.735 96.897
en 96.496 97.186 96.431 97.082
es 97.841 98.459 98.828 98.781
et 95.142 95.244 96.547 97.402
eu 91.313 90.117 94.529 94.956
fa 94.477 94.113 97.193 97.609
fi 93.534 93.436 96.275 97.823
fr 96.970 97.112 97.845 98.102
fy 92.383 92.770 95.557 95.721
ga 91.263 91.164 93.293 94.334
gd 91.774 90.220 92.814 93.797
gl 94.261 95.565 95.130 96.892
he 91.373 90.847 96.242 97.035
hi 83.566 94.437 96.554 97.384
hr 95.955 96.687 98.061 98.293
hu 83.886 85.540 94.763 94.035
hy 53.953 86.965 92.985 93.829
id 4.151 91.635 4.151 4.151
is 96.583 96.489 97.899 98.404
it 96.521 97.297 98.172 98.334
ja 86.477 93.707 96.600 97.112
ko 47.783 91.514 94.941 95.464
la 98.386 98.633 99.399 99.199
lt 82.707 84.507 93.026 94.636
lv 93.252 93.710 95.744 96.908
mt 87.284 85.603 89.248 86.349
nl 93.974 94.861 96.669 96.969
pl 96.604 97.064 98.569 98.980
pt 95.420 96.572 97.526 97.611
ro 95.795 96.044 97.568 97.878
ru 97.310 97.103 98.306 98.568
sk 93.608 93.994 97.282 97.373
sl 95.233 95.776 98.157 98.798
sr 96.140 97.154 98.531 98.802
sv 90.737 92.805 96.242 97.080
ta 42.363 49.452 77.185 64.354
tr 92.390 92.320 94.667 94.946
uk 93.320 93.980 96.020 96.975
ur 84.556 84.432 92.622 93.251
vi 46.954 50.874 89.653 91.261
zh 55.811 84.877 95.022 95.972

Table 7: Full results for the finetuned POS tagging experiments in Section 3.
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