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Abstract
Retrieval-augmented language models (LMs)
use non-parametric memory to substantially
outperform their non-retrieval counterparts on
perplexity-based evaluations, but it is an open
question whether they achieve similar gains in
few- and zero-shot end-task accuracy. We ex-
tensively study one such model, the k-nearest
neighbor LM (kNN-LM), showing that the
gains marginally transfer. The main challenge
is to achieve coverage of the verbalizer tokens
that define the different end-task class labels.
To address this challenge, we also introduce
kNN-Prompt, a simple and effective kNN-LM
with automatically expanded fuzzy verbalizers
(e.g. to expand “terrible” to also include “silly”
and other task-specific synonyms for sentiment
classification). Across nine diverse end-tasks,
using kNN-Prompt with GPT-2 large yields sig-
nificant performance boosts over strong zero-
shot baselines (13.4% absolute improvement
over the base LM on average). We also show
that other advantages of non-parametric aug-
mentation hold for end tasks; kNN-Prompt is
effective for domain adaptation with no further
training, and gains increase with the size of the
retrieval model.

1 Introduction

Retrieval-augmented language models (LMs) have
access to a non-parametric memory, allowing them
to directly access a large external text collection
during inference. Previous work has shown that
these models substantially outperform their non–
retrieval-based counterparts on language modeling
tasks (Khandelwal et al., 2020; He et al., 2021;
Borgeaud et al., 2021), but it is an open question
whether they also achieve similar gains in few-
shot and zero-shot end task evaluations (Radford
et al., 2019; Brown et al., 2020a). In this paper, we
demonstrate that, with some extensions to improve
coverage of the verbalizer tokens, the performance
gains of retrieval-augmented LMs generalize well
to a wide range of downstream tasks.

Figure 1: kNN-Prompt incorporates information from a
large, heterogeneous corpus (unlabeled texts from differ-
ent domains) to facilitate few- and zero-shot inference.
The datastore contains key-value pairs where the key
is an encoding of a leftward context and the value is
the next token following the context. Our fuzzy ver-
balizer expands "terrible" to include "silly" and "great"
to include "excellent". Because the encoded corpus is
unlabeled plain text, some datastore entries contain next
tokens not in the verbalizer tokens (e.g., "cinema").

We study the k-nearest neighbors language
model (Khandelwal et al., 2020, kNN-LM), which
interpolates the LM softmax distribution with a
nearest-neighbor distribution. The nearest neigh-
bours are computed based on the distance in LM
output embeddings and can be drawn from any text
corpus, in our case, a heterogeneous corpus that
contains unlabeled data from different domains.
We are the first to study the zero-shot application
of kNN-LM to end tasks, and we find that applying
the technique naïvely produces only marginal im-
provements (Section 4). The main challenge is that
the support of the kNN distribution is sparse (cover-
ing at most k tokens, often less), as it only assigns
probability mass to nearest neighbors. This means
it often entirely misses the tokens that are used to
verbalize the output label in the standard applica-
tion of LMs to zero-shot classification: across the
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datasets we test, an output label receives nonzero
probability under the kNN distribution only 44.2%
of the time (see Section 6).

To address this challenge, we introduce kNN-
Prompt, a simple and effective method built on
kNN-LM for improving zero-shot inference with
no further training. Key to our approach are fuzzy
verbalizers, which automatically expand the set
of tokens corresponding to each output label. For
example, in Figure 1, the verbalized label of the
negative sentiment is “terrible.” Our fuzzy verbal-
izer also maps “silly” to negative sentiment, allow-
ing the model to better leverage the information
available in the kNN distribution. Extensive experi-
ments (Section 3) show that applying kNN-Prompt
using a purely unlabeled heterogeneous corpus con-
sistently improves zero-shot performance on eleven
tasks, including sentiment analysis, topic classifica-
tion, entailment, fact retrieval and question answer-
ing. These improvements hold for every model in
the GPT-2 family.

We also show that kNN-Prompt can be used to
adapt LMs to new domains and tasks with no fur-
ther training (Section 5). With a domain-specific
datastore corpus, we achieve comparable or better
performance to prompting the LM after domain-
adaptive pretraining (Gururangan et al., 2020) on
that corpus. To better understand these gains, we
conduct a thorough analysis (Section 6), showing
that fuzzy verbalizers are essential for leveraging
the kNN distribution, the benefits of retrieval in-
crease with retrieval model size, and even relatively
small datastores can yield sizeable performance
gains if they are tailored to the domain or task.
Overall, our results show how retrieval can ben-
efit zero-shot inference with LMs on a wide va-
riety of tasks, and suggest that applying retrieval
with larger models may yield even greater benefits.
Code is available at github.com/swj0419/kNN_
prompt.

2 Method

To perform zero-shot prediction on a downstream
task using a pretrained language model, we re-
cast the task as language modeling (Radford et al.,
2019) by converting each input instance into
a natural language prompt (Section 2.1). We
then augment the pretrained model with the k-
nearest-neighbors language modeling technique
from Khandelwal et al. (2020). To better bene-
fit from the sparse kNN distribution, we introduce

fuzzy verbalizers for mapping from the LM’s out-
puts to a distribution over task-specific labels (Sec-
tion 2.3). Finally, we decode the output from this la-
bel distribution using the domain-conditional PMI
scoring method of Holtzman et al. (2021).

2.1 Prompting and Verbalizers

We address classification problems where an in-
stance consists of an input sequence of tokens
x = (x0, x1, ..., x|x|) from a vocabulary V and an
output label y ∈ Y. The output label set Y may be
fixed for the task (text classification). For example,
in the sentiment analysis example in Figure 2, the
input is x = “Mr. Tsai is one of world cinema’s
most gifted artists.” The output labels are Y = {y+,
y–}, referring to positive and negative sentiment.

To cast the task as language modeling, we deter-
ministically transform each input example x into
a prompt p(x). Providing this prompt to an LM
yields a probability distribution PLM(v | p(x)). To
extract an output label from this, we apply ver-
balizers V : y → V∗ (Schick and Schütze, 2021)
which map each output label y ∈ Y to a label word
V(y) = v. We can then compute a probability for
each label:

P(y | x) ∝ PLM(V(y) | p(x)), (1)

normalizing over all y ∈ Y.
For example, our prompt transformation for sen-

timent analysis adds It was after the input, and
uses the verbalizer V(y+) = great, V(y–) = terrible,
which classifies sentiment according to the relative
probabilities of It was great and It was terrible after
the input sequence (see Figure 2, bottom left).

2.2 k-Nearest Neighbors Language Modeling

Following Khandelwal et al. (2020), we augment
the LM with a datastore from which it can retrieve
tokens that inform its predictions, improving per-
formance without further training.

The datastore is a key-value store generated by
running the LM over a corpus of text. Each value
is a token w ∈ V from the corpus, and its key is the
vector hidden representation at the output layer of
the LM running forward on the left context c ∈ V∗

(call this f(c)). At inference time, when predicting
the next token for an input sequence c, the kNN-
LM retrieves the k nearest neighbors of c from
the datastore according to the distance d(·, f(c)) of
their key vectors (squared L2 distance following
Khandelwal et al.).
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... ... ...
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LM

Figure 2: An illustration of kNN-Prompt applying to sentiment analysis tasks. Texts are encoded in the datastore,
where each entry consists of a representation of a leftward context and its next token. During inference, a test
example is mapped to a prompt form and used to retrieve the k most similar contexts and their next tokens from the
datastore. The kNN distribution is a multinomial computed on the distance of the text example and similar contexts.
The final prediction is formed by combining the kNN distribution with the language model output distribution.

A softmax over the (negative) distances induces
a distribution over the the tokens wi in the nearest
neighbor set:

PkNN(v | c) ∝
∑

(f(ci),wi)

1v=wie
–d(f(ci),f(c))

t

where t is a temperature parameter.1 We can then
interpolate this with the original LM as follows:

PkNN-LM(v | c) = (1 – λ)PLM(v|c) + λPkNN(v|c).

The hyperparameters for the kNN-LM approach are
the number k of nearest neighbors, the interpolation
constant λ, the temperature t, and the choice of
datastore.

2.3 Fuzzy verbalizers

One challenge in performing zero-shot inference
with LMs on downstream tasks is the choice of
verbalizer. On one hand, LMs may be highly sen-
sitive to the particular surface form in ways that
are irrelevant to the classification task (Holtzman
et al., 2021). On the other hand, for a kNN model,
the k nearest neighbor set is sparse and may fail

1We have added the temperature adjustment in the softmax
on top of the kNN-LM formulation.

to cover any of the tokens in the set of verbalizers
(i.e., PkNN(V(y)) = 0 for all y ∈ Y), limiting its
utility in those cases. To address these issues, we
introduce fuzzy verbalizers, which associate each
label y with a neighborhood of token sequences
around a specific verbalization V(y) ∈ V∗.

To do this, we first associate each token v ∈ V
with a neighborhood N (v) ⊆ V of similar tokens.
In particular, we use v’s top-5 most similar words
according to the cosine similarity of their GloVe
embeddings (Pennington et al., 2014), as well as
any of v’s synonyms in ConceptNet (Speer et al.,
2017).2 Then, for the purposes of calculating the
probability of a verbalized label v = V(y), we treat
a prediction of any token in each neighborhood of
v as a viable substitute for it, marginalizing over
N (z):

PFV(y | x) ∝
∑

vi∈N (v)

P(vi | p(x)) (2)

The fuzzy verbalizer helps mitigate the effect the
sparsity of the kNN distribution has on zero-shot
prediction (see Section 6).

2https://conceptnet.io
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Corpus Size # Tokens

Wikitext-103 181MB 114M
Amazon Reviews 89MB 19M
CC-NEWS 457MB 324M
IMDB 45MB 8M

Total 722MB 465M

Table 1: Statistics of our heterogeneous datastore cor-
pora.

2.4 Full model
To make a zero-shot prediction for an input x, we
first transform it into a prompt p(x) and obtain
a distribution over the label word v with a kNN-
LM: PkNN–LM(v | p(x)). We then apply domain-
conditional PMI scoring rule (Holtzman et al.,
2021) to calibrate the distribution:

PMIDC(v, p(x)) =
P(v | p(x))

P(v | p)

where p is a task-dependent string which is inde-
pendent of the particular input (generally the lo-
cal context at the end of the prompt, e.g., we use
p = “It was” for sentiment analysis, as shown in
Figure 2).

Finally, we convert this to the output label score
P(y | p(x)) using a fuzzy verbalizer (Section 2.3).
When using the fuzzy verbalizer together with PMI
calibration, instead of marginalizing over the to-
kens in the fuzzy verbalizer vi ∈ N (v) (Equa-
tion 2), we score each label according to the sum
of the PMIs of its associated tokens:

P(y | x) ∝
∑

vi∈N (v)

PMIDC(vi, p(x))

3 Experimental Setup

3.1 Tasks
We experiment with 9 tasks, including topic classi-
fication, sentiment analysis, entailment and parti-
sanship classification.

Topic Classification We use the AG News
(AGN) and Yahoo! Answers (Yahoo) corpora from
Zhang et al. (2015) for topic classification.

Sentiment and Partisanship We study senti-
ment analysis using the Rotten Tomatoes (RT) and
SST-2 corpora of Socher et al. (2013), movie re-
views from Pang and Lee (2005, MR), the cus-
tomer review dataset from Hu and Liu (2004, CR)
consisting of Amazon and Yelp reviews, and the

hyperpartisan news detection dataset from Kiesel
et al. (2019, HYP), which focuses on classifying
whether a text exhibits extreme political views.

Entailment Entailment datasets focus on classi-
fying whether one sentence plausibly implies an-
other to be true or false. We evaluate on the Com-
mitmentBank (De Marneffe et al., 2019, CB) and
the Recognizing Textual Entailment (Dagan et al.,
2010, RTE) dataset provided in GLUE (Wang et al.,
2018).

3.2 kNN-Prompt Model Details

Inference Model For our main experiments, we
directly use GPT-2 large from Huggingface3 as
our base LM. We consider other model sizes in
Section 6.

Retriever Model Following the inference model,
we use GPT-2 large to build the datastore. The keys
are the 1280-dimensional hidden representations
before the final MLP which predicts the token dis-
tribution at each timestep, produced using a single
forward pass over the datastore corpus. For effi-
cient similarity search, we create a FAISS (Johnson
et al., 2019) index and search for nearest neighbors
by Euclidean distance.

Datastore Corpus For our datastore, we aim to
curate a large, heteregenous corpus of data broadly
relevant to the tasks we evaluate. To this end, we
combine four sources of data including Wikitext-
103 (Merity et al., 2016), the Amazon review cor-
pus of He and McAuley (2016), and subsets of
CC-NEWS4 and IMDB5 sampled uniformly from
each. Table 1 lists the specifics of each data source.

Inference Procedure We retrieve k=1024 neigh-
bors, soften the kNN distribution with a temper-
ature value of 3 and use an interpolation factor
of λ = 0.3. Our primary evaluation is zero-shot.
All hyperparameters were chosen on the basis of
development experiments (see Section 6 for more
details).

3.3 Baselines

LM is the result of prompting the base language
model (GPT-2 Large), choosing the output label
whose verbalizer has the highest probability under
the language model PLM(V(y) | p(x)).

3https://github.com/huggingface/transformers
4https://huggingface.co/datasets/cc_news
5http://ai.stanford.edu/~amaas/data/sentiment
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RTE CB Yahoo RT SST-2 CR MR HYP AGN Avg

LM 53.1 48.2 49.7 53.0 55.3 66.2 54.6 58.5 67.4 56.2
LM+PMI 54.2 50.0 48.8 74.1 76.5 82.8 74.6 58.5 65.1 65.0
kNN-LM 53.1 48.2 49.5 54.5 55.4 67.2 56.4 58.5 67.0 56.6
kNN-Prompt 55.6 53.5 51.0 80.6 84.2 84.3 78.2 60.0 78.8 69.6

Table 2: Zero-shot results on a variety of tasks. Our model, kNN-Prompt, handily outperforms Holtzman et al.
(2021)’s PMI scoring method alone (LM+PMI) as well as the base kNN-LM method of Khandelwal et al. (2020).

CR HYP MR

LM 79.5 4.1 56.7 0.5 78.2 1.4
LM+PMI 79.8 5.5 52.7 2.6 76.3 1.5
kNN-LM 79.5 4.2 56.7 1.5 77.5 2.3
kNN-prompt 80.5 1.7 57.1 1.1 79.4 1.5

Table 3: The mean and standard deviation for 4 uni-
formly sampled sets of 4 demonstration examples used
for few-shot inference.

LM+PMI is the approach of Holtzman et al.
(2021), calibrating LM with domain-conditional
PMI scoring (Section 2.4).

kNN-LM directly applies the kNN-LM of Khan-
delwal et al. (2020) in the same way as LM, choos-
ing the highest-probability output label.

4 Experimental Results

Results for zero-shot prediction are in Table 2.
kNN-Prompt outperforms all baselines in all tasks,
improving over the base LM by 13.4% on average.
The gains are particularly pronounced for MR and
RT (sentiment analysis on movie reviews), Yahoo
(topic classification). For MR and RT, the gains
seem to come mostly from PMI calibration.

Interestingly, the kNN-LM alone yields a fairly
small improvement over the base LM (about 0.4%
on average). This suggests that the fuzzy verbal-
izer and PMI calibration methods may help kNN-
Prompt better leverage the information in the k-
nearest neighbors distribution. We examine possi-
ble sources of kNN-Prompt’s performance gains in
Section 6.

Few-shot inference For a subset of tasks, we ad-
ditionally compare to a few-shot setting where we
prepend four examples uniformly sampled from
the training data to the input (Table 3). The demon-
stration examples are converted to prompt and ver-
balizer format. We report the mean accuracy and
standard deviation with 4 different random seeds.
We find that kNN-Prompt consistently outperform
baselines, demonstrating that kNN-Prompt is ap-

CR HYP MR

LM + PMI 82.8 58.5 74.6
kNN-prompt 84.3 60.0 78.2
DAPT (LM + PMI) 84.1 61.1 77.8

Table 4: Domain adaptation experiments using domain-
specific datastores. DAPT requires training the LM on
the corresponding datastore, while kNN-Prompt can use
it as the datastore with no further training.

plicable to the few-shot setting as well. We leave
further exploration of this phenomenon to future
work.

5 kNN-Prompt for Domain Adaptation

One of the advantages of retrieval-based LMs is
that they can be adapted to new domains with no
further training.

To test this capability, we replace our heteroge-
neous datastore (Section 3.2) with domain-specific
ones for several tasks. To build these domain-
specific datastores, we select Amazon Reviews for
CR, CC-NEWS for HYP and IMDB for MR, and
encode them separately.

For comparison, we consider domain-adaptive
pretraining (Gururangan et al., 2020, DAPT),
which further trains the LM on the domain-specific
corpus. We train GPT-2 Large on each domain cor-
pus for a single pass, then apply it to downstream
tasks using our prompting and verbalizer setup and
domain-conditional PMI scoring.

As shown in Table 4, kNN-Prompt performs
comparably with DAPT. Specifically, kNN-Prompt
slightly outperforms DAPT on CR and MR. These
results indicate that kNN-Prompt is an effective
method for domain adaptation. Critically, unlike
DAPT, kNN-Prompt does not require further train-
ing, which is more practical and efficient for adapt-
ing very large LMs.

Effect of datastore distribution and size To bet-
ter understand kNN-Prompt’s potential for domain
adaptation, we experiment with varying sizes and
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Figure 3: Effect of the number of tokens in the datastore on CR and MR. Each line represents the kNN-Prompt
model with a different datastore and the line ends when the entire available datastore is used. General, Domain, and
Task refer to the heterogeneous corpus (Table 1), domain-specific corpus, and task-specific corpus, respectively. We
use IMDB as the domain-specific corpus for MR, and Amazon Reviews for CR. The task-specific corpus is the
unlabeled training data of each task. GPT-2 Large is used for both retriever and inference models.

distributions of the datastore. For each task, we con-
sider three options for the datastore corpus: our het-
erogeneous corpus (Section 3.2), a domain-specific
corpus, and a task-specific corpus constructed from
the task’s (unlabeled) training data. Each of these
data sources exhibits increasing levels of relevance
to the task.

Figure 3 shows how model performance varies
with the choice of datastore across different datas-
tore sizes. For a fixed number of tokens, retrieving
from a task-specific datastore is best. Furthermore,
token-for-token, adding task-specific data leads to
more gains than domain-specific data, which in
turn is better than our heterogeneous corpus.

Using domain-specific data is always better than
retrieving from the large heterogeneous corpus.
For example, for CR, using 6M tokens of domain-
specific data outperforms using our 465M token
heterogeneous corpus. These results suggest that
while having a large datastore is beneficial, curating
task-specific or domain-specific data can also be
an effective way of improving model performance,
especially if datastore size is limited (e.g., due to
memory constraints).

6 Analysis

We perform several experiments to understand the
contribution of each component of kNN-Prompt
and inform our choice of hyperparameters.

Model ablations kNN-Prompt incorporates three
features on top of the base LM: kNN retrieval and

Model Acc. ΔAcc.

LM 56.2 0
LM+kNN (kNN-LM) 56.6 +0.4
LM+Fuzzy 63.4 +7.2
LM+PMI 65.0 +8.8

LM+Fuzzy+PMI 67.1 +10.9
LM+kNN+Fuzzy 66.5 +10.3
LM+kNN+PMI 64.2 +8.0

LM+kNN+Fuzzy+PMI (kNN-Prompt) 69.6 +13.4

Table 5: Effect of different components on the average
zero-shot accuracy across the eleven tasks.

interpolation (Section 2.2), fuzzy verbalizers (Sec-
tion 2.3), and PMI scoring (Section 2.4). Table 5
shows the results of ablation experiments analyzing
the contribution of each component.

First, we find that adding kNN to LM gives
trivial improvement (+0.4%), but much greater
once we add fuzzy verbalizers on top of them
(+10.3%), exceeding the contribution of the two
components independently (with fuzzy verbalizers
alone at +7.2%). This supports the argument that
fuzzy verbalizers allow the model to make better
use of the sparse support of the kNN distribution.
Indeed, we find that across all tasks, an output label
receives nonzero probability under the kNN distri-
bution in kNN-LM only 45.8% of the time. With
fuzzy verbalizers, this increases to 78%.

Second, we find that for the base LM, fuzzy ver-
balizers bring gains (+7.2%) similar to PMI scor-
ing (+8.8%), but the gains are only partially addi-
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Figure 4: Effect of the number of retrieved neighbors and softmax temperature on kNN-Prompt performance for
three tasks: CR and MR. Task performance monotonically improves with the number of neighbors as k is increased
to 1024.

Figure 5: Effect of the retriever model size (GPT-2) on CR and MR. A size of 0 indicates that no retriever is used.
Different lines represent different-sized inference models (GPT-2). The benefits of kNN-Prompt scale with the
retriever model size.

tive when combining the two techniques (+10.9%).
This suggests that by incorporating more varied
surface forms into the score for each label, fuzzy
verbalizers may partially — but not completely
— mitigate the surface form competition problem
which PMI scoring was designed to tackle (Holtz-
man et al., 2021). The effect of PMI scoring is
increased, however, when we use fuzzy verbalizers
and kNN retrieval together (+13.4% for the full
model versus +10.3% for kNN with fuzzy verbal-
izers), suggesting that the kNN distribution might
suffer from more surface form competition prob-
lems than the base LM distribution.

kNN retrieval hyperparameters Figure 4 shows
how the number of retrieved nearest neighbors
(k) and softmax temperature affect model perfor-

mance on three datasets. In most cases, perfor-
mance monotonically improves with the number
of neighbors when k is smaller than 1024 and de-
teriorates after that. When k < 256, a temperature
of 1 performs best, while flattening the distribution
is useful when retrieving more neighbors. Overall,
using 1024 neighbors and a temperature value of 3
performs consistently well across the tasks we test.

Retrieval model size and inference model size
Figure 5 shows how performance varies with the
size of the retriever and inference models on three
tasks. We observe substantial gains as the size of
the retriever increases, which hold regardless of
inference model size.

It should be noted that a larger retriever leads to a
larger datastore and slower retrieval: increasing the
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retriever size from 125M to 1600M parameters dou-
bles the memory footprint of the datastore, which
scales with the size of the retriever model’s output
embeddings. These computational tradeoffs may
inform the retriever size best suited for a particular
application.

7 Related Work

Retrieval-augmented LMs Several studies pro-
pose the use of retrieval mechanisms with ex-
ternal datastores to improve language modeling
performance (Khandelwal et al., 2020) and open-
domain question answering (Izacard and Grave,
2020; Lewis et al., 2020). Other work incorporates
retrieval directly into the LM pretraining process
(Guu et al., 2020; Borgeaud et al., 2021). Khandel-
wal et al. (2021) applies nearest neighbor retrieval
to conditional sequence generation to improve the
quality of machine translation systems. Our work is
the first to show that retrieval augmentation, intro-
duced at test time, improves the zero-shot inference
of language models on a variety of end tasks.

Zero-shot and few-shot inference Brown et al.
(2020b) demonstrate that large LMs can perform
zero-shot (given only a prompt) and few-shot learn-
ing (using a concatenation of training examples
as demonstrations) without any finetuning. Sub-
sequent work further improves their zero-shot and
few-shot abilities with calibration (Holtzman et al.,
2021; Zhao et al., 2021; Min et al., 2021a), prompt
engineering (Lu et al., 2021; Shin et al., 2020) and
meta-tuning (Min et al., 2021b; Wei et al., 2022;
Zhong et al., 2021). Rubin et al. (2021) and Liu
et al. (2021) apply retrieval methods to select in-
context learning examples that are semantically-
similar to a test example for few-shot inference.
However, these retrieval methods require access to
a large set of labeled data. In contrast, kNN-Prompt
only assumes the availability of a heterogeneous
unlabeled corpus.

8 Conclusions

We present kNN-Prompt, a new technique to aug-
ment LMs with nearest neighbor retrieval for zero-
shot inference on end tasks. kNN-Prompt substan-
tially improves zero-shot performance on a wide
range of multiple-choice and classification tasks.
With a domain- or task-relevant datastore, kNN-
Prompt enables efficient domain adaptation with
no additional training, and its benefits scale with
the size of the retrieval model.

9 Limitations

Although kNN-Prompt significantly improves GPT-
2 family models’ zero-shot and few-shot perfor-
mance, it stores high-dimensional vectors for ev-
ery token in the datastore corpus and performs k-
nearest neighbor search for every next token, which
incurs significant inference overhead. Future work
may study compressing the datastore and approx-
imating kNN-search for efficient retrieval. Care-
ful analysis could also explore datastore curation
methods to balance task-relevancy, domain gener-
ality, and size. In addition, compared with sen-
tence or document-level retrieval, retrieving tokens
at each time step may limit the language model’s
ability to reason about the retrieved information.
Future work may explore if more coarse-grained re-
trieval and interpolation such as chunks, sentences
and documents-level lead to better end task perfor-
mance.

Our evaluation of kNN-Prompt is limited to GPT-
2 family models and eleven end tasks. There are
many other tasks and language models for which
kNN-Prompt can be useful. Future work may study
the usefulness of kNN-Prompt with larger infer-
ence models (i.e: GPT-3) and more diverse tasks.
Potentially, large inference models combined with
larger retrieval models may result in better zero-
shot performance.
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Test Example Label LM Prediction

Too few games could set back PSP launch - Sony exec
Signs of a delay, or just managing expectations? The text
topic is about

technology sports

Retrieved Context Retrieved Value kNN Prediction Distance Corpus

...References to the game are commonly brought up in
other articles about...

software technology 33.5 Wikitext-103

...While it would be easy to point an accusatory finger
at Sony and blame them for killing the Dreamcast by
overselling the PS2... there’s a certain level of intellectual
dishonesty in such a stance... [ Sega ]’s poor U.S. support
for ...

hardware technology 33.7 Wikitext-103

Table 6: An example from AGN where the kNN gives the correct prediction while LM does not.

A Appendix

A.1 Case Study
We manually check examples where kNN-
Prompt is better than LM to understand why kNN-
Prompt improves performance. As shown in Ta-
ble 6, the language model has to know the meaning
of the entity "PSP" and "Sony", otherwise it may
associate "games" with a sport. kNN is able to
match "Sony" in one of the retrieved neighbors,
resolving the ambiguity of the word "games".

A.2 Templates
Table 7 shows the template and verbalizer used for
each dataset.
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Dataset Template + input Verbalizer (Fuzzy verbalizer)

RTE Time Warner is the world’s largest media and Inter-
net company. question: Time Warner is the world’s
largest company. true or false? answer:

true (true, yes, correct, faithful, accurate...)

false (false, no, incorrect, wrong, untrue, unfaithful...)

CB question: Given that What fun to hear Artemis laugh.
She’s such a serious child.

true (true, yes, correct, faithful, accurate...)

Is I didn’t know she had a sense of humor. true, false,
or neither? Answer:

false (false, no, incorrect, wrong, untrue, unfaithful...)

neither (neither, none, nothing)

Yahoo

why doesn’t an optical mouse work on a glass table?
topic:

society (society, culture, sociality, group, tribal, orga-
nization...)

science (science, math, scientist, knowledge, physics,
bioscience...)
health (health, disease, obesity, medicine, nutrition,
well-being...)
education (education, pedagogy, instruction, school,
curriculum, college...)
computer (computer, internet, network, laptop,
progammer, hardware...)
sports (sports, athletics, sportsman, play, football,
basketball...)
business (business, finance, economics, fund, bank-
ing, investment...)
entertainment (entertainment, music, amusement,
game, recreation...)
family (family, relationships, marriage, household,
friendship...)
politics (politics, government, geopolitics, law,
democracy, politician...)

AGN
Economic growth in Japan slows down as the country
experiences. topic:

politics (politics, government, geopolitics, law,
democracy, politician...)

sports (sports, athletics, sportsman, play, football,
basketball...)
business (business, finance, economics, fund, bank-
ing, investment...)
technology (technology, engineering, science, techi-
nal, science, computer...)

HYP Are you sick of Republicans? Or just right-wingers
in general? ... neutral or partisan? Answer:

neutral (neutral, fair, objective, impartial, disinter-
ested...)

partisan (partisan, biased, unfair, prejudiced, un-
just...)

SST-2, CR, Illuminating if overly talky documentary. It was great (great, good, gorgeous, legendary, perfect, phe-
nomenal...)

MR, RT terrible (terrible, plain, poor, hideous, upset, awful...)

Table 7: The template and the example (colored black) used for each dataset. We also include the standard
verbalizer and (a sample of tokens used in the fuzzy verbalizer).
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