Multi-VQG: Generating Engaging Questions for Multiple Images

Min-Hsuan Yeh*, Vicent Chen®, Ting-Hao ‘Kenneth’ Haung', Lun-Wei Ku!
University of Massachusetts Amherst*, University of Illinois Urbana-Champaign®,
Pennsylvania State University*, Institute of Information Science, Academia Sinica?

myeh@umass.edu, vichen2@illinois.edu,
txh710@psu.edu, lwku@iis.sinica.edu

Abstract

Generating engaging content has drawn much
recent attention in the NLP community. Ask-
ing questions is a natural way to respond to
photos and promote awareness. However, most
answers to questions in traditional question-
answering (QA) datasets are factoids, which
reduce individuals’ willingness to answer. Fur-
thermore, traditional visual question genera-
tion (VQG) confines the source data for ques-
tion generation to single images, resulting in
a limited ability to comprehend time-series in-
formation of the underlying event. In this pa-
per, we propose generating engaging questions
from multiple images. We present MVQG', a
new dataset, and establish a series of baselines,
including both end-to-end and dual-stage ar-
chitectures. Results show that building stories
behind the image sequence enables models to
generate engaging questions, which confirms
our assumption that people typically construct
a picture of the event in their minds before ask-
ing questions. These results open up an excit-
ing challenge for visual-and-language models
to implicitly construct a story behind a series
of photos to allow for creativity and experi-
ence sharing and hence draw attention to down-
stream applications.

1 Introduction

The popularity of image-sharing behavior in chats
and social media applications shows that this is a
natural way to increase participant engagement (Hu
et al., 2014). In response, asking questions based
on these photos is a straightforward method to pro-
mote awareness, sustain attention, and acquire use-
ful information. An obvious example is that when
we see someone share a photo of a car accident
on Facebook, commenting “Was anyone injured
in the crash?” draws more attention and replies
from both the author and other readers than “Oh

!Github repo: https://github.com/AcademiaSinicaNLPLab

/MVQG-Dataset-of-Generating-Engaging-Questions-for-Mu
Itiple-Images

How would you act if you found yourself in a room filled with cans of free drinks?
Have you ever gone to beer tastings and where would that be at?

‘What would this cat sit on next?

Figure 1: Two examples of MVQG. Each data point
consists of an image sequence and two to five engaging
questions written by humans. The machine should gen-
erate a question over a given image sequence.

my goodness, that is serious.” Furthermore, from
the author’s aspect, posting photos on social media
with an engaging, image-related question helps the
author to hear the public voice of their feelings and
thoughts, and keeps the author connected with the
world (Lu et al., 2021).

However, not all the questions have the same
effect. Questions in traditional text-based QA
datasets such as SQuAD (Rajpurkar et al., 2016),
NarrativeQA (Kocisky et al., 2018), or Fairy-
taleQA (Zhao et al., 2022) are for educational pur-
poses and language understanding, which do not
seek to encourage people to reply. Meanwhile,
questions in the VQA dataset (Antol et al., 2015a)
usually ask about the color of an object or its po-
sition, to which the answers are too obvious for
humans to respond. In fact, these two kinds of
questions are rarely seen in daily chat and social
media posts. Shuster et al. (2019) state that humans
consider engaging and effective captions those that
“avoid stating the obvious.” As with image cap-
tions, an engaging and effective question asks about
things behind the scenes and is usually open-ended.

Moreover, the input information for question
generation also matters. Images are more straight-
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forward for humans than text, and they provide
plenty of room for imagination. In addition, im-
ages shared on social media are often sequential
instead of solitary, as a single image gives readers
only a limited understanding of the experience be-
ing shared. To this end, despite the existence of
question generation (QG) datasets such as those
created by Lu et al. (2021), Wei et al. (2021), or
Mostafazadeh et al. (2016), which contain engag-
ing questions, their text-based or single-image set-
tings limit the usage of current QG models in pop-
ular applications.

To facilitate downstream applications involving
a set of shared images, e.g., accompanying robots,
social media robots, automatic assistants, or rem-
iniscence therapy, we propose generating an en-
gaging question from multiple images. We create
MVQG, a new dataset, by asking workers to write
down a question following instructions based on
a sequence of photos from VIST (Huang et al.,
2016), a dataset consisting of five sequential im-
ages and a story about those images. For a better
illustration of the task, Figure 1 shows two exam-
ples of MVQG. Unlike the instruction of VQA’s
data collection (Antol et al., 2015b) asked workers
to imagine “a smart robot* that “understands a lot
about images,* such as objects, scenes, or color, or
texture, and come up with questions to “stump this
smart robot.” Our instruction, on the other hand,
asked workers to imagine that they want to have a
conversation with people on Twitter and hence to
write a question to start that conversation. The data
analysis shows that our instructions help collect
more engaging questions than VQG (Mostafazadeh
et al., 2016), the benchmark dataset for visual ques-
tion generation. Furthermore, we establish a series
of baselines, including both end-to-end and dual-
stage architectures. The experimental results show
that information about stories behind the image
sequence helps baselines generate engaging ques-
tions, which confirms our assumption that humans
typically construct stories in their heads before ask-
ing questions. These results open up an exciting
challenge for visual-and-language models: implic-
itly constructing a story behind a series of photos to
allow for creativity and experience sharing, hence
drawing attention to its downstream applications.

The contributions of our paper are threefold:
first, we introduce a novel task multi-VQG and
MVQG, a new dataset: given a sequence of rele-
vant images, generate a corresponding engaging

question; second, we propose several baselines and
show that story information helps baselines to gen-
erate engaging questions from image sequences;
third, we propose five aspects for human evaluation
as benchmarks to better evaluate the engagement
of generated questions.

2 Related Work

User engagement has received much recent atten-
tion in the NLP community. Mostafazadeh et al.
(2016) created the first visual question generation
dataset comprised of natural and engaging ques-
tions. However, engagement is not well-stated in
this work; it simply means “the first question that
comes to mind”. Shuster et al. (2019) present an en-
gaging image captioning task to improve the ability
of machines to communicate with humans; engag-
ing captions are defined as captions that “avoid stat-
ing the obvious.” Lu et al. (2021) develop a dataset
for poll-question generation for social media posts.
This work demonstrates that the poll question is
an engaging question that can be utilized to help
us hear the public voice for decision-making and
thus better understand our society. Wei et al. (2021)
state that an engaging and attractive question may
incorporate additional details or emotional phrases.
Such questions are more likely to be answered. Im-
ages and questions are two prominent elements in
these works, indicating that visual stimulation and
inquiry are typical means to communicate aware-
ness and sustain connections. However, these stud-
ies primarily consider single images, limiting the
use of current QG models in popular applications
because individuals typically share multiple photos
to express more comprehensive experiences. In our
study, we propose generating engaging questions
over an image sequence and creating a dataset com-
prised of five photos and human-written questions.

A visual-and-language (VL) model is typically
used to generate engaging questions from images.
After the development of BERT (Devlin et al.,
2019), various BERT-based VL models were pro-
posed. These VL. models are designed to integrate
information from both vision and language modal-
ities via an encoder, and are categorized into fu-
sion encoders and dual encoders based on how
input from distinct modalities is aggregated (Du
et al., 2022). Fusion encoder models such as
VisualBERT (Li et al., 2019), XLMERT (Cho
et al., 2020), SOHO (Huang et al., 2021), and VL-
TS5 (Cho et al., 2021) encode text embeddings and
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image features in the same model with different fu-
sion approaches. Following self- or cross-attention,
the hidden state of the last layer is treated as a
fused representation of different modalities. Be-
cause fusion encoder models require image and
text pairings as input, the model must input all pos-
sible pairs in image-text matching tasks, resulting
in poor inference speed. Dual encoder models such
as CLIP (Radford et al., 2021), on the other hand,
use two single-modal encoders to encode the two
modalities separately and use the dot product to
project the image embedding and text embedding to
the same semantic space to compute VL similarity
scores. Although dual encoder models are lighter,
they frequently fail in difficult VL understanding
tasks. As aresult, we continue to employ fusion en-
coder models as baselines in our work. We choose
VL-T5 (Cho et al., 2021) as the backbone in partic-
ular because it treats all VL tasks as text-generating
tasks, which is appropriate for our question gener-
ation scenario. Inspired by Shen et al. (2022), we
propose an additional baseline model by employing
the visual encoder of CLIP (Radford et al., 2021)
instead of the self-trained image feature extractor
in our fusion encoder, so that the image features
are better projected into the semantic space.

3 Dataset: MVQG

3.1 Selection of Image Sequences

Given that the proposed task is to generate engag-
ing questions based on a cohesive narrative, the
input photographs cannot be randomly selected
from an image set. As a result, we choose image
sequences from the VIST dataset, the first dataset
of sequential photos accompanied by stories. In the
VIST dataset, each image sequence containing five
photos extracted from a Flickr album of a human
event (e.g., “wedding” or “first day of school”); five
photos must be taken within a 48-hour span. Work-
ers constructing VIST arranged the five photos in
the order chosen, and then wrote a sentence for
each photo to create a story. This procedure guar-
anteed that the chosen image sequences were “sto-
ryable”, i.e., they contained at least one continuous
narrative of an event or scene for question genera-
tion. In addition, although many social-media posts
include multiple images that are not necessarily se-
quential, when social media users create a post
that includes multiple photos, these photos often
capture the same scene, event, or concept; that is,
these photos can have similar properties to those in

the VIST dataset. To this end, we randomly chose
7,700 image sequences from the VIST training set
and chose all 1,999 sequences from the VIST test
set and assigned them to workers to annotate the
engaging questions.

3.2 Question Annotations

Human brains are excellent at object recognition;
they can quickly recognize the most significant
details in photographs. However, finding the rela-
tionship between visuals and developing a unified
narrative of events or scenes behind those items
requires more time for humans. Thus, if workers
are asked to write down a question immediately
after seeing the image sequence, they may merely
inquire about the first object that comes to mind,
rather than ask engaging questions based on a co-
hesive narrative behind the photos. To solve this
problem, we created a data annotation approach
to assist workers in writing suitable sentences by
answering a three-stage question:

Q1. Please list the top five objects (e.g., dogs,
trees) or events (e.g., weddings, parties) you
regard as being the most important in the im-
age sequence.

Q2. Please describe the visual sequence using one
or more sentences based on the items and
events you observed in Q1.

Q3. Imagining that you decide to post this image
sequence on Twitter and want to expand the
conversation by solely commenting on a ques-
tion connected to these images. What is the
question you would ask based on the descrip-
tion you gave in Q2?

This strategy implicitly prompted workers to for-
mulate an abstract notion of the image sequence
according to their observations. As a result, we
were able to obtain engaging questions that corre-
sponded to the cohesive narratives of the events
depicted in the visual sequences. Furthermore, the
descriptions provided in Q2 qualify this dataset
for multi-image captioning, making it suited for
use in a wider range of vision-and-language appli-
cations, e.g., image captioning. Moreover, many
recent question generation models are answer-
agnostic (Dugan et al., 2022; Chowdhury et al.,
2022). Their findings show that adding context
summaries as the intermediary layer can improve
the relevance and interpretability of generated ques-
tions. Inspired by their research, the descriptions
provided in Q2 can also serve as summaries to
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# all image sequences 9,699
# all questions 31,421
# all workers participated 878
Max # questions written by one worker 1,249
Avg. # questions written by one worker ~ 35.8

Have you ever What would you =~ When was the

Do you like What do you If you could

Do you think What kind of Can you share
What is the How do you Which is your
What is your Why do these Does anyone know

Table 1: Statistics of the annotation task.
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Figure 2: Sentence Length Distribution.

generate event-centric questions.

We gathered MVQG questions by crowdsourc-
ing the task on Amazon Mechanical Turk (AMT).
For each image sequence, we assigned 2 to 5 work-
ers to annotate questions (at $0.2/HIT). We only
accepted participants with a 98% or more HIT ac-
ceptance rate, had 3,000 or more finished HITs, and
were located in the US. We also required turkers to
spend at least 30 seconds on each assignment. In
total, we asked workers to annotate 9,699 image
sequences and obtained 31,421 questions. After
the annotation process, we manually revised the
grammatical errors in all questions. The dataset
will be released after the paper is accepted.

4 Dataset Analyses
4.1 Data Statistics

Table 1 reports the statistics of the crowdsourcing
task. Figure 2 shows the histogram of the sentence
length of the questions in MVQG, where the aver-
age question length is 10 tokens (Std=3). Table 2
list the top-15 frequent n-gram (with n=3) of ques-
tions opening in MVQG:; this suggests that users
on social media tend to ask open-ended questions
(beginning with “Have you ever”, “Do you think”,
or “How do you”), inviting others to share their
opinions and expand the conversation. The top-30
frequent words in MVQG are listed in Table 3; this
demonstrates that the questions we gathered con-
tain subjective words such as like, think, favorite,
and feel, indicating that the collected questions are
more related to people’s perspectives than objective
facts, encouraging individuals to answer them.

Table 2: Top 15 frequent 3-gram of questions opening
in MVQG.

like last time event city man
people  party place wedding know  enjoy
ever favorite  see type food  day
would go kind anyone get play
think many family friends feel best

Table 3: Top 30 frequent words in MVQG.

4.2 Disentangling MVQG Effectiveness

Experimental Settings Two sources contribute
to the efficacy of MVQG questions: 1) our question
annotation approach, and 2) the cohesive narrative
of events resulting from the five-photo arrangement.
We conducted an experiment to investigate the ef-
fect of these two factors on the question quality.

First, to evaluate the influence of the annota-
tion approach, we selected VQG images and an-
notated them with different instructions. We ran-
domly chose 200 samples from VQG and hired one
worker per sample to annotate the image with our
instruction. The annotated questions (VQG )
were then compared to the questions collected with
original VQG instruction (VQG,,,). Then, to
evaluate the effect of the number of images, we
randomly selected 200 samples from MVQG. For
each five-image sample, we randomly chose one
image and hired one worker to annotate the selected
image per our instructions. The questions with the
one-photo setup (VIST) were then compared to
the questions with the original five-photo MVQG
setup (VIST's).

Quality Criteria Following Ferraro et al. (2015),
we evaluated the quality of questions according to
the following criteria:

* Vocabulary size: the number of unique vocabu-
lary words.

* Average sentence length: this shows how rich
and descriptive the sentences are (Ferraro et al.,
2015). Writing a sentence is a high-cognitive
task. However, to complete numerous jobs fast,
MTurk workers typically write short and simple
sentences (e.g., “What is the girl doing?”’). These
short questions are not detailed and are frequently
similar to those from other workers. In other
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Dataset

Vocab. Size T Avg. Sentence Length T Yngve Score T % of Abstract Terms T Avg. Term Depth |

VISTy 568 11.036
VISTs 592 11.165
VQGorig 360 6.882
VQGours 608 12.341

2.206 0.131 7.832
2.173 0.127 7.406
1.831 0.106 7.837
2.271 0.127 7.906

Table 4: Comparison of question quality among different setups. 1 indicates higher is better, | indicates lower is

better. The best scores are set in bold.

words, long question requires more effort from
MTurk workers and can be more diverse, which
may lead to higher quality.

* Syntactic complexity: the amount of embed-
ding/branching in a sentence’s syntax. We report
the mean Yngve score (Yngve, 1960) normalized
by the sentence length.

» Percentage of abstract terms: this indicates the
range of visual and non-visual concepts covered
by the dataset. Of all noun tokens on Word-
Net (Fellbaum, 1998), tokens belonging to Ab-
stract (Physical) Entity are regarded as abstract
(concrete) terms.

* Average term depth: noun terms on WordNet
with a smaller depth indicate higher-level con-
cepts (Liu et al., 2021).

Results The first two columns in Table 4 show
that questions in VQG ., have a 1.7 times larger
vocabulary size and are about 2 times longer on
average than questions in VQG ,,,,, which reflects
the fact that the proposed annotation approach
yields more diverse and descriptive sentences. The
third and forth columns in Table 4 indicate that
questions in VQG ,,,., exhibit more complex sen-
tence structure and have more abstract words than
VQG ,,;,, implying that writing down descriptions
first helps individuals think more about the abstract
events behind the images and thus yields more com-
plex questions. This then makes our collected ques-
tions much easier for individuals to engage with.
The last column in Table 4 shows that questions in
VISTs5 have a smaller term depth than questions
in VIST,, suggesting that questions in VIST5
use more high-level concepts. Basic-level cate-
gories were typically used to name things (Rosch
and Mervis, 1975; Anglin, 1977; Brown, 1958),
whereas in multi-image scenarios, higher-level
ideas were more often used to cover things in var-
ious photos (Murphy, 2022). This encourages in-
dividuals to answer questions not only based on
the things they saw, but by imagining the story or
the relations of objects in the five images. This

shows that our instructions contributed more to
the engagement of the collected questions than the
multi-image setting.

5 Baselines

We propose both end-to-end and dual-stage VL
baselines for MVQG. We introduce each baseline
here and provide the details in Appendix A.

For the end-to-end baselines, we chose the VL-
T5 model (Cho et al., 2021) as the backbone . VL-
TS5 inputs contain the visual embedding V and the
visual semantic grounding G. Each image V; is han-
dled as a sequence of visual embeddings consisting
of the whole image embedding and its object re-
gion embeddings. As visual embeddings from Rol
features lack semantic meaning, we inject visual
semantic grounding into VL-T5 to facilitate seman-
tic understanding and cross-image reasoning. We
adopt grounded situation recognition (GSR) (Pratt
et al., 2020) and the corresponding JSL model to
produce structured semantic summaries of images.
For each image V;, JSL outputs a verb representing
the salient activity of V; and its 1 to 6 correspond-
ing semantic roles. The predicted verb and nouns
are combined as the visual semantic grounding G;
of each image.

We propose three fine-tuned versions of VL-
TS5 respectively pretrained on VCR (Zellers et al.,
2019) (VL-TSF_VCR), VIST (VL'TSF_VIST), and
VQG (VL-T5f vqg), and fine-tuned on MVQG.
He et al. (2019) show that after standard fine-
tuning, the model forgets important language gen-
eration skills acquired during pretraining. There-
fore, we propose the adapt-tuned version of VL-
T5 by adding the adapter layer to each Trans-
former block of the baseline, and replacing the
fine-tuning stage with adapt-tuning. In the adapt-
tuning stage, we update only the parameters of the
adapter layer and freeze all other parameters. We
pretrain our model on VIST (VL-T54 vist) and
VQG (VL-T54 voc), and adapt-tune on MVQG.
Moreover, inspired by Shen et al. (2022), which
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Benchmark 3

Benchmark 4

Benchmark 5

34.60% (1.983)
30.64% (2.050)
34.76 % (1.966)

35.04% (1.971)
32.60% (2.026)
32.36% (2.001)

35.80% (1.963)
30.12% (2.058)
34.08% (1.978)

32.88% (2.020)
33.36% (2.001)
33.76% (1.979)

34.24% (1.986)
31.64% (2.025)
34.12% (1.988)

33.20% (2.001)
33.32% (2.002)
33.48% (1.996)

34.13% (1.984)
32.97% (2.008)
32.89% (2.008)

32.01% (2.022)
33.89% (1.980)
34.09% (1.998)

33.97% (1.993)
32.13% (2.008)
33.89% (1.999)

Group Baseline Benchmark 1 Benchmark 2
VL-T5r vist  35.08% (1.981) 34.80% (1.985)
1 VL-TSrver  31.84% (2.038)  32.64% (2.018)
VL-T5r voc ~ 33.08% (1.981)  32.56% (1.995)
CAP2Q 1p 33.44% (2.016)  33.96% (2.019)
2 STY2Qcy1p 33.44% (2.006)  32.80% (1.995)
SUM2Q¢p  33.12% (1.977)  33.24% (1.985)
STY2Qcy1p 34.09% (1.988) 34.81% (1.974)
3 VL-T5¢ vist  34.25% (1.976) 32.97% (2.012)
VL-T5¢ 31.65% (2.036) 32.21% (2.012)
4 VL-T5g vist  50.68% (1.493) 51.24% (1.488)
VL-T54 vist  49.32% (1.507)  48.76% (1.512)

50.48% (1.495)
49.52% (1.505)

50.48% (1.495)
49.52% (1.505)

49.28% (1.507)
50.72% (1.493)

Table 5: Human evaluation of different groups for five benchmarks. Group 1: end-to-end baselines pretrained on
different datasets. Group 2: dual-stage baselines with different types of text as input. Group 3: baselines with or
without story information. Group 4: end-to-end baselines with fine-tuning or adapt-tuning. Given methods and
benchmarks by row and column, the percentage indicates the ratio of rank-1 questions among all questions (higher
is better). The number in brackets is the average ranking among all questions (lower is better).

shows that the CLIP visual encoder (Radford et al.,
2021) can be used as visual embedding and im-
prove the VL model performance, we propose the
CLIP version of VL-T5 by replacing the visual em-
beddings of VL-T5 with the output of the CLIP
visual encoder (VL-T5¢).

For the dual-stage baselines, we first used an
image captioning model to generate a description
from an image sequence, after which we used
a question generation model to generate a ques-
tion from the description. The image caption-
ing model used was a VL-T5 model pretrained
on VCR, and the question generation model was
a TS5 model (Raffel et al., 2020) pretrained on
SQuAD (Rajpurkar et al., 2016). We provided
three types of text as descriptions: (1) captions
from the VIST dataset (CAP2Q), (2) stories from
the VIST dataset (STY2Q), and (3) summaries
from Q2 in MVQG (SUM2Q). The VL-T5 image
captioning model and question generation model
were fine-tuned on these three description types, re-
spectively. As the end-to-end baselines used CLIP
to encode visual input, we adopted the CLIP visual
encoder in our dual-staged baselines. We replaced
the TS model in the second stage with VL-T5 and
then used the result of the CLIP visual encoder as
visual input and the descriptions as textual input.
For the different types of descriptions, we propose
CAP2QcLip, STY2Qcr1p, and SUM2Qcpip-

6 Experiment and Discussion

We randomly divided MVQG into the training
(70%), val (20%), and test (10%) sets, and eval-

uated the models introduced earlier with human
and automatic metric evaluation.

6.1 Human Evaluation

Recent work has demonstrated the unreliability of
automatic evaluation and recommends relying on
human evaluation (Liu et al., 2016). Therefore,
we first conducted a human evaluation to under-
stand how people feel about the generated ques-
tions, specifically whether they are natural, engag-
ing, and focus on high-level relations among ob-
jects. We randomly selected 100 image sequences
from the MVQG test set and generated questions
for each using our established baselines and mod-
els. For each sequence, we hired five workers from
Amazon MTurk to rank the generated questions
according to the following benchmarks:
Benchmark 1: When you see images like these
on social media, it is natural to ask this question.
Benchmark 2: This question focuses primarily
on the essential objects of the images and the
relationships between these objects.
Benchmark 3: This question focuses primarily
on the story or event behind all the images rather
than one specific image.
Benchmark 4: This question is specific to the
event where the photos were taken. It could be
irrelevant or weird to ask this question for other
similar events.
Benchmark 5: This is an engaging question for
this set of photos. You would want to answer this
question if you saw it on social media.
Empirically, it is difficult for workers to rank
many items at the same time; results thereof are
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Ranking

Baseline Benchmark 1  Benchmark 2 Benchmark 3  Benchmark 4  Benchmark 5
VL-T5g vist 35.1% 34.9% 34.0% 34.9% 34.0%
VL-T5¢ vcr 32.3% 31.7% 33.4% 32.4% 33.4%
VL-T5¢ voc 32.5% 33.4% 32.6% 32.7% 32.6%
Rating

Baseline Benchmark 1  Benchmark 2 Benchmark 3 Benchmark 4  Benchmark 5
VL-T5k vist 3.55 3.68 3.66 3.66 3.69
VL-T55 vcr 3.60 3.59 3.62 3.61 3.61
VL-T5r voa 3.66 3.68 3.72 3.72 3.70

Table 6: Evaluating end-to-end baselines pretrained on different datasets with human ranking and rating. For
ranking, the percentage indicates the ratio of rank-1 questions among all questions. For rating, the score scaled from
1 (the worst) to 5 (the best). We set the highest scores in bold.

unreliable. Therefore, we divided our baselines
into four groups for further discussion. Results are
shown in Table 5.

Group 1: Different Pretrained Datasets First,
we compare three VL-TS5 baselines pretrained on
VIST, VCR, and VQG, respectively. The first group
of results in Table 5 reveals that the VL-T5 baseline
pretrained on VIST performs best on most of the
benchmarks. The substantial difference between
VL-T5f vist and VL-T5g ycr on Benchmark 5
suggests that story information in the pretraining
stage helps models ask more engaging questions.

Group 2: Image Description Type We com-
pare three Description2Q baselines, each contain-
ing captions, stories, and summaries as the input
text. The result is displayed in the second group
of Table 5. CAP2Qcy 1p and SUM2Q¢y 1p perform
well on the Benchmarks 2 and 4 because captions
and summaries of photos are better able to provide
details of objects and lead to more specific ques-
tions. However, STY2Q jp has the most rank-1
questions based on Benchmark 1. This suggests
that story information results in more natural ques-
tions. This finding also suggests that naturalness
may not be the main factor leading to engagement,
which contradicts the premise in VQG.

Group 3: With or Without Story Informa-
tion Third, we investigate the differences be-
tween baselines with and without story information.
We compare with-story baselines (VL-T5g yist
and STY2Qc¢;p) and the without-story baseline
(VL-T5¢). The result in the third group of Table 5
shows that humans prefer questions generated by
baselines with story information. Moreover, the
fact that STY2Q(y 1p outperforms VL-T5g yisT on

the Benchmark 5 suggests that the generated ques-
tions could be even more engaging if the story in-
formation were more explicit.

Group 4: Fine-tuning and Adapt-tuning Fi-
nally, we compare the difference between fine-
tuning and adapt-tuning strategies on VL-TS5 base-
lines pretrained on VIST. The result in the last
group of Table 5 shows that VL-T5g yisT out-
performs VL-T54 yist on Benchmarks 1 to 4,
whereas VL-T5a vist surpasses VL-TS5g yisT on
Benchmark 5. Because adapt-tuning retains more
information gained via VIST, this result confirms
the prior finding that explicit story information re-
sults in engaging questions. Also note that this
result shows that engagement does not rely only on
Benchmarks 1 to 4 as shown in related work.

Ranking vs. Rating In addition to ranking, sev-
eral studies evaluated the generated text via human
rating (Hu et al., 2020; Wang et al., 2020). Though
literature has shown that rating result is almost
with no correlation with direct ranking (Hsu et al.,
2022), here we still provide both results among
VL‘TSF_VIST’ VL—TSF_VCR, and VL—TSF_VQG for
reference. For the rating experiment, we ask work-
ers to rate the generated questions from 1 (the
worst) to 5 (the best) according to the 5 bench-
marks. We conduct both ranking and rating ex-
periments on the whole testing set (N=599). The
result in Table 6 shows that for ranking evaluation,
VL-T5g vist outperforms other two baselines on
all benchmarks significantly (the Kruskal-Wallis
test, p=0.02), aligning the result in Table 5, while
for rating evaluation, VL-T5g vqg performs bet-
ter insignificantly (p=0.87). These results overall
confirm that VL-T5f yisT is a better setting and
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Baseline B_.1 B_4 METEOR BLEURT Baseline B_.1 B_4 METEOR BLEURT
VL-TSk verk 406 3.0 38.5 51.1 VL-T5k vistr 6 427 438 41.8 -42.2
VL-T5 vist 427 4.8 41.8 -42.2 VL-T5pvist & 421 3.9 39.5 -50.5
VL-T5 vog 413 3.6 40.1 -46.6 VL-T5pvisr e 42.1 5.0 41.6 -44.2
VL-TSavst 416 2.6 39:2 440 VL-TSx vistr 4 416 2.6 39.2 -44.0
VL-T5s vog 412 32 38.9 51.1

VL-T55 vist & 41.8 2.9 38.0 51.8
VL-T5¢ 416 3.8 38.7 -54.0 VLTS & 414 27 3.8 e
Cap2Q 428 34 39.6 484 DA VIST : : . B
STY2Q 411 34 39.6 -48.6 STY2Q & 411 34 39.6 -48.6
SUM2Q 417 3.0 39.5 -47.4 STY2Q & 405 2.8 37.9 534
CAP2Qcp 406 33 40.5 -46.4 STY2Q & 410 35 39.8 -48.4
STY2Qqp, 418 42 40.5 49.3
SUM2Qq,p 421 42 397 442 STY2Qcp 418 4.2 40.5 -49.3

STY2Qup & 413 29 38.0 534

STY2Qu ph 413 26 39.1 51.7

Table 7: Automatic evaluation results of BLEU_1 (B_1),
BLEU_4 (B_4), METEOR, and BLEURT. The highest
(second-highest) scores are set in bold (underlined).

MVQG should use ranking for evaluation.

6.2 Automatic Evaluation

Although human evaluation is already a good indi-
cator of model performance, we still provide the
automatic evaluation results here for reference. We
evaluate the baselines with BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
BLEURT (Sellam et al., 2020).

Table 7 shows the results. VL-T5g visT outper-
forms other baselines, particularly VL-T5g vcr
and VL-T5g vog. In addition, STY2Qcpp and
SUM2Q¢y 1p outperform other dual-stage baselines.
These two results support the human evaluation
result: that models with story information gener-
ate more engaging questions. Moreover, VL-T5¢
outperforming VL-T5f vcr and STY2Qcy p out-
performing STY2Q indicate that the CLIP model
provides better embeddings for question genera-
tion. Furthermore, all the dual-staged models with
CLIP encoder outperform those without it. Since
the second stage of those without CLIP generates
questions from only text, and the second stage of
those with CLIP generates questions from both
texts and images, this result illustrates the assis-
tance of visual information for MVQG. The only
result that differs from the human evaluation is
that VL-T5f vist outperforms VL-T54 vist and
STY2Qcy ;p- However, this is straightforward to
explain: the end-to-end fine-tuned model maintains
the least information from pretraining and leads to
the most similar outcome to the fine-tuning data,
which gives it an advantage in the automatic metric
evaluation where exact matches are rewarded.

Table 8: The effect of different input: & the whole
image sequence, <» the most relevant image selected by
CLIP score, and & the image sequence without the most
relevant image. Results evaluated by BLEU_1 (B_1),
BLEU_4 (B_4), METEOR, and BLEURT.

6.3 Effect of Multi-Image Setting

We study the impact of the multi-image setting on
beselines. Here we seek to determine whether the
most relevant image can represent the entire image
sequence, as questions can focus on only one cer-
tain event or object. We begin by determining the
most representative image in the image sequence
by calculating the CLIP score, the cosine similarity
between each image and the ground truth ques-
tion. Then we examine questions generated from
three types of input: (1) the entire image sequence,
(2) only the most relevant image, and (3) the image
sequence without the most relevant image.

Table 8 shows the experiment results. Using the
most relevant image leads to the lowest score in
most of the baselines, implying that a single image
cannot in fact represent the whole image sequence
and the underlying event or scenario. Surprisingly,
the results also show that even after removing the
most relevant image, the performance of some base-
lines is still high. This suggests that other images in
the sequence assist in the reconstruction of missing
information and even leave room for more imagi-
nation. It also shows that the collected questions
cover information from all images in the sequence.

6.4 Case Study

Table 9 displays example image sequences and
questions generated by baselines. Cases 1 and 2
provide clues for the reason why human eval-
uation and automatic metrics produce inconsis-
tent results for VL-T5f yist, VL-T54 visT, and
STY2Qcrp- In case 1, both the ground truth
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and the VL-T5g vist output mention the flower,
whereas VL-T54 vist focuses on the insects and
the bird. Because fine-tuned models are more likely
to forget the pretrained task and fit the ground truth
of the fine-tuned task, VL-T5g visT may obtain a
higher score from the match-based automatic met-
rics. Adapt-tuning, on the other hand, retains more
information from the pretrained task and results in
models that do not always follow the guide of the
ground truth. As a result, while VL-T54 visT may
have a lower automatic evaluation score, it may
generate questions that follow the story, reflecting
human preferences. Case 2 shows the case of di-
verse images. As the first three photos are very dif-
ferent from the last two, it is hard for VL-T5f vist
to generate an engaging question using implicit
story information, resulting in a general question.
STY2Qcy 1p, in contrast, takes an explicit story as
input, which enables the model to generate a ques-
tion connected to the underlying story.

Although STY2Q¢ ;p and VL-T54 vist appear
to be better than VL-T5f visT, the generated ques-
tions may still include errors. Case 3 is an example
illustrating several commonly-seen errors. First, an
object and relationship detection error is observed
in the output of VL-T54 vist. The baseline mistak-
enly detects the objects in the last image as football
players. As a result, it asks “Are you fascinated by
football?” instead of “baseball.” Second, an infer-
ence error is shown in the output of STY2Qcy 1p,
where people are dressed up in costumes in the
second image but it mistakenly detects the event
as a costume party. Here we see that grounding
and event inference are two major directions for
improving the quality of the generated questions.

7 Conclusion

We propose a novel task: given a sequence of im-
ages, generate an engaging question. This task
extends visual question generation by enabling rea-
soning across images to comprehend a complete
story. We collect MVQG by asking workers to
write down five obvious objects, a summary of the
image sequence, as well as an engaging question
that they would want to post on social media. We
establish several baselines for this task. Experi-
mental results reveal that image-related stories help
models generate engaging questions, and that using
multiple images as input helps models understand
the overall picture of the current situation, leading
to a better question. The task, dataset, and ex-

Ground Truth  Can someone tell me what the name of
the bright pink flowers are?

VL-T5k vist What color is the flower?

VL-T5a_ vist  Have you been interested in learning

about bugs and bird life?

Case 2

Ground Truth  When you look at these pictures, what
else do you think might be sold?

VL-T5k vist Do you like to go to places that have a
crowd of people?

STY2Q¢ 1p What kind of food would you like to buy

at this festival?

Case 3

Ground Truth  How does everyone think the red sox are
going to do this year?

VL-T5a_vist  Are you fascinated by football?

STY2Q¢ 1p Have you ever been to a costume party

before?

Table 9: Questions generated by different methods.

perimental results we provide open up an exciting
challenge for visual-and-language models to im-
plicitly construct a story behind a series of photos
for creativity and experience sharing and further
attracting attention for downstream applications.

Limitations

Like most crowdsourced datasets, MVQG inherits
the common biases of using online crowdsourc-
ing platforms to collect data. For example, the
crowd workers on Amazon Mechanical Turk do
not represent the user population of popular social
media, such as Twitter. Furthermore, although we
instructed workers to write questions as if they were
posting on Twitter, the used language would still
be different. People on social media use informal
words and netspeak frequently, but crowd workers
are incentivized to get their work approved and
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might prefer to use more formal languages or po-
lite tones. Moreover, since we specifically encour-
aged MTurk workers to imagine they are writing
questions that they would ask on Twitter, MVQG
may be potentially biased on Tweet-liked data. We
expect that different platforms will encourage dif-
ferent text styles, but given the amount of data we
could financially afford to collect in the first study
for this research problem, we decide to focus on
only one platform’s style to reduce possible factors.
Asking workers to imagine Facebook or Instagram
can be another practice, but it will still introduce
different biases.

Another limitation is the evaluation of engage-
ment. We evaluated the question engagement by
asking crowd workers to rank the questions using
different criteria. However, this approach does not
capture the in-the-moment feelings or authentic
reactions of social media users. The human evalua-
tion results may not reflect the actual performance
when the technology is being deployed in the wild.

Ethical Considerations

Although our research aims to produce natural and
engaging questions, we are aware of the possibil-
ity of employing a similar approach to generate
inappropriate, sexist, or racist questions. Further-
more, as the proposed methods use a pre-trained
grounded situation recognition and a T5 model as
components, the generated questions might inherit
the biases of their training data. More research is
required to understand and mitigate these risks.
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Figure 3: The input of VL-T5.

A Implementation Details of Baselines

Al VL-TS

The input of the VL-T5 model is depicted in Fig-
ure 3. The input contains the task prompt, the vi-
sual embedding, and the visual semantic grounding.
Each semantic grounding embedding is the sum of
the token embedding and the image positional em-
bedding. The semantic grounding is produced by
grounded situation recognition (GSR) (Pratt et al.,
2020) and the corresponding JSL model. Consider
the image in Figure 3, which depicts a man teaching
a boy. JSL predicts the primary activity teaching
(verb frame) and then the agent man and place room
as its semantic roles. The predicted verb and nouns
are combined as the visual semantic grounding G
of each image. In particular, when tokenizing, we
quote the verb with the starting and ending tokens
<b_verb> and <e_verb> to highlight the ac-
tivity, and the <b_ [role]> and <e_[role]>
tokens to spot the roles and their types, as illus-
trated in Figure 3. The decoder, which is similar
to the original TS decoder, is omitted from the fig-
ure for brevity. The embeddings of text tokens for
these semantic roles are randomly initiated during
training, and each text embedding is combined with
the image’s positional index embedding of its as-
sociated visual embedding V; to link the semantic
role tokens to their corresponding visual images.
Figure 4 illustrates how images are encoded.
Each image V; is handled as a sequence of vi-
sual embeddings V; = {v§,vi,...,vi} consist-
ing of the entire image embedding v and its k
object region embeddings v! to v,i. Each visual
embedding vj- includes (1) Rol features: the hidden
representation of the bounding box created by a
ResNet50 (He et al., 2015) model, (2) Rol bound-
ing box coordinates: the upper left and the lower
right points of the box and its area, (3) image po-
sitional indices: timg € {1,...,n}, where n is the
number of images, used to discriminate regions
from different images, and (4) object positional in-
dices: top; € {0,...,k}, which serve as positional
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Figure 4: Details of visual embedding.
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Figure 5: Details of the adapter layer.

embeddings in an image. These are all projected
to 768-dimensional vectors, summed, and layer-
normalized to form the final visual embedding v;
Note that top; in v} is 0.

We used the AdamW optimizer with a learning
rate of le-4 and a batch size of 8 for both pretrained
and fine-tuned tasks. During inference, we used
nucleus sampling with p = 0.9, which has been
shown effective in generating diverse text (Holtz-
man et al., 2019).

A.2 Adapter Layer

For the adapt-tuned baselines, we employed an
adapter layer after the original Transformer layers
for both the VL-T5 encoder and decoder, as shown
in Figure 5. The adapter layer down-projects the
input as a 384-dimensional vector, passing it into
a GELU activation function (Hendrycks and Gim-
pel, 2016), up-projecting it to the original size, and
finally using a residual layer to sum the projected
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Figure 6: CLIP visual encoder in VL-TS5.
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Figure 7: The architecture of Description2Q.

vector with the input. During the pretraining stage,
we bypassed the adapter layers and trained only
the parameters of the original Transformer layers.
During the adapt-tuning stage, we considered and
trained the adapter layers while fixing the parame-
ters of the original parts.

A.3 CLIP as Visual Encoder

Figure 6 depicts how the CLIP visual encoder is
used in the VL-T5 baseline. Instead of finding Rol
features and bounding boxes in each image, we put
the entire image into the CLIP visual encoder and
obtained the visual embedding. Because the visual
embedding from CLIP was a 1024-dimensional
vector, we projected it onto 768 dimensions using a
linear layer. The CLIP visual encoder and the linear
layer were tuned during the training stage. The
CLIP variant we used was CLIP-RN50 (ResNet50
as the visual backbone).

A4 Description2Q

The architecture of Description2Q is shown in Fig-
ure 7. We used a VL-T5 model to generate descrip-
tions from image sequences. The input of VL-T5
was the same as in A.1, and the output description
was a caption, story, or summary, depending on the
fine-tuning tasks. Then the generated description
was fed into a T5 model pretrained on SQuAD and
fine-tuned on the ground truth of descriptions to
generate a question.
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