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Abstract

For the missing modality problem in Multi-
modal Sentiment Analysis (MSA), the incon-
sistency phenomenon occurs when the senti-
ment changes due to the absence of a modal-
ity. The absent modality that determines the
overall semantic can be considered as a key
missing modality. However, previous works all
ignored the inconsistency phenomenon, simply
discarding missing modalities or solely gener-
ating associated features from available modal-
ities. The neglect of the key missing modality
case may lead to incorrect semantic results. To
tackle the issue, we propose an Ensemble-based
Missing Modality Reconstruction (EMMR) net-
work to detect and recover semantic features
of the key missing modality. Specifically, we
first learn joint representations with remaining
modalities via a backbone encoder-decoder net-
work. Then, based on the recovered features,
we check the semantic consistency to determine
whether the absent modality is crucial to the
overall sentiment polarity. Once the inconsis-
tency problem due to the key missing modality
exists, we integrate several encoder-decoder
approaches for better decision making. Exten-
sive experiments and analyses are conducted
on CMU-MOSI and IEMOCAP datasets, vali-
dating the superiority of the proposed method.

1 Introduction

Sentiment analysis has witnessed significant
progress in the past years (Zhang et al., 2016),
where the traditional textual sentiment classifica-
tion has developed into more complex Multimodal
Sentiment Analysis (MSA) models. Taking the
phase “Yeah, I think so.” for instance, it is hard
to read the emotion without enough lexical infor-
mation, and the acoustic modality may help in the
emotion recognition if available. Thus, it is cru-
cial to combine different modalities together for
accurate sentiment analysis.
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Figure 1: Case of missing the key modality, where the
missing modality is marked with dotted red lines, and
the semantic words are marked in blue.

So far, MSA has been well studied under the
assumption that all modalities are always available.
However, in reality, such a strong assumption does
not always hold, and we often encounter scenarios
that partial modalities could be missing. To address
the missing data problem, a consequent effort has
been made on recovering absent modalities. Tran
et al. (2017) first identified the missing modality
problem in multimodal data. More recently, several
works (Suo et al., 2019; Ma et al., 2021; Zhao et al.,
2021; Yuan et al., 2021; Zeng et al., 2022) focused
on the missing modalities problem in an uncertain
manner.

However, all of the above works ignored a vi-
tal insight that the sentiment may change when a
modality is absent, resulting in the inaccurate pre-
diction results. For instance, as shown in Fig. 1, the
acoustic modality is described with the emotional
tone for intuitive expression; the visual modal-
ity consists of several facial images; and the tex-
tual modality refers to the corresponding transcript.
Due to the slight tone in the acoustic modality and
the minor ripples in the facial features, the origi-
nal emotion is neutral with full modalities. Nev-
ertheless, once the acoustic modality is missing,
the remaining sentiment is guided by the textual
modality and tends to be negative. The semantics
are inconsistent with or without the acoustic modal-
ity, and the absent modality can be considered as
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a key missing modality. Thus, the neglect of key
missing modality may lead to incorrect predictions.
It is nontrivial to mark and recover the key missing
modality for accurate emotion recognition in MSA.
Furthermore, with the recovered features, it is still
very challenging to trade off different modalities
when they express different emotions.

In this paper, we tackle the above challenges
by providing an ensemble solution that can accu-
rately detect and recover features of the key miss-
ing modality. More specifically, we propose an
Ensemble-based Missing Modality Reconstruction
(EMMR) network to handle the inconsistency prob-
lem and to further boost the performance. The
proposed EMMR consists of a backbone network
that utilizes an encoder-decoder structure to recover
the absent modality features. Besides, to discrimi-
nate the key missing modality, we compare seman-
tic of the recovered full modalities with the origi-
nal available modalities to check their consistency.
Then for mitigating the inconsistency, we aggregate
Auto-Encoder (AE)-based and Transformer-based
encoder-decoder approaches in an ensemble man-
ner. Such a strategy naturally extends the feature
search space, and is thus better suited to make co-
herent decisions. As expected and will be verified
by experiments, the proposed EMMR significantly
outperforms several state-of-the-art baselines on
two benchmark datasets. Our major contributions
are summarized as follows:

• We propose EMMR to address the inconsis-
tency problem of missing key modality, so as
to boost the performance in MSA. The code
is publicly available1.

• We integrate the AE-based and Transformer-
based encoder-decoder methods for decision
making to mitigate the inconsistency with bet-
ter predictive performance.

• Our EMMR achieves much better perfor-
mance in comparison with several state-of-
the-art methods over a variety of challeng-
ing MSA datasets including CMU-MOSI and
IEMOCAP.

2 Related Works

2.1 Missing Modality Problem in MSA
Regarding feature imputation strategies in MSA,
previous works can be generally grouped into two

1https://github.com/JaydenZeng/EMMR

categories: 1) generative methods (Tran et al.,
2017; Vincent et al., 2008; Shang et al., 2017;
Zhang et al., 2020), and 2) joint learning meth-
ods (Pham et al., 2019; Yuan et al., 2021).

Generative methods aim to generate new data
that match the observed distributions. Variational
Auto-Encoder (VAE) was proposed in (Kingma and
Welling, 2014) to map the input variable to a multi-
variate latent distribution. Relying on GAN (Good-
fellow et al., 2014), Cai et al. (2018) transformed
the missing modality problem into a conditional im-
age generation task, aiming at generating missing
modality images conditioned on the existing modal-
ity. Joint learning methods try to learn latent rep-
resentations from the observed ones. To improve
the robustness of the joint representation learning,
the cycle consistency strategy was applied in (Zhao
et al., 2021). Also, Zeng et al. (2022) reconstructed
the features of uncertain missing modalities with
attached tags.

We would like to point out that the above works
may make incorrect prediction without considering
the inconsistency when handing the case of missing
key modality. As will be clear soon, we give a
comprehensive analysis in terms of inconsistency
phenomenon in MSA.

2.2 Ensemble Learning

Ensemble learning (Lee et al., 2021) aims to obtain
better predictive performance than a single one by
combining several base models. In recent years, the
ensemble technique has been applied in many NLP
tasks (Li et al., 2021; Duan et al., 2021). The main
idea is that it would be better to weigh and aggre-
gate several opinions than to choose the opinion of
one single individual (Sagi and Rokach, 2018). To
be specific, Li et al. (2021) generated multiple can-
didate results with random seeds, and then trained
a fusion classifier to improve the emotion recogni-
tion performance. In addition, Duan et al. (2021)
developed an ensemble language model for data
diversity with the technique of weight modulation.
Along this line, in this paper, we aggregate several
reconstruction approaches for ensemble learning
to trade off different modalities when they express
different emotions, and to further mitigate the in-
consistency with better predictive performance.

3 Methodology

In this section, we first present the problem defi-
nition with associated notations, and then give the
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details of all core components.

3.1 Preliminaries

Given a set of multimodal data with three modal-
ities: S = [Xv, Xa, Xt], where Xv, Xa and Xt

denote visual, acoustic and textual modalities re-
spectively. Assuming only one modality is absent,
without loss of generality, we use X ′

m to repre-
sent the missing modality, where m ∈ {v, a, t}.
Formally, our problem is defined as follows: for
the given triple (Xv, Xa, Xt), one modality is ran-
domly missing. The primary task is to classify the
overall sentiment (positive, neutral, or negative)
based on the available modalities.

3.2 Backbone Network

Fig. 2 shows the backbone network based on the
encoder-decoder structure. Taking the triple (Xv,
X ′
a, Xt) with the absent acoustic modality as an

input, it is first encoded by the Multi-Head Atten-
tion (MHA) module (Vaswani et al., 2017), and
then goes through two branches: 1) one is encoded
by a pre-trained network which is trained with all
full modalities, and 2) another goes through an
encoder-decoder network to obtain the correspond-
ing outputs, where the encoder outputs are utilized
for the sentiment classification. At last, the forward
similarity loss and the backward reconstruction loss
are calculated to supervise the learning process of
joint features.

3.3 Feature Extraction

Before being processed by the MHA module, we
extract features for each modality as follows:
Visual Representations: Following (Yu et al.,
2010; Zeng et al., 2022), we also adopt Open-
Face2.0 toolkit (Baltrusaitis et al., 2018) to obtain
709-dimensional visual representations except data
that are irrelevant attributes about the frame num-
ber, the face_id, and the timestamp, etc.
Textual Representations: For each textual utter-
ance, the pre-trained Bert (Devlin et al., 2019) (12-
layer, 768-hidden, 12-heads) is utilized to acquire
768-dimensional word vectors.
Acoustic Representations: Librosa (McFee et al.,
2015) is adopted to extract 33-dimensional acous-
tic features, including attributes of the zero cross-
ing rate, the Mel-Frequency Cepstral Coefficients
(MFCC) and the Constant-Q Transform (CQT).

Then, all extracted modality features are en-
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Figure 2: Structure of the backbone network.

coded by the MHA module:

Em = MHA(Km,Km,Km),

Km ∈ {Xv, Xa, Xt}.
(1)

Afterwards, all modalities are concatenated as a
whole input sequence X :

X = [Ev||Ea||Et], (2)

where || is the vertically concatenating operation.

3.4 Pre-trained Network
The pre-trained network with full modalities is uti-
lized to guide the learning process for missing
modalities. To be specific, we first concatenate
three full modalities, then feed them into a softmax
classifier for training:

Epre = [Ev||Ea||Et],
Ppre = softmax(FC(Epre)).

(3)

Noting that once the model with full modalities is
well trained, we fix the pre-trained network during
the whole training stage.

3.5 Encoder-Decoder Network
The encoder-decoder network contains an encoder
(ϕ) mapping the input (X ), and a decoder (ψ) map-
ping the reconstructed input (X ′), which can be
defined as follows:

X ϕ−→ F ,

F ψ−→ X ′,
(4)

where F is the output of the encoder.
Since ensemble learning incorporates the in-

formative knowledge from multiple models and
achieves better predictive performance in an adap-
tive manner, it can effectively mitigate the incon-
sistency phenomenon. In our scheme, the AutoEn-
coder (AE) (Baldi, 2012), the Missing Modality
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Imagination Network (MMIN) (Zhao et al., 2021),
and the Transformer-based encoder-decoder model
(TF) are chosen for decision making. We now in-
troduce them one by one.

3.5.1 AE
AE is the network trained to copy its input to its
output. In details, we adopt Fully Connected (FC)
layers with the size of [300, 256, 128, 64, 128, 256,
300] (Please refer to the Appendix for details).

hi =

{
X , i = 0
ReLU(FC(hi−1)), 0 < i ≤ 7

, (5)

where the encoder output EAE = h4, and the
decoder output DAE = h7.

3.5.2 MMIN
MMIN adopts the Cascade Residual Autoencoder
(CRA) (Tran et al., 2017) structure with a set
of Residual Autoencoders (RA). Specifically, we
adopt 5 RA with the same layer settings in AE.
Then the encoder output and the decoder output of
the CRA can be obtained as follows:

DMMIN = X +
5∑

i=1

X ′
i ,

EMMIN = FC([F1||F2||...||F5]),

(6)

where F ′
i and X ′

i are the i-th RA’s encoder outputs
and decoder outputs respectively.

3.5.3 TF
The Transformer architecture follows an encoder-
decoder structure, which can process sequential in-
put data effectively. With the Multi-Head Attention
(MHA) mechanism and Feed-Forward Networks
(FFN), the encoder output (ETF ) and the decoder
output (DTF ) can be accessed:

ETF = FFN(MHA(X ,X ,X )),

DTF = FFN(MHA(F ,F ,F)),

FFN(x) = ReLU(W1x+ b1)W2 + b2),

(7)

where W1 and W2 are two weight matrices, b1 and
b2 are two learnable biases.

3.6 Ensemble

For the reconstruction of the input, we replace the
missing modality with the corresponding represen-
tations in the decoder output. For instance, given
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Figure 3: Illustration of ensemble methods. (a) Calcula-
tion of fusion weights for the aggregated vectors; and
(b) Workflow of ensemble methods for the key missing
modality.

the input (Xv, X
′
a, Xt) and the reconstructed out-

put (DTF
v , DTF

a , DTF
t ), we can obtain the recov-

ered input (Xv, D
TF
a , Xt). To simplify the sub-

sequent mathematical expression, we denote the
recovered input as (Iv, Ia, It). The sentiment of
the recovered input can be acquired:

Lvat = FC(MHA([Iv||Ia||It])). (8)

As aforementioned, the inconsistency phe-
nomenon occurs when the sentiment changes due
to the absence of a modality in MSA. Based on
this phenomenon, we utilize the inconsistency to
determine whether the absent modality is crucial
to the overall sentiment polarity. Specifically, we
first combine every two modalities to acquire the
corresponding sentiment label:

Lmn = FC(MHA([Im||In])),
m, n ∈ {v, a, t},m ̸= n.

(9)

When the sentiment label of the recovered full
modalities is unequal to semantic of the remaining
available modalities, the absent modality can be
considered as the key missing modality. That is, in
the case of (Xv, X

′
a, Xt), the acoustic modality is

the key missing modality if Lvat ̸= Lvt. To obtain
the coherent prediction results, the inconsistency
phenomenon should be mitigated. A straightfor-
ward way to handle the problem of missing key
modality is voting. However, the importance of
each modality is different. As shown in Fig. 3(a),
we propose to assign weights according to their
maximum logical values (L′

k):

α = softmax([L′
va||L′

vt||L′
at]),

L′
k = max

Lk

(softmax(Lk)), k ∈ {va, vt, at}.
(10)
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Then, the aggregated representation with the key
missing modality can be accessed:

Ekey = [αvaLva||αvtLvt||αatLat], (11)

where αva, αvt and αat are the corresponding
weights calculated by Eqs. (10).

As presented in Fig. 3(b), we first feed the in-
put into the backbone network with TF encoder-
decoder. Based on the recovered features, we then
check the semantic consistency between the re-
covered full modalities and the original available
modalities. Once they are not consistent with or
without the absent modality, we integrate TF, AE,
and MMIN for further decision making. With the
idea that the overall performance of multiple ap-
proaches in ensemble learning would be better than
that of a single one, we combine three extracted
features according to the corresponding attention
weights. Let H be a matrix consisting of three vec-
tors [ETFkey ||EAEkey ||EMMIN

key ] produced by Eq. (11).
The final representation r is formed by a weighted
sum of these output vectors:

M = tanh(H),

β = softmax(wt ·M),

r = H · βT ,
(12)

where w is a trainable parameter vector, and T
is the transpose operator. Thus, the i-th output
(Ri) of our ensemble method can be formulated as
following:

Ri =

{
ri, Lvat ̸= L{v,a,t}−{k}
Fi, otherwise

, (13)

where k is the absent modality, and k ∈ {v, a, t}.

3.7 Training Objective
The overall training objective (Ltotal) is expressed
as:

Ltotal = Lcls+λ1Lforward+λ2Lbackward, (14)

where Lcls is the classification loss, Lforward is
the forward differential loss, Lbackward is the back-
ward reconstruction loss, and λ1 and λ2 are the
corresponding weights. We now introduce these
loss terms in details.
Forward Differential Loss (Lforward): The for-
ward loss is calculated by the difference between
the pre-trained output (Epre) and the encoder out-
put (F), and the Kullback Leibler divergence loss

function (DKL) is used:

Lforward =
1

2
(DKL(F , Epre)+DKL(Epre,F)).

(15)
Backward Reconstruction Loss (Lbackward): For
the backward loss, we aim to supervise the joint
common vector reconstruction, which is calculated
by the decoder output (X ′) and the processed input
(X ).

Lbackward =
1

2
(DKL(X ′,X ) +DKL(X ,X ′)).

(16)
Classification Loss (Lcls): We feed the final output
R into a fully connected network with the softmax
activation function for the final sentiment classifi-
cation:

p̂(y|R) = softmax(FC(R)),

ŷ = argmax
y

(p̂(y|R)), (17)

where ŷ is the predicted label. To be specific, we
employ the standard cross-entropy loss for this clas-
sification task:

Lcls = − 1

N

N∑

n=1

ynlogŷn, (18)

where N is the number of samples, and yn is the
true label of the n-th sample .

4 Experiments

In this section, we mainly present the experimental
setup, datasets, baselines, empirical studies and
observations.

4.1 Experimental Setup
Datasets: We evaluate our model on two bench-
mark datasets: CMU-MOSI (Zadeh et al., 2016)
and IEMOCAP (Busso et al., 2008). The CMU-
MOSI dataset contains 2199 segments with the
sentiment score in [-3, 3]; and the IEMOCAP
dataset contains 5 sessions with 151 videos. In
our experiments, we report three-class (negative:
[-3,0), neutral:[0], positive: (0,3]) results on CMU-
MOSI, and two-class (negative:[frustration, angry,
sad, fear, disappointing], positive:[happy, excited])
on IEMOCAP.
Baselines: We choose the following baselines
for comparison: AE (Baldi, 2012), CRA (Tran
et al., 2017) and MMIN (Zhao et al., 2021) for
AE-based methods; MCTN (Pham et al., 2019),
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Models
0 0.1 0.2 0.3 0.4 0.5

M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

D1

AE♯ 56.42±0.85 79.55±0.73 54.02±0.89 79.01±0.89 53.31±0.77 78.01±0.98 51.16±1.01 72.44±0.80 50.69±0.76 73.21±1.13 44.80±0.79 68.22±1.11

CRA♯ 56.77±0.67 79.67±0.61 54.18±0.83 79.13±0.96 53.45±0.81 78.12±0.92 51.55±0.70 72.56±0.99 50.81±0.87 73.56±1.10 45.21±0.86 68.90±1.29

MCTN† 57.17±0.71 79.48±0.88 55.23±1.01 79.52±1.28 53.80±0.71 77.38±0.92 52.17±0.70 72.47±1.10 51.39±0.89 73.69±1.08 45.27±1.48 67.75±1.33

TransM♯ 57.79±1.32 80.14±1.57 57.34±0.89 79.55±0.79 55.09±0.92 78.30±0.81 52.55±1.18 72.89±0.95 52.33±0.79 72.12±0.90 45.43±1.39 68.04±1.87

MMIN† 60.39±0.78 82.20±0.63 57.69±1.02 81.78±0.98 55.33±0.77 80.15±0.95 53.47±0.81 79.17±1.13 52.32±0.98 76.28±1.33 48.87±1.41 70.55±1.79

TATE† 58.27±0.52 84.88±0.78 58.21±0.69 84.32±0.57 55.29±1.21 81.25±0.95 55.08±0.79 80.56±1.12 54.01±0.86 79.95±1.39 51.55±1.48 73.82±1.44

Ours 68.08±0.78 85.93±0.65 67.17±0.72 85.24±0.83 66.41±1.15 84.37±0.76 64.21±1.04 82.81±0.94 62.55±1.38 81.77±1.26 60.75±1.78 78.81±1.65

D2

AE♯ 76.23±0.51 82.07±0.71 75.22±0.68 80.15±0.46 75.17±0.60 77.60±0.97 73.88±0.57 77.21±0.73 77.10±0.81 75.85±1.08 67.19±0.77 76.29±0.99

CRA♯ 77.10±0.66 82.11±0.78 75.93±0.84 80.68±0.53 75.22±0.44 77.73±1.04 74.55±0.60 78.19±0.71 79.55±0.66 76.08±0.93 67.66±0.64 76.44±1.28

MCTN† 78.55±0.48 82.12±0.72 77.69±0.56 80.79±0.66 75.21±0.50 78.22±0.94 74.50±0.87 78.48±0.70 71.72±0.48 76.25±1.11 68.05±0.77 76.54±1.25

TransM♯ 79.55±0.66 82.57±0.71 77.49±0.92 80.72±0.74 76.28±0.55 80.29±0.68 75.79±0.59 78.45±0.62 71.77±0.84 77.13±0.88 68.32±1.28 76.59±1.36

MMIN† 80.79±0.78 83.41±0.83 78.82±0.69 82.49±0.94 76.90±0.86 81.15±0.72 76.55±0.64 80.40±1.08 73.11±1.32 78.38±0.89 70.51±0.76 77.41±1.22

TATE† 81.22±0.76 85.29±0.77 80.05±0.63 85.18±0.71 79.19±0.96 84.05±0.83 78.43±0.70 83.18±0.79 76.71±1.11 82.69±0.97 74.39±1.26 81.99±1.55

Ours 83.58±0.47 86.51±0.55 82.47±0.63 85.37±0.58 79.55±0.61 84.92±0.73 79.18±0.47 83.88±0.63 78.01±0.92 82.68±1.03 76.76±1.12 82.02±1.27

Table 1: Performance of all baselines, where D1 and D2 denote the CMU-MOSI and the IEMOCAP datasets
respectively. The best results are in bold. The results with ♯ are reproduced, and the results with † are re-generated
under the same settings.

and TransM (Wang et al., 2020) for translation-
based methods; TATE (Zeng et al., 2022) and the
proposed EMMR for transformer-based methods.
Accuracy (ACC) and Macro − F1 (M-F1) are
used to measure the performance of the models.

The detailed implementation, dataset statistics,
and hyper-parameter settings are available in the
attached Appendix.

4.2 Overall Results
Table 1 shows the qualitative results with all base-
lines. Our proposed EMMR achieves the best re-
sults on all settings, especially about 8.54% to
11.12% improvement in terms of M-F1 on the
CMU-MOSI dataset. The present results are signif-
icant due to the fact that three ensemble approaches
can well handle the inconsistency problem when
missing a key modality, so as to further improve
the robustness. Besides, the performance has a
gradual drop with more absent samples when the
missing ratio increases from 0 to 0.5. We also
find that MCTN and TransM achieve better per-
formance than AE and CRA, implying that cyclic
translations can better fuse the multimodal informa-
tion from multiple modalities. In addition, TATE
and EMMR outperform other baselines due to the
strong learning ability of the transformer structure.
Another observation is that our proposed EMMR
still performs well when nearly half of samples are
missing, which is caused by the reason that three
ensemble methods can combine their predictions
in a complementary manner.

4.3 Effects of Different Settings
In this subsection, we first conduct the ablation
studies to better understand the influence of dif-
ferent modules. Afterwards, we further evaluate

the performance of our model by replacing several
core components with alternatives.

1) Ablation study: We evaluate our model with
several settings: a) using only one modality; b)
using two modalities; c) removing the pre-trained
network; and d) removing the backward reconstruc-
tion module.

According to the results given in Table 2, it can
be seen that the performance drops sharply with
a single modality, especially when removing the
textual modality. However, similar reductions are
not observed when the visual modality is miss-
ing. These results suggest that the textual modality
may dominate the overall sentiment. Besides, one
striking result to emerge from the data is that the
performance improves when combing two modali-
ties, indicating that multiple modalities can boost
the performance by learning complementary fea-
tures from each other. In addition, referring to the
last two lines, the performance decreases about
9.97% to 14.39% with respect to M-F1 and about
7.60% to 9.12% on ACC when the pre-trained net-
work is removed, showing the importance of the
forward guidance. Meanwhile, further analysis
suggests that the backward reconstruction module
also provides a good supervision for the final joint
representation learning.

2) Effects of different ensemble methods: We
now examine the effectiveness of different ensem-
ble methods. For the comparison purpose, we con-
duct experiments with several settings: a) using
only the backbone network, b) combing two ensem-
ble methods, c) combing three ensemble methods
with the maximum operation, and d) combing three
ensemble methods with the average operation.

As can be seen in Table 3, although the back-
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Modules
0 0.1 0.2 0.3 0.4 0.5

M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC
V 40.54±0.86 56.85±0.91 - - - - - - - - - -
A 41.23±0.75 60.88±1.21 - - - - - - - - - -
T 57.32±0.59 77.48±0.61 - - - - - - - - - -

V+A 42.32±0.57 61.39±0.66 41.28±0.43 60.27±0.87 39.78±0.67 59.37±0.81 39.47±0.79 59.63±0.55 38.48±0.95 58.66±0.70 38.01±1.45 57.39±1.55

V+T 59.67±0.55 81.45±0.62 58.85±0.72 80.49±0.63 57.63±0.79 79.56±0.85 56.14±0.97 78.82±0.69 55.86±0.78 77.67±1.21 53.27±1.43 76.99±1.75

A+T 59.95±0.61 81.89±0.52 59.12±0.66 80.87±0.49 58.55±0.68 80.11±0.59 57.42±0.83 79.41±0.60 56.78±0.87 78.21±0.85 55.39±0.71 77.43±1.49

V+A+T 68.08±0.78 85.93±0.65 67.17±0.72 85.24±0.83 66.41±1.15 84.37±0.76 64.21±1.04 82.81±0.94 62.55±1.38 81.77±1.26 60.75±1.78 78.81±1.65

-w/o Lforward 55.11±0.64 77.83±0.76 53.78±0.56 76.12±0.97 52.27±0.87 75.38±0.76 51.83±0.73 74.54±1.28 51.41±0.85 72.77±1.01 50.78±1.21 71.21±1.38

-w/o Lbackward 57.47±0.34 79.56±0.48 56.12±0.41 78.17±0.65 54.79±.63 77.28±0.49 53.27±0.55 76.13±0.68 52.19±0.88 75.43±0.96 51.96±1.43 73.29±1.77

Table 2: Comparison of different modules on CMU-MOSI.

Settings
0 0.2 0.4

M-F1 ACC M-F1 ACC M-F1 ACC
TF 58.43±0.72 82.55±0.66 55.28±0.85 80.64±0.91 52.79±1.13 77.21±1.25

TF+AE 60.71±0.59 82.91±0.54 57.24±0.76 80.92±0.88 55.75±1.08 78.10±1.10

TF+MMIN 62.44±0.61 83.29±0.85 59.85±0.70 81.78±0.88 56.49±0.97 78.99±1.26

Max 65.98±0.71 83.85±0.62 63.87±0.88 82.01±0.80 59.57±1.12 79.89±1.45

Average 66.83±0.65 84.17±0.51 64.19±0.73 82.96±0.80 60.84±1.25 80.60±1.16

Ours 68.08±0.78 85.93±0.65 66.41±1.15 84.37±0.76 62.55±1.38 81.77±1.26

Table 3: Results of different ensemble methods.
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Figure 4: Results of different word embeddings. (a)
M-F1; and (b) ACC.

bone network with TF achieves competitive perfor-
mance, there is still improvement when combining
AE and MMIN. The reason may be that ensem-
ble learning combines knowledge from multiple
models to achieve better predictive performance.
Besides, TF+MMIN outperforms than TF+AE, im-
plying that MMIN can extract better modality fea-
tures than AE. Compared to the average operation,
our weighted fusion method improves about 1.71%
to 2.25% with respect to M-F1 and about 1.17% to
1.76% on ACC, validating the effectiveness of the
weighted fusion mechanism.

3) Effects of different word embeddings: As
aforementioned, the textual modality may domi-
nate the overall sentiment, and we now evaluate the
performance of different word embedding models.
To this end, we choose Word2vec (Mikolov et al.,
2013), Glove (Pennington et al., 2014) and AL-
BERT (Lan et al., 2020) as alternative methods to
the pre-trained Bert, and evaluate the respective pre-
diction performance. Here, we set the embedding
size as 128 in Word2vec and choose the cased 840B
tokens of 300 dimension in Glove. All settings
share the same parameters for a fair comparison.

Ratio
2-class 4-class 7-class

M-F1 ACC M-F1 ACC M-F1 ACC
0 83.58±0.47 86.51±0.55 56.88±0.58 62.12±0.72 38.55±0.61 48.29±0.70

0.1 82.47±0.63 85.37±0.58 55.08±0.63 58.05±0.71 36.77±0.82 47.39±0.95

0.2 79.55±0.66 84.92±0.73 53.85±0.87 57.49±0.70 36.21±0.77 45.01±0.85

0.3 79.18±0.47 83.88±0.63 51.05±0.72 56.83±0.69 35.91±0.66 44.38±0.80

0.4 78.01±0.92 82.68±1.03 48.52±0.62 55.89±0.81 34.83±1.02 43.26±1.31

0.5 76.76±1.12 82.02±1.27 46.99±0.86 55.23±1.27 33.82±1.20 43.10±1.46

Table 4: Results of multiple classes on IEMOCAP.
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Figure 5: Training loss curves of different settings. (a)
MAE; (b) Cosine; and (c) Ours.

As presented in Fig. 4, different embedding models
have significant effect on the overall performance,
where Bert-based methods achieve better results
while the Word2vec model is the worst. These re-
sults altogether provide an important insight that
Bert embeddings result in better word semantic cor-
relations, as it is trained from a large amount of
text corpus.

4) Effects of multiple classes: We would also
like to observe the performance of multiple classes
on IEMOCAP. Apart from the general 2-class re-
sults, the happy, angry, sad and neutral emotions
are chosen as the 4-class experiment, and the ex-
tra frustration, excited, and surprise emotions are
selected as the 7-class experiment. Table 4 reveals
that there has been a sharp drop in both M-F1
and ACC with more emotion categories. More
specifically, the performance of the 7-classes exper-
iment drops by almost half due to the confusion of
multiple categories, and the model is hard to clas-
sify them correctly. Further efforts are needed to
boost the performance under scenarios of multiple
classes.

5) Effects of different losses: We further ex-
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A (loud, fantastic)

V

T The animation was amazing.

E1 True Label: positive   Absent Modality: visual

√(positive) √(positive) √(positive) √(positive) √(positive) √(positive) √(positive)

A (smooth, gentle)

V

T

AE CRA MCTN TransM MMIN TATE EMMR

E2 True Label: neutral Absent Modality: acoustic

But I didn’t find it all that bad.

×(negative) ×(negative) ×(positive) ×(positive) ×(positive) ×(positive) √(neutral)

AE CRA MCTN TransM MMIN TATE EMMR

Figure 6: Two cases of the test data, along with their
predicted categories by all baselines, where × (or ✓)
means that the predicted category is wrong (or correct).

plore the effects of different losses. For the com-
parison purpose, we choose the MAE loss and the
cosine loss as alternative methods to the KL loss.
Fig. 5 presents the training loss curves (steps rang-
ing from 50 to 300) on the CMU-MOSI dataset,
including three missing rates of 0, 0.2, and 0.4.
It can be observed that the training loss curves in
our method (Fig. 5(c)) fluctuate relatively smoother
than other two loss settings (Fig. 5(a)-(b)), showing
the good convergence of our setting. Besides, the
training loss curves become more fluctuating with
the increment of the missing rate, especially when
the missing rate is 0.4. Compared to the cosine sim-
ilarity loss and the MAE loss, our KL divergence
loss leads to the smaller minimum loss values of
4.89. We then conclude that the KL divergence
loss provides a good assessment of the similarity
between two probability distributions.

4.4 Case Study

To better understand in which conditions the pro-
posed method works, we present several challeng-
ing cases for further analyses. To this end, two
examples are given in Fig. 6, where blue words
with underline potentially express sentiment polar-
ity, and the missing modality is marked with dotted
red lines.

From the figure, we can find: 1) In E1, all models
generate correct results though the visual modal-
ity is missing. Due to the strong guidance of the
textual word “amazing”, the positive polarity is
obviously expressed. This case reveals that the con-
ventional approaches can be well-performed when
existing modalities express the same explicit se-
mantics. 2) In E2, the textual modality expresses

(a) TF (0.2) (b) TF+AE (0.2) (c) Ours (0.2)

(d) TF (0.4) (e) TF+AE (0.4) (f) Ours (0.4)

Figure 7: Visualization of different ensemble methods.
The top (a)-(c) are with 20% missing rate; and the bot-
tom (d)-(e) are with 40% missing rate.

positive polarity, while the visual modality tends
to be negative because of the frown and close lips
on facial features. It is really hard to determine
the polarity when the acoustic modality is missing.
Specifically, AE and CRA misclassify the emo-
tion as negative, and the other approaches except
EMMR all predict positive sentiment in terms of
the dominance of the textual modality. In contrast,
our method (EMMR) first discriminates whether
the inconsistency phenomenon exists, then inte-
grates three methods to acquire better decisions in
a complementary manner.

4.5 Visualization

To further demonstrate the learning ability of differ-
ent ensemble models, we adopt the T-SNE toolkit
to present the learned joint representations in Fig. 7.
To be specific, we visualize about 1000 vectors with
three ensemble settings on CMU-MOSI, where the
red, the blue, and the green colors denote nega-
tive, neutral and positive respectively. As can be
observed, in Fig. 7(a)-(c), all learned vectors are
generally clustered into three categories with TF
as the backbone network. Besides, there are less
outliers with more ensemble approaches, due to the
reason that the errors of one single model can be
compensated by other models. Such phenomenon
also agrees with the observations from Fig. 7(c)-
(d). Furthermore, the clusters in the red and the
green colors are more discrete with bigger missing
rate. We then conclude that the model is hard to
converge with too many absent samples and thus
degrades the performance.
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5 Conclusion

In this paper, we focus on mitigating the incon-
sistency phenomenon when a key modality is ab-
sent in MSA. The proposed EMMR first learns
features from remaining modalities via a backbone
encoder-decoder network. Then, we discriminate
the key modality by checking the semantic consis-
tency between the recovered full modalities and the
original available modalities. Afterwards, three en-
semble approaches based on the backbone encoder-
decoder network are utilized to make decisions
when the inconsistency phenomenon exists. Ex-
perimental results and analyses are provided to
demonstrate the effectiveness of our scheme com-
pared with several state-of-the-art methods. Future
research will focus on aggregating different ensem-
ble approaches for a comprehensive analysis.

6 Limitations

We would like to discuss the detailed limitations in
this section. As aforementioned, we integrate three
different encoder-decoder approaches for decision
making when the inconsistency phenomenon exists.
Although it is nontrivial to select the right ensemble
methods and to utilize them correctly, the model
for ensemble learning can be expensive in terms
of both time and space. As can be seen in the
attached Appendix, a comprehensive comparison
of the overall parameters and the testing time has
been carried out, which motivates us to further
optimize the proposed model effectively.
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A Network Structure

We present the network structure of the pre-trained
model with full modalities in Fig. 8(a), the ensem-
ble AE-based encoder-decoder network in Fig. 8(b),
and the Missing Modality Imagination Network
(MMIN) in Fig. 8(c).

To be specific, in Fig 8(a), three modalities are
first encoded by the Multi-Head Attention (MHA)
module, and then are concatenated for classifica-
tion. In Fig. 8(b), the hidden sizes of full connected
layers are in [300, 256, 128, 64, 128, 256, 300].
In Fig. 8(c), we adopt 5 Residual Autoencoders
(RA) with the same layer settings in AE, where the
encoder outputs are obtained by concatenating the
latent space of 5 RA blocks.

B Implementation Details

All experiments are carried out on a Linux server
(Ubuntu 18.04.1) with a Intel(R) Xeon(R) Gold
5120 CPU, 128G RAM, 8 Nvidia 2080TI and 2
Nvidia 3090 GPUs.

B.1 Datasets Distributions

The detailed distributions on CMU-MOSI and
IEMOCAP are shown in Table 5. Besides, the
distributions of multiple classes on IEMOCAP are
presented in Table 6.

2933



M
H
A

FC

Output

V

A

T

(a) Pre_trained Network

300
256

128
56

128

256
300

Input 𝑿 Output 𝑿"

𝑭
Latent Space

Encoder 𝝓 Decoder 𝝍

(b) AE

…

RA1 RA2 RA5

⨁ ⨁ ⨁

…

𝐹1 𝐹2 … 𝐹5

(c) MMIN

Figure 8: Network Structure. (a) Pre_trained network; (b) AE; and (c) MMIN.

Dataset Pos. Neu. Neg. Total

CMU-MOSI
Train 833 81 866 1780
Val 92 8 100 200
Test 98 7 94 199

IEMOCAP
Train 1006 - 2510 3516
Val 301 - 827 1128
Test 329 - 848 1177

Table 5: Detailed distributions on two datasets.

Dataset hap. ang. sad neu. fru. exc. sur. Total

4-Classes
Train 349 659 653 1042 - - - 2703
Val 122 225 208 321 - - - 876
Test 124 219 223 345 - - - 911

7-Classes
Train 345 702 638 1024 1107 607 66 4489
Val 111 205 218 345 368 214 22 1483
Test 139 196 228 339 374 220 19 1515

Table 6: Detailed distributions on multiple classes on
IEMOCAP.

B.2 Hyper-parameters

Following a standardized procedure, we tune our
model by the grid-searching on the training set.
Adam is adopted to minimize the total loss. The
batch size is 32, the loss weight is set to 0.1, and
these parameters are summarized in Table 7.

C Memory and Running Time
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Figure 9: Parameters of different ensemble approaches.

For the memory utilization, Fig. 9 presents the
parameters of different ensemble approaches. As

Description Symbol Value
Batch size b 32
Epoch number e 20
Dropout rate p 0.3
Hidden size d 300
Missing rate η [0, 0.5]
Learning rate lr 0.001
Maximum textual length nt 25
Maximum visual length nv 100
Maximum acoustic length na 150
Loss weights λ1, λ2 0.1

Table 7: Detailed parameter settings in our experiments.

Dataset 2080Ti 3090

Training
TF 1826.44 1156.62
TF+AE 1885.51 1192.76
TF+AE+MMIN 1975.18 1246.20

Testing
TF 57.88 24.10
TF+AE 62.39 27.17
TF+AE+MMIN 78.08 30.41

Table 8: Running time (s) of different ensemble ap-
proaches.

can be observed, the number of parameters dramati-
cally increase when integrating MMIN. The reason
is that MMIN contains 5 residual auto-encoders,
which are memory costly.

As for the training and testing time, we show
the detailed statistics in Table 8. Specifically, we
report the training time at 10 epochs and the testing
time for the test dataset on 2080Ti and 3090 GPUs
respectively. It can be seen that the testing time is
acceptable though the training time varies consid-
erably during training. Besides, compared to the
2080Ti GPU, the 3090 GPU spends less time due
to its stronger computational capability. Although
the proposed EMMR boosts the performance, it
can be expensive regarding to both time and space,
motivating us to further optimize the model effec-
tively.
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