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Abstract

Extractive Question Answering (EQA) is one
of the most essential tasks in Machine Reading
Comprehension (MRC), which can be solved
by fine-tuning the span selecting heads of
Pre-trained Language Models (PLMs). How-
ever, most existing approaches for MRC may
perform poorly in the few-shot learning sce-
nario. To solve this issue, we propose a
novel framework named Knowledge Enhanced
Contrastive Prompt-tuning (KECP). Instead of
adding pointer heads to PLMs, we introduce
a seminal paradigm for EQA that transforms
the task into a non-autoregressive Masked Lan-
guage Modeling (MLM) generation problem.
Simultaneously, rich semantics from the ex-
ternal knowledge base (KB) and the passage
context support enhancing the query’s represen-
tations. In addition, to boost the performance
of PLMs, we jointly train the model by the
MLM and contrastive learning objectives. Ex-
periments on multiple benchmarks demonstrate
that our method consistently outperforms state-
of-the-art approaches in few-shot settings by a
large margin. 1

1 Introduction

Span-based Extractive Question Answering (EQA)
is one of the most challenging tasks of Machine
Reading Comprehension (MRC). A majority of re-
cent approaches (Wang and Jiang, 2019; Yang et al.,
2019; Dai et al., 2021) add pointer heads (Vinyals
et al., 2015) to Pre-trained Language Models
(PLMs) to predict the start and the end positions
of the answer span (shown in Figure 1(a)). Yet,
these conventional fine-tuning frameworks heavily

∗ J. Wang and C. Wang contributed equally to this work.
† Corresponding author.

1All datasets are publicly available. Source codes will
be released in EasyNLP (Wang et al., 2022). URL: https:
//github.com/alibaba/EasyNLP
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Figure 1: The comparison of the standard fine-tuning
and prompt-tuning framework. The blocks in orange
and green denote the modules of PLMs and newly ini-
tialized modules, respectively. (Best viewed in color.)

depend on the time-consuming and labor-intensive
process of data annotation. Additionally, there
is a large gap between the pre-training objective
of Masked Language Modeling (MLM) (i.e., pre-
dicting the distribution over the entire vocabular-
ies) and the fine-tuning objective of span selection
(i.e., predicting the distribution of positions), which
hinders the transfer and adaptation of knowledge
in PLMs to downstream MRC tasks (Brown et al.,
2020). A straightforward approach is to integrate
the span selection process into pre-training (Ram
et al., 2021). However, it may cost a lot of compu-
tational resources during pre-training.

Recently, a branch of prompt-based fine-tuning
paradigm (i.e. prompt-tuning) arises to transform
the downstream tasks into the cloze-style prob-
lem (Schick and Schütze, 2021; Han et al., 2021;
Li and Liang, 2021a; Gao et al., 2021; Liu et al.,
2021a; Assem et al., 2021; Chada and Natara-
jan, 2021). To specify, task-specific prompt tem-
plates with [MASK] tokens are added to input texts
([MASK] denotes the masked language token in
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PLMs). The results of the masked positions gener-
ated by the MLM head are used for the prediction2.
By prompt-tuning, we can use few training samples
to fast adapt the prior knowledge in PLMs to down-
stream tasks. A natural idea is that we can trans-
form EQA into the MLM task by adding a series
of masked language tokens. As shown in Figure
1(b), the query is transformed into a prompt tem-
plate containing multiple [MASK] tokens, which
can be directly used for the answer tokens predic-
tion. However, we observe that two new issues
for vanilla PLMs: 1) the MLM head, which is
based on single-token non-autoregressive predic-
tion, has a poor inference ability to understand the
task paradigm of EQA ; 2) there are many confus-
ing span texts in the passage have similar semantics
to the correct answer, which can unavoidably make
the model produce negative answers. Therefore,
a natural question arises: how to employ prompt-
tuning over PLMs for EQA to achieve high perfor-
mance in the few-shot learning setting?

In this work, we introduce KECP, a novel
Knowledge Enhanced Contrastive Prompting
framework for the EQA task. We view EQA as
an MLM generation task that transform the query
to a prompt with multiple masked language tokens.
In order to improve the inference ability, for each
given example, we inject related knowledge base
(KB) embeddings into context embeddings of the
PLM, and enrich the representations of selected
tokens in the query prompt. To make PLMs bet-
ter understand the span prediction task, we further
propose a novel span-level contrastive learning ob-
jective to boost the PLM to distinguish the correct
answer with the negatives with similar semantics.
During the inference time, we implement a highly-
efficient model-free prefix-tree decoder and gener-
ate answers by beam search. In the experiments,
we evaluate our proposed framework over seven
EQA benchmarks in the few-shot scenario. The
results show that our method consistently outper-
forms state-of-the-art approaches by a large mar-
gin. Specifically, we achieve a 75.45% F1 value on
SQuAD2.0 with only 16 training examples.

To sum up, we make the following contributions:

• We propose a novel KECP framework for few-
shot EQA task based on prompt-tuning.

2For example, in sentiment analysis, a prompt tem-
plate (e.g., “It was [MASK].”) is added to the review text (e.g.,
“This dish is very attractive.”). We can obtain the result tokens
of masked position for label prediction (e.g., “delicious” for
the positive label and “unappetizing” for the negative label).

• In KECP, EQA is transformed into the MLM
generation problem, which alleviates model
over-fitting and bridges the gap between pre-
training and fine-tuning. We further employ
knowledge bases to enhance the token rep-
resentations and design a novel contrastive
learning task for better performance.

• Experiments show that KECP outperforms all
the baselines in few-shot scenarios for EQA.

2 Related Work

In this section, we summarize the related work on
EQA and prompt-tuning for PLMs.

2.1 Extractive Question Answering
EQA is one of the most challenging MRC tasks,
which aims to find the correct answer span from
a passage based on a query. A variety of bench-
mark tasks on EQA have been released and at-
tracted great interest (Rajpurkar et al., 2016; Fisch
et al., 2019; Rajpurkar et al., 2018; Lai et al., 2017;
Trischler et al., 2017; Levy et al., 2017; Joshi et al.,
2017; Chada and Natarajan, 2021). Early works
utilize attention mechanism to capture rich inter-
action information between the passage and the
query (Wang et al., 2017; Wang and Jiang, 2017).
Recently, benefited from the powerful modeling
abilities of PLMs, such as GPT (Brown et al.,
2020), BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and SpanBERT (Joshi et al., 2020),
etc., we have witnessed the qualitative improve-
ment of MRC based on fine-tuning PLMs. How-
ever, this standard fine-tuning paradigm may cause
over-fitting in the few-shot settings. To solve the
problem, (Ram et al., 2021) propose Splinter for
few-shot EQA by pre-training over the span selec-
tion task, but it costs a lot of time and computa-
tional resources to pre-train these PLMs. On the
contrary, we leverage prompt-tuning for few-shot
EQA without any additional pre-training steps.

2.2 Prompt-tuning for PLMs
Prompt-tuning is one of the flourishing research
in the past two years. GPT-3 (Brown et al., 2020)
enables few/zero-shot learning for various NLP
tasks without fine-tuning, which relies on handcraft
prompts and achieves outstanding performance.
To facilitate automatic prompt construction, Auto-
Prompt (Shin et al., 2020) and LM-BFF (Gao et al.,
2021) automatically generate discrete prompt to-
kens from texts. Recently, a series of methods learn
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Passage: Most Norman knights remained poor and
land-hungry, and by 1066 Normandy had been expor-
ting fighting horsemen for more than a generation.
Many Normans of Italy, France and England eventual-
ly served as avid Crusaders under ...

Query Prompt: [MASK] [MASK] [MASK]
was one of the Norman's major exports.

Query: What was one of the Norman's major
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Figure 2: The KECP framework. Given a passage and a query, we first construct the query prompt by heuristic rules
(①). Next, we capture the knowledge both from passage text and external KB to enhance the representations of
selected prompt tokens (② ③). To improve the accuracy of answer prediction, we sample negative span texts with
similar and confused semantics (④), and train the model with contrastive learning (⑤). During the inference stage,
the answer span text can be generated by MLM and a model-free prefix-tree decoder (⑥). (Best viewed in color).

continuous prompt embeddings with differentiable
parameters for natural language understanding and
text generation task, such as Prefix-tuning (Li and
Liang, 2021b), P-tuning V2 (Liu et al., 2021a),
PTR (Han et al., 2021), and many other related
works (Li and Liang, 2021b; Qin and Eisner, 2021).
Different from previous work (Ram et al., 2021),
we focus on prompt-based learning for the chal-
lenging low-resource EQA.

3 The KECP Framework

In this section, we formally present our task and
the techniques of the KECP framework in detail.
The overview of KECP is shown in Figure 2.

3.1 Task Overview
Given a passage P = p1, · · · , pn and the cor-
responding query Q = q1, · · · , qm, the goal is
to find a sub-string of the passage as the answer
Y = pk, · · · , pl, where n,m are the lengths of the
passage, the query, respectively. pi (i = 1, · · · , n)
and qj (j = 1, · · · ,m) refer to the tokens in P
and Q, respectively. k, l denotes the start and end
position of the passage, 1 ≤ k ≤ l ≤ n. Rather
than predict the start and the end positions of the
answer span, we view the EQA task as a non-
autoregressive MLM generation problem. In the
following, we will provide the detailed techniques
of the KECP framework.

3.2 Query Prompt Construction
Since we transform the conventional span selec-
tion problem into the MLM generation problem,
we need to construct prompt templates for each
passage-query pair. In contrast to previous ap-
proaches (Brown et al., 2020; Gao et al., 2021)
which generate templates by handcrafting or neu-
ral networks, we find that the query Q in EQA
tasks naturally provides hints for prompt construc-
tion. Specifically, we design a template mapping
T based on several heuristic rules (please refer
to Appendix A for more details). For example,
the query “What was one of the Norman’s ma-
jor exports?” can be transformed into a template:
“[MASK][MASK][MASK] was one of the Nor-
man’s major exports”. If a sentence does not match
any of these rules, multiple [MASK] tokens will
be directly added to the end of the query. The num-
ber of [MASK] tokens in prompts is regarded as a
pre-defined hyper-parameter denotes as lmask.

Let Qprompt = q′1, q
′
2, · · · , q′m′ denote a query

prompt where q′i is a dispersed prompt token, m′

is the length of query prompt. We concatenate the
query prompt Qprompt and the passage text P with
some special tokens as input xinput:

xinput = [CLS]Qprompt[SEP]P[SEP], (1)

where [CLS] and [SEP] are two special tokens
that represent the start and separate token in PLMs.
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3.3 Knowledge-aware Prompt Encoder (KPE)

As mentioned above, to remedy the dilemma that
vanilla MLM has poor abilities of model inference,
empirical evidence suggests that we can introduce
the KB to assist boosting PLMs. For example,
when we ask the question “What was one of the
Norman’s major exports?”, we expect the model to
capture more semantics information of the selected
tokens “Norman’s major exports”, which is the
imperative component for model inference.

To achieve this goal, inspired by Liu et al.
(2021b) where pseudo tokens are added to the in-
put with continuous prompt embeddings, we pro-
pose the Knowledge-aware Prompt Encoder (KPE)
to aggregate the multiple-resource knowledge to
the input embeddings of the query prompt. It
consists of two main steps: Passage Knowledge
Injection (PKI) and Passage-to-Prompt Injection
(PPI), where the first aims to generate knowledge-
enhanced representations from passage context and
KB, while the second is to flow these representa-
tions to the selected tokens of query prompts.

3.3.1 Passage Knowledge Injection (PKI)
For knowledge injection, we first introduce two em-
bedding mappings Ewr(·) and Ekn(·), where Ewr(·)
aims to map the input token to the word embed-
dings from the PLM embedding table, Ekn(·) de-
notes to map the input token to the KB embed-
dings pre-trained by the ConVE (Dettmers et al.,
2018) algorithm based on WikiData5M (Wang
et al., 2021) 3.

In the beginning, all the tokens in xinput are en-
coded into word embeddings x. Hence, we can
obtain the embeddings of query prompt and pas-
sage, denote as Q = Ewr(Qprompt) ∈ Rm′×h and
P = Ewr(P ) ∈ Rn×h. Additionally, for each to-
ken pi ∈ P , we retrieve the entities from the KB
that have the same lemma with pi, and the averaged
entity embeddings are stored as their KB embed-
dings. Formally, we generate the KB embeddings
pkn
i of the passage token pi:

pkn
i = Mean(ej |lem(pi) = lem(ej)), (2)

where lem is the lemmatization operator (Dai et al.,
2021), ej = Ekn(ej). We then directly com-
bine word embeddings and KB embeddings by
gi = pi + pkn

i , where pi is the word embeddings

3URL: https://deepgraphlearning.github.
io/project/wikidata5m.

of i-th token in the passage text. gi ∈ Rh is the em-
beddings with knowledge injected. Finally, we ob-
tain knowledge-enhanced representations denoted
as G = g1g2, · · · ,gn, where G ∈ Rn×h.

3.3.2 Passage-to-Prompt Injection (PPI)
The goal of PPI is to enhance the representations
Q of selected prompt tokens by the interaction
between the query and the passage representations.
As discovered by (Zhang et al., 2021), injecting
too much background knowledge may harm the
performance of downstream tasks, hence we only
inject knowledge to the representations of part of
the prompt tokens. To be more specific, given r(<
m′) selected prompt tokens qspj ∈ Qprompt, we
create the corresponding embeddings qsp ∈ Rr×h

by looking up the embeddings from Q. For each
prompt token, we leverage self-attention to obtain
the soft embeddings vsp ∈ Rr×h:

vsp = SoftMax(qspWαG
T/

√
d)G, (3)

where Wα ∈ Rh×h is the trainable matrix. d
denotes the scale value. We add residual con-
nection to vsp and qsp by linear combination as
usp = vsp + qsp, where usp denotes the enhanced
representations of selected prompt tokens.

Finally, we only replace the original word em-
beddings x of selected prompt tokens qsp with usp

in the PLM’s embeddings layer. To this end, we use
very few parameters to implement the rich knowl-
edge injection, which alleviate over-fitting during
few-shot learning.

3.4 Span-level Contrastive Learning (SCL)
As mentioned above, many negative span texts in
the passage have similar and confusing semantics
with the correct answer. This may cause the PLM
to generate wrong results. For example, given the
passage “Google News releases that Apple founder
Steve Jobs will speak about the new iPhone 4 prod-
uct at a press conference in 2014.” and the query
“Which company makes iPhone 4?”. The model is
inevitably confused by some similar entities. For
examples, “Google” is also a company name but is
insight of the entity “Apple” in the sentence, and
“Steve Jobs” is not a company name although it is
as expected from the answer.

Inspired by contrastive learning (Chen et al.,
2020), we can distinguish between the positive
and negative predictions and alleviate this confu-
sion problem. Specifically, we firstly obtain a se-
ries of span texts by the slide window, suppose as
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Y ′
i = pk′i · · · pl′i , where k′i and l′i denote the start

and the end positions of the i-th span. Then, we
filter out some negative spans that have similar se-
mantics with the correct answer Y . In detail, we
follow SpanBERT (Joshi et al., 2020) to represent
each span by the span boundary. The embeddings
that we choose are the knowledge-enhanced rep-
resentations G in Section 3.3, which consists of
rich context and knowledge semantics. For each
positive-negative pair (Y, Y ′

i ), we compute the sim-
ilarity score and the candidate intervals with top-S
similarity scores are selected as the negative an-
swers, which can be viewed as the semantically
confusion w.r.t. the correct answer. For the i-th
negative answer Y ′

i , we have:

Z ′
i =

∑

j

Pr(Y ′
ij |P,Q; Θ), (4)

where Pr denotes the prediction function of the
MLM head. Y ′

ij denotes the j-th token in the corre-
sponding span. We can also calculate the score Z
of the ground truth in the same manner. Hence, for
each training sample, the objective of the span-level
contrastive learning can be formulated as:

LSCL = − 1

S + 1
log[

exp{Z}
exp{Z}+∑S

i=1 exp{Z ′
i}
],

(5)
Finally, the total loss function is written as follows:

L = LMLM + λLSCL + γ||Θ||, (6)

where LMLM denotes the training objective of
token-level MLM. Θ denotes the model parameters.
λ, γ ∈ [0, 1] are the balancing hyper-parameter and
the regularization hyper-parameter, respectively.

3.5 Model-free Prefix-tree Decoder
Different from conventional text generation, we
should guarantee that the generated answer must be
the sub-string in the passage text. In other words,
the searching space of each position is constrained
by the prefix token. For example, in Figure 2, if the
prediction of the first [MASK] token in Qprompt

is “fighting”, the searching space of the second to-
ken shrinks down to “{horsemen, [END]}”, where
[END] is the special token as the answer termi-
nator. We implement a simple model-free prefix-
tree (i.e. trie-tree) decoder without any parameters,
which is a highly-efficient data structure that pre-
serves the dependency of each passage token. At
each [MASK] position, we use beam search algo-
rithm to select top-S results. The predicted text of

the masked positions with highest score calculated
by Eq. (4) is selected as the final answer.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the performance of our framework.

4.1 Baselines
To evaluate our proposed method, we consider
the following methods as strong baselines: 1)
RoBERTa (Liu et al., 2019) is the optimized ver-
sion of BERT, which introduces dynamic mask-
ing strategy. 2) SpanBERT (Joshi et al., 2020)
utilizes the span masking strategy and predicts
the masked tokens based on boundary represen-
tations. 3) WKLM (Xiong et al., 2020) belongs
to knowledge-enhanced PLM, which continue to
pre-trains on BERT with a novel entity replacement
task. 4) Splinter (Ram et al., 2021) is the first work
to regard span selection as a pre-training task for
EQA. 5) P-tuning-V2 (Liu et al., 2021a) is the
prompt-based baseline for text generation tasks.

4.2 Benchmarks
Our framework is evaluated over two benchmarks,
including SQuAD2.0 (Rajpurkar et al., 2018) and
MRQA 2019 shared task (Fisch et al., 2019). The
statistics of each dataset are shown in Appendix.
SQuAD 2.0 (Rajpurkar et al., 2018): It is a widely-
used EQA benchmark, combining 43k unanswer-
able examples with original 87k answerable exam-
ples in SQuAD1.1 (Rajpurkar et al., 2016). As
the testing set is not publicly available, we use the
public development set for the evaluation.
MRQA 2019 shared task (Fisch et al., 2019): It is
a shared task containing 6 EQA datasets formed in
a unified format, such as SQuAD1.1 (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2017),
TriviaQA (Joshi et al., 2017), SearchQA (Dunn
et al., 2017), HotpotQA (Yang et al., 2018) and
NQ (Kwiatkowski et al., 2019). Following (Ram
et al., 2021), we use the subset of Split I, where the
training set is used for training and the development
set is for evaluation.

4.3 Implementation Details
Follow the same settings as in (Ram et al., 2021),
for each EQA dataset, we randomly choose K sam-
ples from the original training set to construct the
few-shot training set and development set, respec-
tively. As the test set is not available, we evaluate
the model on the whole development set.
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Paradigm Methods Use KB EQA Datasets
SQuAD2.0 SQuAD1.1 NewsQA TriviaQA SearchQA HotpotQA NQ.

FT

RoBERTa No 9.55%+1.9 12.50%+2.7 6.24%+0.8 12.00%+1.5 11.87%+1.1 12.05%+1.4 19.68%+1.9
SpanBERT No 9.90%+1.0 12.50%+1.2 6.00%+2.0 12.80%+1.3 13.00%+1.7 12.60%+1.5 19.15%+2.0
WKLM ∗ Yes 17.22%+2.0 16.30%+1.0 8.80%+1.5 14.16%+1.8 15.30%+1.4 13.30%+1.4 19.85%+1.7
Splinter No 53.05%+5.2 54.60%+5.9 20.80%+2.8 18.90%+1.6 26.30%+2.5 24.00%+0.9 27.40%+1.2

PT

RoBERTa † No 39.50%+1.1 27.10%+2.0 12.20%+3.9 16.82%+2.0 19.10%+1.8 22.26%+1.9 20.18%+2.2
P-tuning V2 No 60.48%+4.2 59.10%+4.4 22.33%+2.9 22.42%+0.7 28.08%+4.1 26.33%+2.3 27.52%+2.4

KECP w/o. KPE No 63.07%+3.6 64.22%+4.3 23.80%+2.0 21.35%+0.8 29.41%+3.1 27.80%+2.6 27.95%+2.4
KECP Yes 75.45%+3.8 67.05%+4.7 28.38%+1.9 24.80%+2.4 35.33%+2.4 33.90%+2.0 31.85%+2.2

Table 1: The averaged F1 performance of each benchmarks with standard deviation in few-shot scenario (K = 16).
FT and PT denote Fine-tuning and Prompt-tuning paradigms, respectively. RoBERTa† in PT uses the vanilla MLM
head to predict the answer text. WKLM ∗ denotes our re-produced version based on RoBERTa-base.

In our experiments, the underlying PLM is
RoBERTa-base (Liu et al., 2019) and the default
hyper-parameters are initialized from the Hugging-
Face 4. We train our model by the Adam algo-
rithm. The learning rate for MLM is fixed as 1e-5,
while the initial learning rate for other new mod-
ules (self-attention in PPI) in KECP is set in {1e-5,
3e-5, 5e-5, 1e-4} with a warm-up rate of 0.1, the
L2 weight decay value is γ = 0.01. The balance
hyper-parameter is set as λ = 0.5. The number of
[MASK] tokens in query prompts is lmask = 10.
The number of negative spans is S = 5. In few-
shot settings, the definition scope of the sample
number is K ∈ {16, 32, 64, · · · , 512}. We set the
batch size and the epoch number as 8 and 64, re-
spectively. During experiments, we choose five
different random seeds {12, 21, 42, 87, 100} (Gao
et al., 2021) and report the averaged performance.
Because the generated answer text can be easy con-
verted to a span with start and end position, we
follow (Ram et al., 2021) to use the same F1 met-
ric protocol, which measures the average overlap
between the predicted and the ground-truth answer
texts at the token level.

4.4 Main Results

As shown in Table 1, the results indicate that KECP
outperforms all baselines with only 16 training
examples. Surprisingly, we achieve 75.45% and
67.05% F1 values over SQuAD2.0 (Rajpurkar et al.,
2018) and SQuAD1.1 (Rajpurkar et al., 2016) with
only 16 training examples, which outperforms the
state-of-the-art method Splinter (Ram et al., 2021)
by 22.40% and 12.45%, respectively. We also ob-
serve that the result of RoBERTa† with vanilla
MLM head is lower than any other of PT meth-
ods. It explains the necessity of the improvement

4https://huggingface.co/transformers/
index.html.

#Training Samples−→ 16 1024 All

KECP 75.45% 84.90% 90.85%

w/o. KPE (w/o. PKI & PPI) 63.07% 73.17% 84.90%
w/o. PPI 73.36% 82.53% 90.70%
w/o. SCL 66.27% 74.40% 86.10%

Table 2: The ablation F1 scores over SQuAD2.0 of
KECP for few-shot learning setting. w/o. denotes that
we only remove one component from KECP.

Prompt Mapping SQuAD2.0 NewsQA HotpotQA

T1 (None) 89.19% 72.15% 79.26%
T2 (Manual) 88.62% 72.70% 78.35%

T (Proposed) 90.85% 73.28% 81.19%

Table 3: Comparison with proposed prompt template
mapping T with two alternative methods T1 and T2.

of reasoning ability and the constraints on answer
generation. To make fairly comparison, we also re-
port the results of KECPw/o. KPE, which is the basic
model without injected KB. It makes a substantial
improvement in all tasks, showing that prompt-
tuning based on MLM generation is more suit-
able than span selection pre-training. In addition,
we find that all results of traditional PLMs (e.g.
RoBERTa (Liu et al., 2019) and SpanBERT (Joshi
et al., 2020)) over seven tasks are lower than
WKLM (Xiong et al., 2020), which injects domain-
related knowledge into the PLM. Simultaneously,
our model outperforms P-tuning V2 (Liu et al.,
2021a) and KECPw/o. KPE by a large margin. These
phenomenon indicate that EQA tasks can be further
improved by injecting domain-related knowledge.

4.5 Detailed Analysis and Discussions

Ablation Study. To further understand why KECP
achieves high performance, we perform an ablation
analysis to better validate the contributions of each
component. For simplicity, we only present the
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Figure 3: Results of sample efficiency analysis. We compare KECP with strong baselines with different numbers of
training samples K over MRQA 2019 shared tasks. “Full” denotes to the models trained over full training data.

ablation experimental results on SQuAD2.0 with
16, 1024 and all training samples.

We show all ablation experiments in Table 2,
where w/o. KPE equals to the model without any
domain-related knowledge (denotes to remove both
PKI & PPI). w/o. PPI denotes to only inject knowl-
edge into selected prompt tokens without trainable
self-attention. w/o. SCL means training without
span-level contrastive learning (i.e. λ = 0). We
find that no matter which module is removed, the
effect is decreasing. Particularly, when we remove
both PKI and PPI, the performance is decreased
by 12.38%, 11.73% and 5.95%, respectively. The
declines are larger than other cases, which indi-
cates the significant impact of the passage-aware
knowledge enhancement. We also find the SCL
employed in this work also plays an important role
in our framework, indicating that there are many
confusing texts in the passage that need to be effec-
tively distinguished by contrastive learning.
Sample Efficiency. We further explore the model
effects with different numbers K of training sam-
ples. Figure 3 shows the performance with the dif-
ferent numbers of training samples over the MRQA
2019 shared task (Fisch et al., 2019). Each point
refers the averaged score across 5 randomly sam-
pled datasets. We observe that our KECP consis-
tently achieves higher scores regardless of the num-
ber of training samples. In particular, our method

Parameters Values Few Full Time

lmask =?
λ = 0.5
S = 5

4 39.20% 77.17% 0.9s
7 41.35% 82.90% 1.3s

10 42.30% 83.27% 1.5s
13 41.98% 82.84% 1.9s

λ =?
lmask = 10

S = 5

0 37.62% 76.91% 1.2s
0.25 41.80% 82.99% 1.5s
0.5 42.30% 83.27% 1.5s

0.75 42.09% 83.13% 1.5s
1.0 40.10% 81.70% 1.6s

S =?
λ = 0.5

lmask = 10

3 39.25% 80.02% 1.3s
5 42.30% 83.27% 1.5s
7 42.30% 82.98% 1.9s
9 42.41% 83.32% 2.3s

Table 4: The efficiency of hyper-parameters. All results
are the average results of all datasets in both few-shot
(Few) and full training data (Full) scenarios.

has more obvious advantages in low-resource sce-
narios than in full data settings. In addition, the
results also indicate that prompt-tuning can be an-
other novel paradigm for EQA.
Effects of Different Prompt Templates. In this
part, we design two other template mappings:

• T1 (None): directly adding a series of
[MASK] tokens without any template tokens.

• T2 (Manual): designing a fixed template with
multiple [MASK] tokens (e.g., “The answer
is [MASK]· · · ”).

3158



Query: What major conquest did Tancred play a roll in?
Passage: In 1096, Crusaders passing by the siege of Amalfi were joined by
Bohemond of Taranto and his nephew Tancred with an army of Italo-Normans.
Bohemond was the de facto leader of the Crusade during its passage through
Asia Minor. After the successful Siege of Antioch in 1097, Bohemond began
carving out an independent principality around that city. Tancred was instrumental
in the conquest of Jerusalem and he worked for the expansion of the Crusader
kingdom in Transjordan and the region of Galilee.

Jerusalem
the conquest
of Jerusalem

the siege of
Amalfi

Italo-Normans

Galilee

the siege of
Amalfi

Crusader kingdom

the conquest  
of Jerusalem

Jerusalem

Italo-Normans

Galilee

(a) (b)

Crusader kingdom

Figure 4: Visualizations of answer span texts. (a) is the
result of the PLM without contrastive learning. (b) is
the result of the PLM with contrastive learning.

To evaluate the efficiency of our proposed template
mapping method compared with these baselines,
we randomly select three tasks (i.e., SQuAD2.0,
NewsQA and HotpotQA) and train models with
full data. As shown in Table 3, we find that two sim-
ple templates have the similar performance. Our
proposed method outperforms them by more than
1.0% in terms of F1 score. 5

Hyper-parameter Analysis. In this part, we inves-
tigate on some hyper-parameters in our framework,
including the number of masked tokens lmask, the
balance coefficient λ and the negative spans sam-
pling number S. We also record the inference time
over a batch with 8 testing examples. As shown in
Table 4, when we tune lmask, λ and S are fixed as
0.5 and 5, respectively. Results show that length of
masked tokens plays an important role in prompt-
tuning. We fix lmask = 10, S = 5 and tune λ,
and achieve the best performance when λ = 0.5.
We fix λ = 0.5, lmask = 10 and tune the parame-
ter S. We find the overall performance increases
when increasing the sampled negatives. However,
we recommend to set S around 5 due to the faster
inference speed.
Effectiveness of Span-level Contrastive Learn-
ing. Furthermore, to evaluate how the model im-
proved by span-level contrastive learning (SCL),
we randomly select one example from the develop-
ment set of SQuAD2.0 (Rajpurkar et al., 2018), and
visualize it by t-sne (Van der Maaten and Hinton,
2008) to gain more insight into the model perfor-

5We also provide intuitive cases in the experiments. More
details can be found in the appendix.

Method SQuAD2.0 NewsQA HotpotQA

RoBERTa (#1) 83.47% 69.80% 78.70%

KECP (#1) 58.06% 51.30% 59.64%
KECP (#3) 74.57% 64.78% 72.11%
KECP (#5) 86.44% 72.90% 81.43%

Table 5: The accuracy of predicting the first [MASK]
in the query prompt with full training samples for each
task. #nw denotes the window size.

mance. As shown in Figure 4, the correct answer
is “Jerusalem” (in red). We also obtain 5 negative
spans (in blue) which may be confused with the cor-
rect answer. When the PLM is trained without SCL,
in Figure 4(a), we observe that all negative answers
are agglomerated together with the correct answer
“Jerusalem”. It makes the PLM hard to search for
the suitable results. In contrast, Figure 4(b) rep-
resents the model trained with SCL. The result
demonstrates that all negative spans can be better
divided with the correct answer “Jerusalem”. This
shows that SCL in our KECP framework is reliable
and can improve the performance for EQA.
The Accuracy of Answer Generation. A major
difference between previous works and ours is that
we model the EQA task as text generation. Intu-
itively, if the model correctly generates the first an-
swer token, it is easy to generate the remaining an-
swer tokens because of the very small search space.
Therefore, we analyze how difficult it is for the
model to generate the first token correctly. Specifi-
cally, we check whether the generated first token
and the first token of the ground truth are within
a fixed window size nw. As shown in Table 5,
we find the accuracy of our method is lower than
RoBERTa-base (Liu et al., 2019) when nw = 1.
Yet, we achieve the best performance when increas-
ing the window size nw to 5. We think that our
KECP can generate some rehabilitation text for the
answer. For example in Figure 4, the PLM may gen-
erate “the conquest of Jerusalem” rather than the
correct answer with single token “Jerusalem”. This
phenomenon reflects the reason why we achieve
lower accuracy when nw = 1. But, we think that
the generated results are still in the vicinity of the
correct answer.

5 Conclusion

To bridge the gap between the pre-training and fine-
tuning objectives, KECP views EQA as an answer
generation task. In KECP, the knowledge-aware
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prompt encoder injects external domain-related
knowledge into the passage, and then enhances
the representations of selected prompt tokens in
the query. The span-level contrastive learning ob-
jective is proposed to improve the performance
of EQA. Experiments on multiple benchmarks in
both instance-level and task-level few-shot scenar-
ios show that our framework consistently outper-
forms the state-of-the-art methods.

Limitations

Our work addresses the problem of few-shot span-
based EQA only (a type of MRC tasks in NLP)
based on contrastive prompting. We believe that
prompt-tuning can be applied to other types of
MRC tasks, such as cloze-style MRC and multiple-
choice MRC. We leave it as future work. Another
limitation is that the correct generation of the first
answer token is still not satisfactory, as discussed
in the experiments. We will also improve the per-
formance of KECP by applying controllable text
generation techniques in the future.

Ethical Considerations

Our contribution in this work is fully methodolog-
ical, namely a knowledge-enhanced contrastive
prompting (KECP) to boost the performance of
few-shot extractive question answering. Hence,
there are no direct negative social impacts of our
work.
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A The Mapping Rules of Query Prompt

Based on the analysis on the syntactic forms of
queries from SQuAD (Rajpurkar et al., 2016, 2018)
and the MRQA 2019 shared task (Fisch et al.,
2019), we find that the queries in EQA can be di-
rectly transformed into the prompt templates with
multiple [MASK] tokens. Let T : s → s′ be the
prompt mapping where s and s′ represent the origi-
nal sentence and the prompt template, respectively.
We list four rules for query prompt construction
with corresponding example:

• Rule 1. T (<s> be/done · · · ?) → · · ·
[MASK] · · · be/done · · · , where <s> can
be chosen among {"what", "who", "whose",
"whom", "which", "how"}.
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Rule Original Query Query Prompt

Rule 1 A Japanese manga series based on a 16 year old
high school student Ichitaka Seto, is written and
illustrated by someone born in what year?

A Japanese manga series based on a 16 year old high
school student Ichitaka Seto, is written and illustrated
by someone born in [MASK] [MASK].

Rule 2 Where is the company that Sachin Warrier
worked for as a software engineer?

The company that Sachin Warrier worked for as a
software engineer is at the place of [MASK] [MASK].

Rule 3 When the Canberra was introduced to service
with the Royal Air Force (RAF), the type’s first
operator, in May 1951, it became the service’s
first jet-powered bomber aircraft.

The Canberra was introduced to service with the Royal
Air Force (RAF) at the time of [MASK] [MASK],
the type’s first operator, in May 1951, it became the
service’s first jet-powered bomber aircraft.

Rule 4 Why did Rudolf Hess stop serving Hitler in 1941? The reason why did Rudolf Hess stop serving Hitler
in 1941 is that [MASK] [MASK].

Other How much longer after he was born did Werder
Bremen get founded in the northwest German
federal state Free Hanseatic City of Bremen?

How much longer after he was born did Werder Bre-
men get founded in the northwest German federal state
Free Hanseatic City of Bremen? [MASK] [MASK].

Table 6: Example of each query prompt mapping rule.

Dataset #Train #Dev #All

SQuAD2.0 118,446 11,873 130,319

SQuAD1.1 86,588 10,507 97,095
NewsQA 74,160 4,212 78,372
TriviaQA 61,688 7,785 69,573
SearchQA 117,384 16,980 134,364
HotpotQA 72,928 5,904 78,832

NQ 104,071 12,836 116,907

Table 7: The statistics of multiple EQA benchmarks.

• Rule 2. T (where be/done· · · ?) → · · ·
be/done at the place of [MASK]
· · · .

• Rule 3. T (when be/done · · · ?) → · · ·
be/done at the time of [MASK]
· · · .

• Rule 4. T (why be/done · · · ?) → the
reason why · · · be/done [MASK] · · · .

For the query that does not match these rules will
be directly appended with multiple masked lan-
guage tokens. Table 6 shows the examples of each
mapping rule.

B Data Sources

In this section, we give more details on data sources
used in the experiments.

B.1 The Benchmarks of EQA
We choose two widely used EQA benchmarks for
the evaluation, including SQuAD2.0 (Rajpurkar
et al., 2018) and the MRQA 2019 shared task (Fisch
et al., 2019). Specifically, the MRQA 2019 shared

task was proposed to evaluate the domain trans-
ferable of neural models, where the authors se-
lected 18 distinct question answering datasets, then
adapted and unified them into the same format.
They divided all datasets into 3 splits, where Split
I is used for model training and development,
Split II is used for development only and Split
III is used for evaluation. Because our work fo-
cuses on few-shot learning settings, we simply
choose 6 dataset from Split I in our experiments,
including SQuAD1.1 (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), TriviaQA (Joshi
et al., 2017), SearchQA (Dunn et al., 2017), Hot-
potQA (Yang et al., 2018) and NQ (Kwiatkowski
et al., 2019). We also choose SQuAD2.0 (Ra-
jpurkar et al., 2018) to conduct evaluations.

In few-shot learning settings, for each dataset,
we randomly select K examples with five differ-
ent random seeds for training and development,
respectively. For the full data settings, we follow
the same settings of Splinter (Ram et al., 2021) to
use all training data.

B.2 External Knowledge Base
For the domain-related knowledge base, we use
WikiData5M (Wang et al., 2021), which is a
large-scale knowledge graph aligned with text
descriptions from the corresponding Wikipedia
pages. It consists of 4,594,485 entities, 20,510,107
triples and 822 relation types. We use the
ConVE (Dettmers et al., 2018) algorithm to pre-
train the entity and relation embeddings. We set
its dimension as 512, the negative sampling size as
64, the batch size as 128 and the learning rate as
0.001. Finally, we only store the embeddings of all
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#Training Samples−→ 16 1024 All

KECP 75.45% 84.90% 90.85%

w/o. SCL 66.27% 74.40% 86.10%
w/o. filter & sort 71.35% 79.05% 87.80%
w/o. dist 74.90% 84.60% 90.55%

Table 8: The ablation F1 scores over SQuAD2.0 to eval-
uate the importance of each technique in the confusion
span contrastive task. w/o. denotes that we only remove
one component from KECP.

the entities. For the passage knowledge injection,
we use entity linking tools (e.g, TAGME tool in
python 6) to align the entity mentions in passages.
The embeddings of tokens are calculated by the
lemmatization operator (Dai et al., 2021).

C Details of Negative Span Sampling

To construct negative spans for span-level con-
trastive learning (SCL), we follow a simple pipeline
to implement confusion span sampling. At first, we
use a sliding window to obtain a series of span texts.
Next, we filter out span texts which are incomplete
sequences or dissatisfy with the lexical and gram-
matical rules. Finally, we calculate the semantic
similarity between each candidate span text and the
true answer. Formally, suppose Y = y1, y2, · · · , yl
is the ground truth. Given one candidate span
X = x1, x2, · · · , yl′ , where l, l′ are the lengths
of the ground truth and the candidate span text,
respectively, we have:

Sim(X,Y ) =dist(X,Y )

· cos(1
l

l∑

i=1

yi,
1

l′

l′∑

i=1

y′
i)

(7)

where yi, y′
i denote the knowledge-injected repre-

sentations of i-th token, respectively. cos(X,Y )
aims to compute the cosine similarity between X
and Y . We also introduce the dist(X,Y ) func-
tion to represent the normalized position distance
between X and Y by the intuition that the text
closer to the correct answer is prone to confusion.
Specifically, for each candidate X , we obtain the
distance between the first token of X and Y , and
calculate the normalized weight for each candidate.
For example in Figure 1, the distance between the
candidate “avid Crusad” and the answer “fighting
horsemen” is 16, and the normalized weight is 0.15.

6https://pypi.org/project/tagme/.

We provide a brief ablation study for this module.
Specifically, w/o. SCL means that we remove all
techniques of this module (setting λ = 0 in Equa-
tion (6)). w/o. filter & sort denotes randomly sam-
pling S spans without the pipeline. w/o. dist rep-
resents setting dist(X,Y ) = 1 in Equation (7).
As shown in Table 8, the results demonstrate that
our model can be improved by the combination of
all techniques.
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