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Abstract

Query embedding (QE)—which aims to embed
entities and first-order logical (FOL) queries
in a vector space, has shown great power in
answering FOL queries on knowledge graphs
(KGs). Existing QE methods divide a com-
plex query into a sequence of mini-queries
according to its computation graph and per-
form logical operations on the answer sets of
mini-queries to get answers. However, most
of them assume that answer sets satisfy an in-
dividual distribution (e.g., Uniform, Beta, or
Gaussian), which is often violated in real appli-
cations and limit their performance. In this pa-
per, we propose a Neural-based Mixture Proba-
bilistic Query Embedding Model (NMP-QEM)
that encodes the answer set of each mini-query
as a mixed Gaussian distribution with multi-
ple means and covariance parameters, which
can approximate any random distribution ar-
bitrarily well in real KGs. Additionally, to
overcome the difficulty in defining the closed
solution of negation operation, we introduce
neural-based logical operators of projection,
intersection and negation for a mixed Gaus-
sian distribution to answer all the FOL queries.
Extensive experiments demonstrate that NMP-
QEM significantly outperforms existing state-
of-the-art methods on benchmark datasets. In
NELL995, NMP-QEM achieves a 31% relative
improvement over the state-of-the-art.

1 Introduction

Answering FOL queries on KGs is a fundamental
problem in KGs. It aims to find answer entities
of given complex queries using operators includ-
ing existential quantification(∃), conjunction(∧),
disjunction(∨), and negation(¬), which has at-
tracted great attention from both academic and in-
dustry recently (Sun et al., 2019; Li et al., 2017;
Dalvi and Suciu, 2007; Dong et al., 2020).

Early methods transform a FOL query into a
computation graph like Figure 2(a), where each
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node represents a set of entities and each edge rep-
resents a logical operation. Then, these methods
traverse the KG according to the computation graph
to identify the answer set (Lin et al., 2018; Guo
et al., 2018; Saxena et al., 2020; Sun et al., 2019).
However, this type of approach suffers two major
challenges. First, it has difficulties identifying the
correct answers when some links are missing in
KGs. Second, it needs to traverse all the intermedi-
ate entities on reasoning paths, which may lead to
exponential computation costs.

Recently, query embedding (QE) methods have
attracted much attention and keep them close
enough (Hamilton et al., 2018; Ren et al., 2020;
Guu et al., 2015; Zhang et al., 2021; Amayuelas
et al., 2021). These methods divide a query into a
sequence of mini-queries according to its computa-
tion graph, and perform logical operations on the
answer set of each mini-query to get the answer.
Existing QE methods differ in their way of model-
ing answer sets and logical operations, which can
be divided into geometry-based and distribution-
based categories. Geometry-based models repre-
sent each answer set as a “region” (e.g., box or
cone) in Euclidean spaces, while distribution-based
models usually leverage an individual distribution
(e.g., Beta or Gaussian) to represent each answer
set. Compared with early methods, QE methods do
not need to track all intermediate entities, and can
use the nearest neighbor search in the embedding
space to quickly discover answers.

Though having achieved promising performance,
most existing QE methods assume that answer sets
satisfy an individual distribution. For example,
geometry-based models (Ren et al., 2020; Zhang
et al., 2021) assume that answer sets satisfy a uni-
form distribution in a region, and distribution-based
models assume that answer sets satisfy the Gaus-
sian distribution (Choudhary et al., 2021) or Beta
distribution (Ren and Leskovec, 2020). In the real
KGs, distributions of answer sets are often very
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complicated. As shown in the left of Figure 1, the
embedding vectors of the answer set to the query
(US, Location_Contains, ?) in NELL995 (Xiong
et al., 2017) are scattered across two class cen-
ters: city-related center containing (e.g., New York,
Joplin, Pittsburgh) and college-related center con-
taining (e.g., Cambridge, Yale University, Brooklyn
College). Similarly, shown in the right of Figure 1,
the embedding vectors of the answer set to the
query (Sport_Baseball, Plays_Sport_reverse, ?) in
Freebase (Toutanova and Chen, 2015; Bollacker
et al., 2008) are scattered across three class cen-
ters: pitcher-related center, coach-related center,
and catcher-related center, which indicate different
positions among baseball players. Obviously, it is
difficult to model the answer set of each query with
only one individual distribution, which limits the
performance of existing methods.

Inspired by the above insights, this paper
proposes a Neural-based Mixture Probabilistic
Query Embedding Model (NMP-QEM), which
uses mixed Gaussian distribution with multiple
means and covariance parameters to encode the
answer set of each query. Since mixed Gaussian
distributions can approximate any random distri-
bution arbitrarily well (Wu and Perloff, 2007), the
proposed NMP-QEM can model more complicated
answer sets’ distribution in real KGs. Furthermore,
due to the unboundedness of Gaussian random vari-
ables, the closed form of the negation operators
of mixed Gaussian distributions is hard to define,
which prevents answering the queries with nega-
tion. To tackle this problem, we propose neural-
based logical operators of projection, intersection
and negation for mixed Gaussian distributions, so
that the proposed NMP-QEM can answer all the
FOL queries. To summarize, the contributions of
our works are as follows:

• We propose a novel NMP-QEM to answer
FOL queries on KGs. To the best of our knowl-
edge, NMP-QEM is the first attempt that mod-
els answer sets of queries with mixture dis-
tributions instead of individual distributions,
which makes it more suitable for real KGs.

• To handle all the FOL queries, we propose
neural-based logical operators of projection,
intersection, negation for mixed Gaussian dis-
tributions, which has difficulty in defining the
closed solution of negation operation.

• Extensive experiments on three popular bench-

mark datasets demonstrate that NMP-QEM
achieves superior performances in answering
FOL queries on KGs and significantly outper-
forms state-of-the-art baselines. In NELL995,
NMP-QEM even achieves up to 31% relative
improvement over the state-of-the-art.

Figure 1: Visualization of the embedding vectors ob-
tained from TransE (Bordes et al., 2013) with TSNE
dimension reduction. Left: the answer set of the (United
States, Location_Contains, ?). Right: the answer set
of the (Sport Baseball, Plays_Sport_reverse, ?). The
results show that there always exist multiple clusters in
answer sets.

2 Related Work

In this section, we briefly review the related work.
To answer complex logical queries on KGs, path-
based methods (Lin et al., 2018; Guo et al., 2018)
start from anchor entities and require traversing the
intermediate entities on the path, which leads to
exponential computation cost. Query embedding
models are another line of work. Roughly speaking,
existing query embedding methods can be divided
into two categories − geometry-based models and
distribution-based models.
Geometry-based models usually represent answer
sets as "regions" e.g., points, boxes, or cones in Eu-
clidean spaces, and then design set operations upon
them. For example, Query2Box (Ren et al., 2020;
Dasgupta et al., 2020) represents entities as points
and queries as boxes. If a point is inside a box, then
the corresponding entity is the answer to the query.
Geometric shapes provide a natural and easy way
to represent sets and logical relations among them.
To better handle the queries with negation, recently
(Zhang et al., 2021) use the closure of cones to
design the negation operation. While (Amayuelas
et al., 2021) directly uses MLP to define the nega-
tion operation and embed the query and the entities
in the same vector space with single-point vectors.
Distribution-based models usually embed entities
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and queries as an individual distribution e.g., Beta,
Gaussian. (Ren and Leskovec, 2020) uses Beta
distributions defined on the [0, 1] interval to model
entities, queries, and design neural logical opera-
tors that support full first-order logic. (Choudhary
et al., 2021) encodes entities as a multivariate Gaus-
sian density with mean and covariance parameters,
and defines the closed logical operations upon the
Gaussian distribution. Although it defines the logi-
cal operators for mixture input during chaining the
queries, this model can not deal with the negation
operation. Besides, it needs to calculate the inverse
of the large matrix and solve a linear system, which
requires huge memory and is very time-consuming.

Although these QE models make significant
progress in answering FOL queries on KGs, they
overlook that the distribution of answer sets in real
KGs is often complicated. Thus, the proposed
NMP-QEM models answer sets of queries with
mixed Gaussian distributions instead of individual
distributions, in order to approximate any distribu-
tions well in real applications.

3 Preliminaries

In this section, we first give the formal definition
of answering FOL queries on KGs.

A KG can be denoted as G = (V;R), where
v ∈ V represents an entity, and r ∈ R is a binary
function r : V × V → {True;False}, indicating
whether the relation r holds between a pair of en-
tities or not. The goal of answering FOL queries
on KGs is to answer First-Order Logical (FOL)
Queries on KGs. We can define them as follows:
Definition 1 (First-order logic queries) A first-
order logic query q is formed by an anchor entity
set Va ⊆ V , an unknown target variable V? and a se-
ries of existentially quantified variables V1, . . . , Vk.
In its Disjunctive Normal Form (DNF) (Davey and
Priestley, 2002), it is written as a disjunction of
conjunctions:

q[V?] = V? · ∃V1, . . . Vk : c1 ∨ c2 ∨ · · · ∨ cn (1)

Specifically, ci represents a conjunctive query of
one or several literals: ci = ei1 ∧ · · · ∧ eim. And
the literals represent a relation or its negation:
eij = r(vi, vj) or ¬r(vi, vj) where vi, vj are enti-
ties and r ∈ R.
Computation Graph. Given a query, we represent
the reasoning procedure as a computation graph
(see Figure 2 a for an example), of which nodes

represent entity sets and edges represent logical op-
erations over entity sets. We map edges to logical
operators according to the following rules.
Projection Operator P . Given a set of entities
S ⊂ V and a relational function r ∈ R, the
projection operator P outputs all adjacent entities
∪v∈SN(v, r) where N(v, r) is the set of entities
such that r(v, v′) = True for all v′ ∈ N(v, r).
Intersection Operator I. Given n sets of enti-
ties S1,S2, . . . ,Sn, the intersection operator I per-
forms set intersection to obtain ∩n

i=1Sn.
Negation Operator N . Given an entity set S ⊂ V ,
N gives S̄ = V\S .
It is worth noting that the union operation is un-
necessary, as (Ren et al., 2020) shows that a union
operator becomes intractable in distance-based met-
rics, and can be implemented using intersection and
negation.

4 Methods

Overall, the architecture of the NMP-QEM and the
corresponding computation graph are shown in Fig-
ure 2. To get answers, the complex query is divided
into a sequence of mini-queries according to its
computation graph. Then we use the neural-based
operators to embed the entity and do logical oper-
ations between the answer set of each mini-query.
In this query, the basketball players of America
may play different positions (e.g., center, pg) and
players who win the NBA championship may also
come from different countries (e.g., Spain, France).
In the following subsections, we will introduce the
details of the proposed method.

4.1 Mixture Probabilistic Embedding for
Entities and Queries

Firstly, we introduce how the NMP-QEM embeds
entities and queries by which the output obey a
mixture of Gaussian distributions. We assume
that for the answer set Vi, there are K semantic
centers. And the answer set is modeled by
Vi =

∑K
i=1 ωiN (µi,Σi), where a diagonal

matrix is used instead of full covariance matrix
of Gauss density function in consideration of
computational cost. The learnable parameters
ωi ∈ R, µi ∈ Rd and Σi ∈ Rd indicate the
ith component’s weights, semantic position and
spatial query area of answer sets, respectively.
Finally, for the convenience of calculation, we con-
catenate three parameters and mask them as: W =
[ [µ1;ω1 ], . . . , [µK ;ωk ], [ Σ1; 0 ], . . . , [ ΣK ; 0 ] ] ∈
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Figure 2: NMP-QEM Framework for answering FOL queries on KGs. Representation of a query: “List the teams of
American basketball players who won NBA championship.” (a) Query represented by its logical statements and
dependency graph. (b) 2D Representation of the answer entities in the mixture Gaussian vector space used by the
NMP-QEM. And answer sets often have multiple semantic centers.

R2K×(d+1), where [·; ·] indicates concatenation
on the sequence length dimension. Next, each
source node representing an anchor entity v ∈ V
is a vector in R1×d, and we regard it as the K
identical components and then concatenate it into
the same shape as W ∈ R2K×(d+1). Thus, we
unify the dimensions of anchor entities and answer
sets’ embeddings to facilitate subsequent logical
operations.

4.2 Neural-based Operators
To answer a query using the computation graph,
we need projection operators and logical operators
for the mixture probabilistic embedding. Next, we
describe the design of these operators used in com-
putation graphs, which include relation projection
P , intersection I and negation N . As discussed
before, the union can be implemented using in-
tersection and negation. Accordingly, we do not
define this operator.
Projection Operator P: The goal of P is to map
an anchor entity or an answer set to another answer
set. Therefore, we design a probabilistic projec-
tion operator P that maps one mixture probabilis-
tic embedding W to another mixture probabilistic
embedding W ′ given the relation type r. We then
learn a transformation neural network for each rela-
tion type r, which is implemented as a multi-layer
perceptron (MLP):

W ′ = MLPr(W ) (2)

Noticing that the output W ′ is also the mixture of
Gaussian components, we must apply different acti-
vation functions to satisfy the following restrictions.
The parameters of different component’s weights

ωi should satisfy ωi > 0 and
∑M

i=1 ωi = 1. And
the diagonal Σi should be positive semidefinite. So,
we use the SoftMax function and Relu function to
activate these parameters:

ωi =
exp(ω′

i)∑K
i=1 exp(ω

′
j)
, Σi = Relu(Σ′

i) (3)

Intersection Operator I: Given n input embed-
dings {W1, . . . ,Wn}, the goal of neural-based in-
tersection operator I is to calculate the mixture
probabilistic embedding WInter that represents the
intersection of the distributions. Here we consider
the intersection operation between two input em-
beddings {Wi,Wj}, since N input embeddings
can be transformed into a pairwise intersection.
The Wi contains K Gaussian components and the
key of the I is how to make sufficient intersections
between K Gaussian components. Thus, we model
I by taking the attention mechanism (Vaswani
et al., 2017). Additionally, considering that the
intersection satisfies commutative law, we design a
symmetric attention mechanism as follows:

I{Wi,Wj} =SoftMax(
Q(i)K(j)T

√
m

)V (j)+

+SoftMax(
Q(j)K(i)T

√
m

)V (i) (4)

where Q(α) = (q(α)T1 , · · · , q(α)TK ) ∈ RK×2(d+1),
K(α) = (k

(α)T
1 , . . . , k

(α)T
K ) ∈ RK×2(d+1),

V (α) = (v
(α)T
1 , . . . , v

(α)T
K ) ∈ RK×2(d+1).

The input embeddings Wi are reshaped as
Ŵi = [ [µ1;ω1; Σ1; 0 ], . . . , [µK ;ωk; ΣK ; 0 ] ] ∈
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RK×2(d+1), and the Qα,Kα, V α are calculated by:

Q(α) = ŴiW̄Q,

K(α) = ŴiW̄K , (5)

V (α) = ŴiW̄V ,

where α = 1,· · · ,n. The W̄Q ∈ R2(d+1), W̄K ∈
R2(d+1), W̄V ∈ R2(d+1) are parameter matrices.
Observing the Equation 4, it is easy to find that:
I{Wi,Wj} = I{Wj ,Wi}. This result also guar-
antees the commutative law of intersection I.
Negation Operator N : Finally, we require a
neural-based negation operator N that takes mix-
ture probabilistic embedding W as input and pro-
duces an embedding of the N (W ). This operator
should reverse in the sense that regions of high
probability in W have low probability in N (W )
and vice versa. And we use a multi-layer MLPN
to model this transformation in distribution.

N (W ) = MLPN (W ) (6)

After the transformation in distribution, we also
need to activate the parameters in N (W ) like Equa-
tion 3, to satisfy the constraints of w and Σ.

4.3 Training Objective

The goal is to jointly train the neural-based logical
operators and the entity embeddings. Our training
objective is to minimize the distance between the
entity embeddings and query embeddings, while
maximizing the distance from the query to incor-
rect random entities, which can be done via neg-
ative samples. Equation 7 expresses this training
objective in mathematical terms.

L =− logσ(γ −Dist(v; q))−

−
n∑

j=1

1

k
logσ(Dist(v′j ; q)− γ)) (7)

where q is the query, v ∈ [[q]] is an answer of query
(the positive sample); v′j /∈ [[q]] represents a random
negative sample; γ > 0 is a fixed margin, and σ(·)
is the sigmoid function. Both the margin and the
number of negative samples k remain as hyperpa-
rameters of the model.
Distance: When defining the training objective,
we need to specify the distance between the embed-
dings of entity v: Ev and the query q: Wq. We use
the L1 distance between source entity’s embedding

Ev and weighted µ of query q:

Dist(v, q) = |Ev −
K∑

i=1

Wq[ωi ] ·Wq[µi ]| (8)

where Wq[ωi] and Wq[µi] denote the ω part and
µ part of mixture probabilistic embedding Wq, re-
spectively.

5 Experiments

In this section, we first introduce the experiment
settings including datasets, baselines and evalu-
ation protocols. Secondly, we compare NMP-
QEM with competitive models on answering FOL
queries over KGs and demonstrate its superiority.
Thirdly, we reduce training queries to four types
(1p/2i/2in/inp) to observe the further generaliza-
tion of the model. Then, we analyze the impact of
two important parameters on the proposed model.
Finally, we do the case study to exploit how the
NMP-QEM models the answer sets in NELL995.

5.1 Experiment Setup
We adopt the commonly used experimental settings
in (Ren and Leskovec, 2020). The only difference
is that we used the WN18RR instead of the FB15K.
For the reason that (Dettmers et al., 2018) raises
WN18 and FB15K suffer test leakage through in-
verse relations problem. So they put forward the
FB15K-237, WN18RR − a subset of FB15k and
WN18, where inverse relations are removed. Ac-
cordingly, there is no need to use FB15K when
FB15K-237 is already used.
Datasets and Queries: We use three datasets:
FB15k-237, NELL995 and WN18RR. To obtain
the queries from the datasets and their ground truth
answers, we used the same query structures in
(Ren and Leskovec, 2020). The training and vali-
dation queries consist of five conjunctive structures
(1p/2p/3p/2i/3i) and five structures with nega-
tion (2in/3in/inp/pni/pin). Please refer to Ap-
pendix A.1 for more details about the datasets and
query structures.
Evaluation Protocols: For each non-trivial answer
v of a test query q, we rank it against non-answer
entities V\[[q]]test. We denote the rank as r and then
calculate the Mean Reciprocal Rank (MRR) and
Hit@N. The definitions of these protocols are pro-
vided in Appendix A.3. Higher MRR and Hit@N
indicate a better performance.
Baselines: We compare NMP-QEM against six
state-of-the-art models, including GQE (Hamilton
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up AVG

FB15K-237

GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 20.1
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 16.3

BETAE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 20.9
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 23.4
PRME 42.3 11.4 10.7 29.3 40.6 23.5 13.3 12.5 10.1 21.5
MLP 42.7 12.4 10.6 31.7 43.9 24.2 14.9 13.7 9.7 22.6

NMP-QEM 46.2 12.9 11.3 35.0 47.8 25.6 15.1 15.0 10.9 24.4

NELL995

GQE 33.1 12.1 9.9 27.3 35.1 16.7 10.9 8.5 9.0 18.7
Q2B 42.7 14.5 11.7 34.7 45.8 23.2 17.4 12.0 10.7 23.6

BETAE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.5 8.5 24.6
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 26.3 11.3 27.2
PRME 43.6 14.2 11.6 38.8 46.8 24.3 15.2 13.3 9.2 24.1
MLP 55.4 16.5 14.9 36.4 48.0 22.7 18.2 14.7 11.3 26.5

NMP-QEM 68.8 23.9 17.8 47.0 55.0 31.1 26.0 29.6 20.7 35.6

WN18RR

GQE 21.2 7.8 3.6 29.7 35.7 18.3 13.5 3.4 5.1 15.3
Q2B 24.8 8.4 3.8 43.3 74.5 25.0 14.1 4.5 5.4 22.0

BETAE 44.7 15.7 5.3 57.8 77.5 36.3 16.6 7.9 6.7 29.8
ConE 44.4 18.5 10.0 61.7 85.6 37.2 15.3 9.6 9.3 32.4
PRME 44.9 16.6 8.9 60.3 75.9 36.9 17.7 7.7 7.2 30.6
MLP 48.3 19.4 9.3 62.9 82.3 37.5 19.1 10.0 9.4 33.3

NMP-QEM 53.1 24.3 14.1 68.5 86.6 38.2 19.2 12.7 13.2 36.6

Table 1: MRR results on answering EPFO (∃,∧,∨) queries. The bold values are the best results, and the underlined
values are the second best results.

Dataset Model 2in 3in inp pin pni AVG

FB15K-237

BETAE 5.1 7.9 7.4 3.6 3.4 5.4
ConE 5.8 8.8 7.6 4.3 4.1 6.1
MLP 6.6 10.7 8.1 4.7 4.4 6.9

NMP-QEM 6.8 11.7 8.2 5.5 4.7 7.4

NELL995

BETAE 5.1 7.8 10.0 3.1 3.5 5.9
ConE 5.6 8.1 10.9 3.5 3.9 6.4
MLP 5.1 8.0 10.0 3.1 3.5 5.9

NMP-QEM 10.0 9.2 12.9 4.8 7.4 8.9

WN18RR

BETAE 20.6 66.1 16.1 9.6 13.4 25.1
ConE 22.6 68.4 18.9 11.9 14.2 27.2
MLP 23.0 68.5 19.2 10.8 15.2 27.3

NMP-QEM 24.2 68.2 19.8 12.0 16.3 28.1

Table 2: MRR results for answering queries with nega-
tion

et al., 2018), Query2Box (Q2B) (Ren et al., 2020),
BETAE (Ren and Leskovec, 2020), ConE (Zhang
et al., 2021), MLP (Amayuelas et al., 2021) and
PREM (Choudhary et al., 2021). GQE, Q2B and
PREM are trained only on five conjunctive struc-
tures as they cannot model the queries with nega-
tion.
Parameter Settings: For a fair comparison, we
assign the best dimension to the embeddings of the
six methods. We list the hyperparameters, architec-
tures and more details in Appendix A.2

5.2 Main Results

In this subsection, we compare the MRR and
HIT@1 of the NMP-QEM with all the baselines
on three datasets. We run our model five times

with different random seeds and report the average
performance. Due to the limited space, the HIT@1
performance and error bars of the performance are
shown in Table 9 and Table 10 in Appendix B.
The performance of all models is reported in Ta-
ble 1 and Table 2. From the results, we have the
following observations. Overall, NMP-QEM sig-
nificantly outperforms compared models. For the
EPFO (∃,∧,∨) queries, on average, NMP-QEM
obtains 1.0% (4.2%relative), 8.4% (30.8% rela-
tive), and 3.3% (9.9% relative) improved MRR
over the best models on FB15k-237, NELL995 and
WN18RR respectively, which demonstrates the su-
periority of NMP-QEM on the whole. NMP-QEM
also gains an impressive improvement on queries
(ip/pi/2u/up), which are not in the training data.
These results show the superior generality ability
of NMP-QEM. Additionally, for the queries with
negation (2in/3in/inp/pin/pni), NMP-QEM ob-
tains 0.5% (7.2%relative), 8.4% (39.0% relative),
and 0.8% (2.9% relative) improved MRR over
the best baselines on three datasets respectively.
Finally, we refer the reader to Table 7 and Ta-
ble 8 in Appendix B for Hit@1 results. NMP-
QEM also achieves better performance than six
baselines on Hit@1. Furthermore, we found that
NMP-QEM achieves a better improvement on
NELL995 and WN18RR than FB15K-237, which
may be caused by the entity-relationship ratio. In
NELL995 and WN18RR, the entity-relationship
ratio (entity/relationship) are 317 and 3681, re-
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Model 2p 3p 3i pi ip 2u up 3in pin pni AVG Descent Rate
BetaE 7.5 7.0 40.2 19.5 9.2 11.4 7.0 7.5 2.4 3.0 11.5 ↓ 15.1%
ConE 8.4 7.2 43.6 21.1 9.4 14.1 7.3 9.5 3.4 3.9 12.7 ↓ 16.4%
MLP 6.4 5.3 40.5 20.5 10.4 10.9 5.3 9.3 2.8 1.8 11.3 ↓ 24.1%

NMP-QEM 9.6 7.5 44.0 22.6 12.7 14.9 7.4 9.6 3.1 4.9 13.6 ↓ 15.0%

Table 3: MRR results on FB15K-237 when training query structures are four types (1p/2i/2in/inp).

spectively, while in FB15K-237, the ratio is only
61. This phenomenon shows that with a relatively
high entity-relationship ratio, the answer sets may
have more semantic centers, which can be modeled
better by NMP-QEM. We will discuss in detail the
impact of the semantic center’s number K on the
model in the following sections.

5.3 Generalization of the models

In this subsection, we reduce training queries to
four types to observe the further generalization of
the model. Since in the previous 5.2 experiments,
the model improves less on FB15K-237. Thus, we
conduct more experiments on FB15K-237. Previ-
ous work (Ren and Leskovec, 2020) uses 10 types
of queries for training as shown in Figure 6 in Ap-
pendix A. Then, they evaluate the model’s gener-
alization ability using queries with logical struc-
tures that the model has never seen during training,
which includes (ip/pi/2u/up) for evaluation. To
further explore the model’s generalization, we use
(1p/2i/2in/inp) queries for training and test the
remaining 10 types of queries. We evaluate the
MRR of the models and the results are shown in
Table 3. We can find that although these ten types
of queries did not appear in the training set, our
model still achieve better performance nearly on
all types compared with other methods. Moreover,
compared with the results in section 5.2, which has
more query types in the training set, NMP-QEM
drops a relatively small proportion of average MRR,
while other methods drop more on average MRR.
These results demonstrate that NMP-QEM can gen-
eralize beyond query structures better than other
models.

5.4 Influence of hyperparameters

As mentioned above, a good number of semantic
centers K may bring the model a higher perfor-
mance boost. Accordingly, in this subsection, we
conduct two experiments to analyze the impact of
important parameter K on the proposed model.

Firstly, we reduce the number of semantic cen-

ters to 1 which also means the model has only
one Gaussian component. And we compare its
average MRR results on all types of queries with
those under the best K of the model. From Fig-
ure 3, we can find that no matter which datasets
we choose, the model with multiple semantic cen-
ters always performs better than those with a single
center. And this result further illustrates that the an-
swer set of the query is more inclined to have mul-
tiple semantic centers. Additionally, we can find
that on datasets with a higher entity-relationship ra-
tio (NELL995 and WN18RR), the improvement is
more significant than the FB15K-237. This result
also shows that with a higher entity-relationship ra-
tio, the answer set may have more semantic centers,
which makes it modeled better.

Figure 3: The average MRR results on all types of
queries with those under the best K of NMP-QEM

Secondly, we change the number of semantic
centers K in the range of {2, 4, 6, 8, 10, 20} to
observe the average MRR results on all types of
queries. From Figure 4, we can find that for dif-
ferent datasets, the appropriate K is also different.
The value of K is related to the entity-relationship
ratio. Specifically, for the FB15K-237, the entity-
relationship ratio is relatively small, and the best
K is only about 4. While for the WN18RR and
NELL995, the entity-relationship ratio is relatively
large, and the best K are 6 and 10 respectively.
These results show that appropriate K is of great
significance to the model’s performance. If K is
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Figure 4: The average MRR results of NMP-QEM with different number of semantic centers K on three datasets

too large, there are more parameters to be trained,
which may degrade the performance. If K is too
small, the NMP-QEM can not model the high
entity-relationship ratio dataset with many seman-
tic centers.

5.5 Case Study

Finally, we explore how the NMP-QEM models
answer sets in the test sample. We provide an
example from NELL995 in Figure 5. The FOL
query is "List the province of city Tazewell in the
USA that proxy for", and the process of answer-
ing this question can be divided into four parts.
We show each part’s semantic center of the an-
swer set and their weight ωi at the bottom of
the figure. Firstly, the answer set1 of the ques-
tion subpartof_reverse(USA, V ) are the differ-
ent continents in the USA, and they have six se-
mantic centers (different continents) since the K of
the model is six on NELL995. Additionally, the six
centers have similar weights ωi, which means the
probability of these components is similar. The sec-
ond part is to answer located_in(Tazewell, V ),
and the answer set2 has five similar components re-
lated to Illinois. The sum of their weights reaches
0.885, which is close to the truth that Tazewell is
located in Illinois. Then, we intersect two answer
sets above. The intersected set also has five simi-
lar components related to Illinois, and the sum of
their weights reaches 0.784. Finally, we project the
intersected set to obtain the final answers. We can
observe that most answers are cities in Illinois,
and the result given in red is the incorrect answer.
From this example, we find that NMP-QEM can
capture the semantic component in the answer set
effectively, and the intersection operation can cap-
ture the same component of two sets, which helps
NMP-QEM model the FOL queries better.

Figure 5: Examples of NMP-QEM model the answer
sets in NELL995

6 Conclusions

In this paper, we propose a novel query embed-
ding model NMP-QEM for answering FOL queries
over knowledge graphs. The proposed NMP-QEM
models the answer set of queries with mixed Gaus-
sian distributions instead of individual distributions,
which enables it to approximate any distributions
well in real applications. Furthermore, to model
the logic operators in FOL queries, we propose the
neural-based logical operators of projection, inter-
section and negation for mixed Gaussian distribu-
tions, which are hard to be used to define the closed
solution of negation operator. Extensive experimen-
tal results show a significant performance improve-
ment compared to other state-of-the-art methods
built for this purpose.

7 Limitations

In this section, we discuss the limitations of the
proposed model. As mentioned above, (Amayue-
las et al., 2021) used the vector to represent relation
and defines the projection as the concatenation of
the relation vector and query embedding. (Ren
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et al., 2020; Zhang et al., 2021) used few param-
eters to represent the projection operators. Com-
pared with these methods, our model may have
more parameters and need more time during the
training. This is because we define the neural-based
projection operators P for each relation. So, if the
amount of relation is too much, the parameters
will increase accordingly. The Table 11 in Ap-
pendix B shows an example. But compared with
PREM (Choudhary et al., 2021) which needs to
calculate the inverse of the big matrix and solve a
linear system, NMP-QEM uses less training time
and memory. So, in the future, we will consider
how to decrease the parameters in the projection op-
erators P , which will reduce memory consumption
during training and improve training speed.
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Appendix

A More Details about Experiments

In this section, we show more details about experi-
ments that are not included in the main text due to
the limited space.

A.1 Query Generation and Statistics

Statistics about the datasets can be found in
Table 4. To obtain the queries from the datasets
and its ground truth answers, we consider the 9
query basic structures (without negation) from
Query2box (Ren et al., 2020) and additional 5
query structures (Ren and Leskovec, 2020) with
negation to include FOL queries as shown in
Figure 6. Given the 3 datasets, 3 graphs are created:
Gtrain ⊆ Gval ⊆ Gtest for training, testing and
validation, respectively. Therefore the generated
queries are also: [[q]]train ⊆ [[q]]val ⊆ [[q]]test.
Thus, we evaluate and tune hyperparameters
on [[q]]val\[[q]]train and report the results on
[[q]]test\[[q]]val. We always evaluate on queries
and entities that were not part of the already seen
dataset used before.
As summarized in Figure 6, our training and
evaluation queries consist of the 5 conjunctive

structures (1p/2p/3p/2i/3i) and also 5 structures
with negation (2in/3in/inp/pni/pin). Further-
more, we also evaluate the model’s generalization
ability which means answering queries with logical
structures that the model has never seen during
training. We further include (ip/pi/2u/up) for
evaluation.
For the experiments, we have used the
train/valid/test set of queries-answers used
in BetaE (Ren and Leskovec, 2020). This
query-generation system differs from the original
in the fact that it limits the number of possible
answers to a specific threshold since some queries
in Query2box (Ren et al., 2020) had above 5000
answers, which is unrealistic. And, for dataset
WN18RR, we adopt the same generation process.
The average number of queries is shown in Table 5.

A.2 Experimental Details

We implement our code using Pytorch. For the
baselines, we have used the implementation of
the baselines and the testing framework from
Query2Box, GQE, BetaE, MLP, ConE and PREM.
For a fair comparison with the models in the pa-
per, we have selected the same hyperparameters
listed in the paper. For our method, we fine-
tune the hyperparameters including number of
embedding dimensions from {200, 400, 800}, and
the learning rate from {1e−4, 7e−5, 5e−5, 1e−5},
batch size from {128, 256, 512}, negative sam-
ple size from {32, 64, 128}, number of semantic
centers K from {4, 8, 12, 20} and the margin γ
from {10, 20, 30, 40, 50, 60, 70}. For the datasets
FB15K-237 and NELL995, we cite results in BE-
TAE, ConE and MLP for comparison. But for
dataset WN18RR, we conduct a new experiment us-
ing the best hyperparameters in their paper. Notic-
ing that, PREM uses queries different from Be-
taE, which pointed out that there are unrealistic
queries (Ren and Leskovec, 2020). So, for a fair
comparison, we conduct new experiments with
PREM on the three datasets. We list the hyper-
parameters of each model in Table 6. Every single
experiment is run on a single NVIDIA Tesla V100
GPU, and we run each method for 400k iterations.

A.3 Evaluation Metrics

Given the rank of answer entities vi ∈ V to a non-
trivial test query q, we compute the evaluation met-
rics defined according to Equation 9 below. Then,
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Figure 6: Top: Training and evaluation queries represented with their graphical structures, an abbreviation of the
computation graph. We consistently use the following nomenclature: p projection, i intersection, n negation, and u
union. Bottom: we show the transformation process from the original queries to their negative structure.

Dataset Entities Relations Training Edges Val Edges Test Edges Total Edges
FB15K-237 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,804
WN18RR 40,493 11 86,835 3,034 3,134 93,003

Table 4: Knowledge graph datasets statistics as well as training, validation and test edge splits.

Queries Training Validation Test
Dataset 1p/2p/3p/2i/3i 2in/3in/inp/pni/pin 1p others 1p others

FB15K-237 149,689 14,968 20,101 5000 22,812 5000
NELL995 107,982 10,798 16,927 4000 17,034 4000
WN18RR 86,830 16,830 12,830 3000 12,830 3000

Table 5: Number of training, validation, and test queries generated for different query structures.

Models embedding dim learning rate batch size negative sample size margin
GQE 800 0.0005 512 128 30
Q2B 400 0.0005 512 128 30

BetaE 400 0.0005 512 128 60
ConE 800 0.0001 512 128 30
MLP 800 0.0001 512 128 24

PREM 400 0.0001 512 128 24
NMP-QEM 400 0.00005 512 128 20

Table 6: Hyperparameters used for each method.
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up AVG

FB15K-237

GQE 22.4 2.8 2.1 11.7 20.9 8.4 5.7 3.3 2.1 8.8
Q2B 28.3 4.1 3.0 17.5 29.5 12.3 7.3 5.2 3.3 12.3

BETAE 28.9 5.5 4.9 18.3 31.7 14.0 6.7 6.3 4.6 13.4
ConE 32.1 6.1 5.4 22.0 36.8 16.2 7.2 7.7 4.8 15.4
PRME 31.5 5.9 4.9 20.9 33.3 15.8 6.9 6.5 4.5 14.4
MLP 32.5 6.4 5.3 21.4 33.4 16.0 8.9 7.5 4.3 15.1

NMP-QEM 35.8 7.1 5.5 24.3 37.1 16.5 9.2 8.3 5.1 16.5

NELL995

GQE 15.4 6.7 5.0 14.3 20.4 10.6 9.0 2.9 5.0 9.9
Q2B 23.8 8.7 6.9 20.3 31.5 14.2 10.7 5.0 6.0 14.1

BETAE 43.5 8.1 7.0 27.1 36.5 17.4 9.3 6.9 4.7 17.8
ConE 42.9 10.7 8.8 27.7 39.4 18.6 11.7 8.6 6.6 19.4
PRME 41.3 9.3 7.6 26.5 37.7 15.1 10.8 7.2 5.9 17.9
MLP 45.6 11.2 10.0 25.3 36.7 15.4 12.4 8.6 6.5 19.0

NMP-QEM 60.2 15.2 12.1 33.7 44.0 20.0 16.9 18.0 12.1 25.8

WN18RR

GQE 0.2 2.3 0.6 1.1 3.7 3.2 7.7 0.2 2.9 2.4
Q2B 0.7 2.4 0.7 20.3 61.3 10.7 6.6 0.2 3.0 11.7

BETAE 43.3 16.0 5.2 54.6 74.9 33.5 16.2 7.5 6.3 28.6
ConE 43.9 19.1 9.5 53.0 78.9 34.3 14.8 9.9 8.9 30.2
PRME 44.6 15.4 7.7 50.3 73.1 32.0 15.1 7.4 7.1 28.0
MLP 46.5 18.1 9.3 59.4 79.6 34.4 16.0 9.9 10.8 31.5

NMP-QEM 47.5 20.0 9.6 59.7 78.9 34.5 17.3 9.9 11.1 32.1

Table 7: HIT@1 results (%) of all the models on answering EPFO (∃,∧,∨) queries.

we average all queries with the same query format.

Metric(q) =

∑
vi∈V fmetric(rank(vi)))

|[[q]]test\[[q]]val|
(9)

where vi is the set of answers V ⊂ [[q]]test\[[q]]val,
fmetric is the specific metric function and rank(vi)
is the rank of answer entities returned by the model.
In our experiments, we use the flowing two fmetric

functions.
Mean Reciprocal Rank (MRR): It is a statistic
measure used in Information Retrieval to evaluate
the systems that returns a list of possible responses
ranked by their probability to be correct. Given an
answer, this measure is defined as the inverse of
the rank for the first correct answer, averaged over
the sample of queries Q. Equation 10 express this
measure formally.

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
(10)

where ranki refers to the rank position of the first
correct answer for the i− th query.
Hits rate at K (H@K): This measure considers
how many correct answers are ranked above K. It
directly provides an idea of how the algorithm is
performing. Equation 11 defines this metric mathe-
matically.

H@K = 1vi≤K (11)

B More Experimental Results

In this section, we give more experimental results
that are not included in the main text due to the
limited space.
We show in Table 7 and Table 8 the Hit@1 results
of the three methods for answering FOL queries.
Our method still shows a significant improvement
over the six baselines in all three datasets.
To evaluate the performance of NMP-QEM, we
run the model five times. We report the error bars
of these results. Table 9 and Table 10 show the
error bar of NMP-QEM’s MRR results on all FOL
queries. Overall, the standard variances are small,
which demonstrates that the performance of NMP-
QEM is stable.
Additionally, Table 11 shows the numbers of pa-
rameters for some models on FB15K-237.
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Dataset Model 2in 3in inp pin pni AVG

FB15K-237

BETAE 1.5 2.8 2.8 0.7 0.9 1.7
ConE 1.7 3.7 3.1 1.2 1.0 2.1
MLP 2.2 4.2 3.4 1.4 1.2 2.5

NMP-QEM 2.3 4.3 3.4 1.5 1.5 2.6

NELL995

BETAE 1.6 2.6 4.4 0.9 1.1 2.1
ConE 1.4 2.6 5.1 0.8 1.2 2.2
MLP 1.4 2.6 4.2 0.9 1.1 2.0

NMP-QEM 2.9 2.9 6.1 1.3 2.4 3.1

WN18RR

BETAE 17.1 59.1 8.6 3.9 9.5 19.6
ConE 17.3 57.0 13.7 6.8 11.1 21.1
MLP 18.2 60.1 17.2 8.3 11.7 23.1

NMP-QEM 17.6 60.5 19.8 7.5 12.0 23.4

Table 8: HIT@1 results (%) of all the models on answering negative queries.

Dataset 1p 2p 3p 2i 3i pi ip 2u up AVG

FB15K-237
46.2 12.9 11.3 35.0 47.8 25.6 15.1 15.0 10.9 24.4
±0.056 ±0.086 ±0.182 ±0.132 ±0.283 ±0.232 ±0.392 ±0.332 ±0.455 ±0.067

NELL995
68.8 23.9 17.8 47.0 55.0 31.1 26.0 29.6 20.7 35.6
±0.086 ±0.236 ±0.133 ±0.245 ±0.453 ±0.216 ±0.336 ±0.343 ±0.452 ±0.089

WN18RR
53.1 24.3 14.1 68.5 86.6 38.2 19.2 12.7 13.2 36.6
±0.029 ±0.137 ±0.024 ±0.253 ±0.179 ±0.288 ±0.290 ±0.347 ±0.235 ±0.113

Table 9: The mean values and standard variances of NMP-QEM’s MRR results on EPFO queries

Dataset 2in 3in inp pin pni AVG

FB15K-237
6.8 11.7 8.2 5.5 4.7 7.4

±0.116 ±0.131 ±0.156 ±0.096 ±0.137 ±0.129

NELL995
10.0 9.2 12.9 4.8 7.4 8.9
±0.089 ±0.052 ±0.036 ±0.071 ±0.058 ±0.076

WN18RR
24.2 68.2 19.8 12.0 16.3 28.1
±0.096 ±0.087 ±0.374 ±0.134 ±0.156 ±0.151

Table 10: The mean values and standard variances of NMP-QEM ’s MRR results on queries with negation.

Models Q2B ConE MLP PREM NMP-QEM
Parameter
Numbers 682,280,0 238,904,01 247,920,00 262,764,800 198,126,776

Table 11: The numbers of parameters for some models on FB15K-237.
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