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Abstract

Accessing longitudinal multimodal Electronic
Healthcare Records (EHRs) is challenging due
to privacy concerns, which hinders the use
of ML for healthcare applications. Synthetic
EHRs generation bypasses the need to share
sensitive real patient records. However, ex-
isting methods generate single-modal EHRs
by unconditional generation or by longitudi-
nal inference, which falls short of low flexibil-
ity and makes unrealistic EHRs. In this work,
we propose to formulate EHRs generation as a
text-to-text translation task by language models
(LMs), which suffices to highly flexible event
imputation during generation. We also design
prompt learning to control the generation con-
ditioned by numerical and categorical demo-
graphic features. We evaluate synthetic EHRs
quality by two perplexity measures accounting
for their longitudinal pattern (longitudinal im-
putation perplexity, lpl) and the connections
cross modalities (cross-modality imputation
perplexity, mpl). Moreover, we utilize two ad-
versaries: membership and attribute inference
attacks for privacy-preserving evaluation. Ex-
periments on MIMIC-III data demonstrate the
superiority of our methods on realistic EHRs
generation (53.1% decrease of lpl and 45.3%
decrease of mpl on average compared to the
best baselines) with low privacy risks. 1

1 Introduction

The prevalence of electronic patient healthcare
records fuel the development of machine learn-
ing models for many healthcare applications (Choi
et al., 2016b,a; Wang et al., 2021a,b; Wang and
Sun, 2022a). However, sharing EHR data usually
undergoes strict and expensive de-identification
and administration processes thus being difficult.
Although there have been attempts on perturb-
ing potentially identifiable attributes as the de-
identification step (Emam et al., 2015), they were

1Software is available at https://github.com/
RyanWangZf/PromptEHR.
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Figure 1: A conceptual demonstration of how
PromptEHR works more flexible than all existing works.
vt indicates the t-th visit; DX, Med are short for di-
agnosis and medication events; Red are the targets to
generate. Our method (PromptEHR) is amenable to four
new conditional generation ways thus more controllable
and flexible.

argued not immune to the hack for re-identification
(El Emam et al., 2011; Choi et al., 2017). Alter-
natively, generating synthetic but realistic EHRs
can circumvent data leakage while preserving the
patterns of real EHRs for further research and de-
velopment (Biswal et al., 2020).

Deep generative models like GANs (Goodfellow
et al., 2014) and VAEs (Kingma and Welling, 2013)
have become popular for unconditional EHRs gen-
eration (Choi et al., 2017) and longitudinal EHRs
generation (Biswal et al., 2020; Zhang et al., 2020)
for diagnosis codes. However, EHRs are often mul-
timodal with different types of events, including
diagnoses, procedures, medications, and also pa-
tient baseline demographic features like age and
gender (Johnson et al., 2016). GANs & VAEs usu-
ally struggle to model complex multimodal and
non-Gaussian distributions as well as sparse one-
hot-encoded vectors (Xu et al., 2019). By con-
trast, generative language models (LMs) are proved
highly powerful to represent large and complex dis-
tributions on discrete data (e.g., texts) (Liu et al.,
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2021b; Radford et al., 2021), which makes them
promising for EHRs generation.

In this work, we propose to leverage generative
language models (LMs) for EHRs generation. We
try to generate a sequence of visits with mixed
types of events, e.g., diagnosis and medications.
As Fig. 1 shows, previous works make uncon-
ditional generation for single-modal static EHRs
(Choi et al., 2017) or for single-modal longitudinal
EHRs (Zhang et al., 2021). However, real EHRs
are heterogeneous with multiple types of temporal
events and have baseline patient features, e.g., de-
mographic information. We seek to (1) generate
realistic mixed-type longitudinal EHRs with scale
and (2) support flexible conditional generation to
fit the need for personalized EHRs. Specifically,
our contributions are

• We propose a new EHRs generation method mak-
ing the best of LMs, which enables generating
multimodal EHRs.

• We design prompt learning for controllable and
flexible EHRs generation with LMs.

• We design comprehensive evaluation for both
quality and privacy of the generated EHRs.

2 Related Works

2.1 EHRs Generation

Early works on generating EHRs (Lombardo and
Moniz, 2008; Buczak et al., 2010; McLachlan et al.,
2016) are rule-based methods. However, they were
argued not capable of providing realistic data for
machine learning tasks and were still vulnerable to
re-identification (Choi et al., 2017). Deep genera-
tive models advanced by the power of deep learn-
ing, e.g., variational auto-encoders (VAE) (Kingma
and Welling, 2013) and generative adversarial net-
work (GAN) (Goodfellow et al., 2014), gained
most attention recently. Choi et al. (2017) pio-
neered in adapting GAN for discrete patient records
generation, namely MedGAN, which was followed
by improving GANs for EHRs generation (Guan
et al., 2018; Baowaly et al., 2019; Zhang et al.,
2020); using VAE (Biswal et al., 2020), hybrid
GANs (Lee et al., 2020; Cui et al., 2020), or con-
ditional GANs (Xu et al., 2019). However, most
methods only generate static tabular EHRs or lon-
gitudinal single-modal EHRs. GANs are often rid-
dled with mode collapse, non-convergence, and

instability, which cause their training tricky in prac-
tice (Saxena and Cao, 2021). Moreover, due to
the representation limit, GANs struggle in model-
ing multimodal distributions and sparse one-hot-
encoded vectors (Xu et al., 2019) while EHRs are
with these properties. By contrast, we bypass these
challenges by LMs. A comprehensive review of
EHR synthesis is provided by Wang et al. (2022).

2.2 Language Models & Prompt Learning

LMs are often used for text generation tasks at-
tributed to their auto-regressive nature, e.g., T5
(Raffel et al., 2020) and BART (Lewis et al., 2020).
Nonetheless, they cannot be directly applied to
EHRs generation since EHRs consist of not only
plain clinical notes but also longitudinal sequences
of events. Although there were works on encoding
and generating medical texts by LMs (Amin-Nejad
et al., 2020; Libbi et al., 2021; Kagawa et al., 2021;
Wang and Sun, 2022b), none has been done for syn-
thetic EHRs generation. Prompt learning was used
to control the topic of text generation (Li and Liang,
2021; Yu et al., 2021; Qian et al., 2022). However,
they only consider one-hot encoded topics as pre-
fix. In this work, we leverage prompt learning for
EHRs generation conditioned on patient baseline
features, which include both categorical and numer-
ical values.

3 Methods

In this section, we elaborate on the main frame-
work of PromptEHR, including the problem setting,
workflow, and training tasks formulation. Next, we
discuss the strategies for generating diverse syn-
thetic EHRs with minor loss of quality. Then, we
present the recipe proposed for the evaluation for
both quality and privacy-preserving ability of the
EHRs generation models.

3.1 Problem Formulation

Consider there are N patients where the
n-th patient is represented by Xn,1:Tn =
{xn;xn,1,xn,2, . . . ,xn,Tn} where xn are the base-
line features, e.g., age and gender; xn,t signifies
events happened at the t-th visit; Tn is the total
number of visits. For each visit xn,t, we have K
types of events as xn,t = {x1

n,t,x
2
n,t, . . . ,x

K
n,t}.

xk
n,t = {c1, c2, . . . , cl} are all events of type k, l is

the number of events.
We formulate three basic functions to support

EHRs generation:
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Figure 2: The workflow of PromptEHR. The input longitudinal events are transformed to the code sequence by
special tokens, e.g., <v> and </v> cover events in the same visit; <dx> and </dx> cover contemporary diagnosis
events. Baseline features are encoded to prompt embeddings by two featurizers then add to the token embeddings.
The model decodes autoregressively and is trained with causal language modeling loss.

• Longitudinal imputation: given historical visits
Xn,1:t = {xn,1, . . . ,xn,t}, the model predicts
the events in next visit as xn,t+1;

• Cross-modality imputation: given visits with
K − 1 types of events xn,t \ {xk

n,t}, the model
predicts the events belonging to modality k;

• Conditional generation: given historical visits
Xn,1:t and the baseline features xn, the model
makes further predictions.

These functions can be combined to synthesize
EHRs from the existing partial EHRs with baseline
features or from scratch.

3.2 Encoding

The overview is shown by Fig. 2. The first step
is to transform the raw inputs Xn,1:Tn to token
sequences hence acceptable to the encoder.

Inputs tokenization. PromptEHR is compatible
with all sequence-to-sequence models (Cho et al.,
2014). We choose to utilize BART (Lewis et al.,
2020) as the base model. BART uses a bidirec-
tional encoder thus allowing arbitrary corruption
for the input sequences and a left-to-right decoder
to reconstruct the inputs. Motivated by the appli-
cation of prompts in language (Liu et al., 2021a),
we leverage prompts to specify the inputs. Without
loss of generality, we assume two modalities: diag-
nosis (DX) and medication (Med). Denote [X] and
[Z] as the input and answer slots, we can formulate
the longitudinal imputation task by a prefix prompt

problem: <v>[X]</v>[Z]. The model tries to fill
the answer slot [Z] which are the events in the
next visit; the cross-modal imputation task is built
by a cloze prompt problem: [X]<dx>[Z] where
<dx> signifies the start of diagnosis events and [X]
represents the multimodal context events.

Conditional prompt featurizer. We introduce
conditional prompt embeddings to enable condi-
tional generation based on patient features. We
consider both categorical xcat and numerical fea-
tures xnum. The categorical prompt embeddings
Ecat is obtained by

Ecat = (xcatW0 + b)W1. (1)

xcat has mc mulit-hot encoded indices indicat-
ing the classes of each feature; W0 ∈ Rmc×d0 ;
W1 ∈ Rd0×d1 . Therefore, ecat encodes the in-
struction of xcat and steers the LM to generate
specific populations. We transform xnum ∈ Rmu

to enum with another set of W0, W1, and b. Ecat

and Enum then prepend to token embeddings by

E = [ Ecat;Enum;︸ ︷︷ ︸
Prompt Embeddings

Etok] (2)

to serve as the inputs to the encoder. We build the
inputs for the decoder with the other featurizer to
get E′

cat and E′
num and the shared token embed-

dings Etok.

3.3 Decoding & Training
The inputs tokens for the decoder are shifted en-
coder inputs such that the decoder predicts the next
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token based on the prior tokens. Denote the con-
text by X and the target event by x, the true condi-
tional distribution is p(x|X). For instance, in the
longitudinal imputation task, the context is the his-
torical record of the patient X1:t and the target is
the events in the next visit xt+1. Correspondingly,
p(x|X; θ) is the prediction made by the model. We
use X̃ ∼ q(X) to represent the perturbations added
to the context inputs. The training objective is to
minimize the negative log-likelihood as

L = EX∼p(X)Ex∼p(x|X)EX̃∼q(X)[− log p(x|X̃; θ)].
(3)

The model is hence pushed to maximize the pre-
dicted probability to the true next tokens x condi-
tioned by the corrupted inputs X̃.

We apply the following corruptions during train-
ing: (1) Token mask, infill, and deletion; (2) Span
shuffle and permutation. For (1), we randomly
replace multiple tokens with <mask> or delete as
length ∼ Poisson(3). For (2), we randomly shuffle
the tokens within the same visits and shuffle the
modality orders in the same visits.

3.4 Harmless Randomness in Generation

Apart from preciseness, the diversity of the gener-
ated data is also of great importance. PromptEHR
samples from the conditional distribution by

x ∼ p(xt|X1:t−1; θ), (4)

which allows to adjust diversity by many tech-
niques existing in natural language generation lit-
erature. For instance, to prevent low probability
events, we can apply top-k sampling (Fan et al.,
2018). Temperature is also useful to flatten or
sharpen the conditional distribution. More ad-
vanced methods, e.g., beam search (Welleck et al.,
2019) and nucleus sampling (Holtzman et al., 2019)
are all available for exploitation by PromptEHR,
which brings a great potential to achieve higher
quality EHRs with diversity. By contrast, GANs &
VAEs depend on sampling random noise vectors to
introduce diversity, which is not controllable and
usually undermines generation quality.

3.5 Quality Evaluation

We provide a recipe to evaluate EHRs generation
on two dimensions: accuracy and privacy. For
accuracy, we propose to adopt perplexity which is
usually used in the text generation task, defined by
the exponent of the average negative log-likelihood

(NLL) per word (Neubig, 2017):

ppl = e−(log
∏L

l=1 p(cl|c1:l−1;θ))/L, (5)

where p(vl|v1:l−1) indicates how the model pre-
dicts the next word using all previous words as the
context; L is the length of the document; θ is the
model parameter. Intuitively, a random predictor
will produce ppl that is equal to the cardinality of
vocabulary |C|. We hereby adapt it to the longitudi-
nal imputation perplexity (lpl) and cross-modality
imputation perplexity (mpl) taking the structure of
EHR into account.
lpl takes the temporal coherence of the patient

visits into account. For instance, chronic diseases
like diabetes can cause complications (e.g., heart
disease and kidney failure) in the future. Following
Eq. (5), we can write the lpl of a patient’s records
X = {x1, . . . ,xT } as

lpl = e−
∑T

t=1 logP (xt|x1:t−1;θ)/(lt∗T )

= e−
∑T

t=1

∑lt
l=1 logP (vl|x1:t−1;θ)/(lt∗T ).

(6)

Here, xt = {c1, . . . , clt} are all events during the t-
th admission. Inside this admission, concurrent
events are independently generated conditioned
on previous visits, therefore we can decompose
p(xt|x1:t−1; θ) =

∏lt
l=1 p(cl|x1:t−1; θ) then come

to the results.
mpl accounts for the correlations between modal-

ities. For example, high body temperature in lab
test may correspond to fever in diagnosis. We focus
on the t-th admission where the joint distribution
of all K modalities p(x1

t , . . . ,x
K
t |x1:t−1; θ). We

can write the NLL here by

NLLt = − 1

K

K∑

k=1

log p(xk
t |x1:K\k

t ,x1:t−1; θ)

= − 1

K

K∑

k=1

1

lkt

lkt∑

l=1

log p(vl|x1:K\k
t ,x1:t−1; θ),

(7)
where lkt indicates the number codes belonging the
k-th modality. Next, we can track all admissions to
obtain the final definition of mpl by

mpl = e
∑T

t=1 NLLt/T . (8)

3.6 Privacy Evaluation
It is crucial to measure the privacy preserving when
sharing the synthetic data. We try to evaluate
two privacy risks: membership inference and
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attribute inference. We split the data into the
training data D1 = {Xn,1:Tn}Nn=1 and testing data
D2, and generate synthetic data DS with the same
length as D1.

Membership Inference. Attackers would try to
infer the membership of the patient records based
on the real records they own. We design this adver-
sary based on shadow training (Shokri et al., 2017).
In the first stage, a shadow model Msd is trained
on DS . It tries to mimic the performance of the
generation model in longitudinal inference.

In the second stage, a membership inference
dataset is built based on Msd(X) where X ∈
D̃S

⋃D2. D̃S is a subset of DS with the same
number as D2. A model Mmi : Yppl 7→ {0, 1} is
trained to differentiate if X comes from DS or D2.
We will then evaluate the success rate of Mmi on
identifying X ∈ D1

⋃D2. The better the adver-
sary Msd(X) and Mmi perform on this evaluation,
the higher the privacy risk caused by releasing the
synthetic EHRs.

Attribute Inference. We build this adversary
following (Zhang et al., 2021). In this case, at-
tackers hold some incomplete real records where
several sensitive attributes are missing. They
would take advantage of the synthetic data to in-
fer these attributes. Besides, attackers also hold
the prior knowledge of association between the
attributes, i.e., given the incomplete individual
records, how probable another code appears in ex-
pectation or P0 = p(vl|{v1, . . . , vlt}Tt=1\vl). With
the prior, the attacker will train an attribute impu-
tation model on the synthetic data DS , i.e., P̂ =
p(vl|{v1, . . . , vlt}Tt=1 \ vl; θI). The attacker then
believe the code vl exists when log P̂ − logP0 ≥ δ.
δ is a pre-defined threshold. In experiments, we
train another attribute imputation model on D1 to
approximate the prior knowledge. We evaluate the
success rate of this attack. Besides, we create a con-
trol arm where another imputation model is trained
on the test set. Comparison between the control
and the treatment (imputation model trained on
DS) suffices for an immediate evaluation of the
synthetic data’s risk level.

4 Experiments

In this section, we designed experiments to answer
the following questions.

• Q1. How well does PromptEHR perform for
EHRs generation compared with the state-of-the-
art methods on generation quality?

Table 1: Statistics of the used MIMIC-III data.

Item Number Event Type Number

Patients 46,520 Diagnosis 1,071
Total Visits 58,976 Drug 500
Total Events 5,401,961 Procedure 668
Events per Patient 116 Lab Test 185

• Q2. What is the level of privacy risk on mem-
bership inference and attribute inference of the
generated EHRs by PromptEHR?

• Q3. Are the synthetic data useful for the sec-
ondary use by predictive modeling in practice?

• Q4. How is the generation quality of PromptEHR
influenced by the size of training records?

4.1 Experimental Setup
Dataset. (Johnson et al., 2016) We use MIMIC-
III data which has 46k patients’ records collected
from the intensive care unit. We pick the diagnosis,
procedure, drug, and lab test as the target events
for generation. All events in the same admission
are seen as contemporary. We randomly split the
46,520 patients records into 39,581, 2,301, 4,633
for the train/validation/test set. The data statistics
are available in Table 1.
Baselines. We compare the following baselines:

• LSTM+MLP. This is the baseline that lever-
ages LSTM (Hochreiter and Schmidhuber,
1997) to learn the patient state thus extract-
ing the temporal visit patterns. Based on the
state embeddings, MLP layers are able to im-
pute the probability of events within the visit
or for the next visit.

• LSTM+MedGAN (Choi et al., 2017). The
original MedGAN is not able to do conditional
generation and temporal inference. Similar to
the first baseline, LSTM is used for capturing
temporal patterns as the inputs for MedGAN.
Then, the generator of MedGAN will try to
make conditional generation for records as
realistic as possible to fool its discriminator.

• SynTEG (Zhang et al., 2021). This is one of
the most recent EHRs generation methods. It
also consists of a state embedding module and
a imputation module. It utilizes transform-
ers (Vaswani et al., 2017) for temporal depen-
dency learning and conditional Wasserstein
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Figure 3: Perplexity compared between generation w/
(cond.) and w/o conditional prompts (w/o cond.) for
four types of events. Note that both lpl and mpl are the
less the better.
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Figure 4: Privacy-preserving evaluation on member-
ship inference (left) and attribute inference (right) ad-
versaries. On the right, the PromptEHR curves indicate
the results of attribute inference model trained on the
synthetic data DS by PromptEHR; the Control curves
indicate the one trained on test set D2.

GAN with gradient penalty (WGAN-GP) (Ar-
jovsky et al., 2017; Gulrajani et al., 2017) for
event inference.

• GPT-2 (Radford et al., 2019). We pick GPT-
2 as the LM baseline that only does causal
language modeling on EHRs. Then, it is able
to do event generation like texts generation.

4.1.1 Evaluation metrics
We use the proposed lpl and mpl to evaluate gen-
eration quality. Since perplexity of different patient
records vary significantly, we take the median of
perplexity across patients for the sake of stability
of the performance estimate.

We use two adversaries: membership inference
(MI) and attribute inference (AI), to test the privacy
risk. In MI, we use LSTM+MLP as the shadow
model to mimic the outputs of PromptEHR. A three-
layer MLP predicts the membership. ROC curve
is plotted to evaluate the attack success rate; In AI,
we train an LSTM+MLP on D1 to approximate
the prior and another LSTM+MLP on DS as the
attribute imputation model.
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Figure 5: Recall@10/20 of the predictive model on
the test set with varying input data size: syn indicates
the model trained on fully synthetic data; real-5k/10k
indicate trained on 5k/10k real data. Error bars show
the 95% confidence interval which also appear in the
following figures.

To test the utility of the synthetic data for down-
stream predictive tasks, we train LSTM+MLP on
DS or D2 and test it on D2 to compute the re-
call@20/30.

4.2 Implementation Details
All the used LSTM+MLP model consists of a
three-layer bi-directional LSTM with 128 hidden
dimensions with one 256-dim MLP layer. It is
trained with 1e-4 learning rate by Adam optimizer
(Kingma and Ba, 2014). The 12-layer transformer
based pre-trained GPT-2 is trained with 1e-5 learn-
ing rate and 1e-4 weight decay by Adam. We fol-
low the architecture and training protocol from the
original papers of MedGAN and SynTEG.

For PromptEHR, we use BART model as the
backbone (Lewis et al., 2020). We use Adam by
setting learning rate as 1e-5, weight decay as 1e-4,
batch size as 16. The total training epoch is 50
where the first 3 epochs are warm-up steps. During
the training stage, the perplexity computed on the
validation set is used to pick the best checkpoint.
All experiments are conducted with an RTX-3090
GPU, 251 GB RAM, and AMD Ryzen Threadrip-
per 3970X 32-core CPU.

4.3 Q1. Generation Quality
The calculated mpl and lpl of all show in Ta-
ble 2. It is witnessed that PromptEHR obtains the
best result among all methods. On the contrary,
LSTM+MedGAN and SynTEG do not gain bet-
ter test perplexity than the basic LSTM+MLP. The
main reason is that their GAN part takes a noise
input except for the learned temporal state embed-
dings to make conditional generation. GPT-2 works
better than LSTM+MLP on temporal perplexity
crediting to its power in capturing series pattern
through transformers.

Most methods obtain better mpl than lpl. It

2878



Table 2: Longitudinal imputation perplexity (lpl) & cross-modality imputation perplexity (mpl) of models on
different kinds of events. Best values are in bold. ± value indicates the 95% confidence interval.

Method/Event Diagnosis Procedure Drug Lab Test
perplexity lpl mpl lpl mpl lpl mpl lpl mpl

LSTM+MLP 125.1 ± 5.3 122.9 ± 2.0 40.3 ± 1.7 43.8 ± 0.9 173.3 ± 1.9 169.5 ± 0.5 68.9 ± 0.3 71.3 ± 0.5
LSTM+MedGAN 169.2 ± 6.0 109.8 ± 3.1 54.4 ± 2.5 40.1 ± 1.4 197.3 ± 2.5 166.7 ± 0.9 76.9 ± 0.3 66.2 ± 0.2
SynTEG 130.4 ± 4.6 130.0 ± 2.6 46.4 ± 1.8 46.2 ± 1.5 175.6 ± 2.0 175.4 ± 0.9 69.5 ± 0.2 69.6 ± 0.3
GPT-2 121.1 ± 1.8 134.2 ± 0.9 38.7 ± 0.9 48.2 ± 0.5 166.4 ± 1.8 169.6 ± 0.6 69.7 ± 0.1 69.6 ± 0.1
PromptEHR 65.9 ± 2.0 67.7 ± 0.6 13.5 ± 0.8 10.1 ± 0.3 104.7 ± 1.8 93.7 ± 0.5 24.4 ± 0.1 50.1 ± 0.1
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Figure 6: Recall of the predictive model on the test set
with varying input data size: syn+real-10k indicates the
model trained on the hybrid of synthetic & 10k real data;
real-10k/all indicate trained on 10k/all real data.

is intuitive because models know the additional
in-visit information from the other modalities for
the target modality imputation, thus making better
predictions. However, GPT-2 performs worse on
mpl than on lpl. GPT-2 is trained by causal lan-
guage modeling task where it models the sequence
autoregressively. Without the prompt design, it is
confused by the order of events within the same
visit, which induces deteriorating performance.

Fig. 3 demonstrates the comparison made be-
tween generation w/ and w/o conditional prompts
for PromptEHR. We identify that conditional
prompts significantly improve the generation qual-
ity as they provide important characteristics of the
patients. We are hence able to generate for specific
populations with input prompts.

4.4 Q2. Privacy Evaluation

We test the privacy preserving ability of the gener-
ated synthetic EHRs by applying membership and
attribute inference attacks. Results are illustrated
by Fig. 4. Fig. 4a demonstrates the ROC curve
consisting of true positive rate (TPR) and false pos-
itive rate (FPR) of the membership inference on
D1

⋃D2. It clearly shows the MI model has bad
performance that is near random guess (AUC ≃
0.5), which means the MI attack gains no sensi-
tive membership information when trained on the
synthetic data DS .

Fig. 4b shows the TPR/FPR of attribute infer-
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Figure 7: Recall of the predictive model on the test set
with varying input data size: syn+real-30k indicates the
model trained on the hybrid of synthetic & 30k real data;
real-30k/all indicate trained on 30k/all real data.

ence attack based on shadow training with the vary-
ing threshold δ. Here, we cut the curve where δ = 4
because all the remaining curves are approaching
zero on its right. The threshold δ adjusts to the con-
fidence level of the attacker, i.e., the smaller δ is
set, the higher probability that the AI is correct we
believe. When δ = 0, so long as the AI inference
probability P (vl) is larger than the prior P0(vl),
the AI model will believe the attribute vl exists. In
this scenario, both two models have a high FPR of
around 0.6, but the TPR of PromptEHR is only near
half of the control model. The TPR then keeps a
much lower level when δ increases, which implies
the low attribute leakage risk of the synthetic data
generated by PromptEHR. Although the FPR be-
comes smaller than Control when δ > 0.8, the TPR
of PromptEHR is approaching zero after that. That
means, being conservative for PromptEHR avoids
inferring some wrong attributes but loses the ability
to specify the right attributes at the same time. In
a nutshell, the synthetic data by PromptEHR has a
low risk to leak the attribute information.

4.5 Q3. Synthetic EHRs Utility

We aim to measure the utility of synthetic data
when we develop predictive models on top of them.
We compare LSTM models on DS and D1 with
multilabel prediction for diagnosis events similar
to the setting in (Choi et al., 2016b). In particular,
we design two experiments: (1) train LSTM on
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Figure 8: Black solid lines show the spatial and temporal
perplexities of PromptEHR with regard to varying input
training record sizes. Red dotted lines show the lpl
and mpl of baseline LSTM+MLP trained on all training
records (∼40k).

fully synthetic data and compare its performance
with the one trained on real data; (2) train LSTM
on a mixture of synthetic data and real data where
the synthetic data is regarded as data augmentation.
Fully synthetic data. We test the LSTM perfor-
mance on 5k, 10k, 30k, and 50k synthetic patient
records. For comparison, the model performance
on 5k and 10k real records are also tested. Results
are shown in Fig. 5. For recall@10 in Fig. 5a, we
can observe that though 10k synthetic records are
not comparable to 5k real records, 30k synthetic
records can reach a better performance than 10k
real records. On the other hand, for recall@20
in Fig. 5b, we surprisingly find that 5k synthetic
records achieve the same performance as the 5k real
records. With more synthetic records involved, the
50k synthetic records-based LSTM outperforms
its counterpart on 10k real records at last. This
experiment demonstrates that synthetic EHRs by
PromptEHR are sufficient to support healthcare ap-
plications. It is expected to achieve comparable
performance by synthetic data as the real data.
Hybrid synthetc-real data. In Fig. 6, we ran-
domly sample 10k real data from D1 and combine
them with different sizes of synthetic data from DS .
We find that the model trained on the augmented
hybrid data has obvious advantages over its counter-
part on the real data. With more synthetic records
involved, the model gains better performance. This
demonstrates the utility of synthetic data used as
augmentation in low-resource cases. Besides, from
Fig. 6 we identify this hybrid data is still inferior
to the model trained on all real records. So we are
curious about how many synthetic and real data
we need to outperform this seemingly performance
upper bound. In other words, can we beat the real
data with the synthetic data?

We conduct the next experiment where 30k real
data is combined with synthetic data. Note that

we have around 40k real training records in total.
Results are shown in Fig. 7. It can be seen that 50k
synthetic records plus 30k real records train better
models than on all the real data.

4.6 Q4. Quality w.r.t. Training Size

In practice, the original data source to be shared
might be in limited size, which elicits a question
on how much the generation quality of PromptEHR
is influenced by the size of the training cohort. To
answer this question, we sampled 5k, 10k, and 20k
patient records from the training set and testify the
perplexity of the learned PromptEHR. Results are
illustrated by Fig. 8. We plot the performance
of the baseline LSTM+MLP method trained on
all real training records (∼40k) in red dotted lines
for comparison. It shows that PromptEHR trained
on 5k training records has worse generation qual-
ity than the baseline. When additional 5k records
are involved, PromptEHR not only outperforms the
LSTM baseline but also all other baselines reported
in Table 2, which demonstrates that PromptEHR is
amenable to low resources and superior than the
baselines.

4.7 Case Study

We demonstrate two use cases of PromptEHR: gen-
erating from scratch (Table 3) and generating by
completion (Table 4). While previous works handle
the former, only PromptEHR handles the comple-
tion setting because it makes flexible conditional
generation based on either patient features or previ-
ous events. In Table 4, our model begins from all
diagnosis of one patient and then generates labtests
via cross-modal imputation. Then, we randomly
sample one procedure and let the model impute
all the remaining procedures based on diagnosis
and the labtests. Iteratively applying this strategy
yields diverse and realistic EHRs via conditional
generation. We provide explanations of the two
synthetic records in Appendix §A.

5 Conclusion

In this paper, we study how to leverage real
EHRs to train a prompt learning based genera-
tive language model for synthetic EHRs generation,
namely PromptEHR. Unlike previous EHRs gener-
ation methods, PromptEHR is able to learn from
and generate heterogeneous EHRs. To evaluate its
performance, we draw the idea of perplexity from
the text generation literature and propose two per-
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plexity measures: spatial and temporal perplexity.
Experiments on MIMIC-III data demonstrates the
quality of generated EHRs are better than the base-
lines. The synthetic data provides both utility and
privacy for downstream healthcare applications.

Acknowledgement

This work was supported by NSF award SCH-
2205289, SCH-2014438, IIS-1838042, NIH award
R01 1R01NS107291-01.

Limitations

This work seeks to generate synthetic records hence
avoid sharing sensitive personal electronic health-
care records for the development of machine learn-
ing models. In our experiments, we find the gen-
erated synthetic records by PromptEHR are invul-
nerable to two adversaries: membership inference
and attribute inference. However, there is still pos-
sibility that there exists some more advanced at-
tacking methods which can take the advantage of
synthetic records. Obviously we cannot exhaust
all adversaries for empirical privacy evaluation.
In this viewpoint, it is promising to investigate
theoretic-guaranteed EHRs generation approach.
For instance, we may draw the idea of differential
privacy to enhance the current method to provide a
complete privacy protection.
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A Case Study

The first case was generated from scratch (Table 3),
it describes a patient who goes into ICU because of
a cesarean. During the operation, a test of Hemat-
ocrit should be conducted to ensure blood loss of
the patient within the safe range. In the second
visit, the patient suffers from a bacteria infection.
The patient then receives a series of lab tests regard-
ing the inflammation. And spinal tap is performed
to help cure serious infections. Antibiotic drugs,
e.g., Ampicillin Sodium and Gentamicin, are used
to cure the patient. It can be seen that the generated
events all center around the same topic (liveborn)
and the longitudinal and cross-modal connections
are coherent.

The second case was generated based on a real
patient EHR by leveraging flexible imputation func-
tions of PromptEHR (Table 4). The model scans
through the record in time order. For each modality
in a visit, we randomly choose to keep all events,
remove all events, or remove a part at random. The
imputed events are marked red. For example, in
visit-1, the model takes the diagnosis codes with
prompts as inputs and generates the lab tests. Then,
the generated lab tests are involved in the input
with prompts. In addition, the procedure ’Enteral
infusion of nutrition’ is also kept in the inputs. The
model then generates the remaining procedures in
this visit. This process repeats until reaches visit-6
where the real EHR ends.

In general, the events in the second case are
coherent under the topic of pneumonia and heart
failure. The patient is diagnosed as suffering from
pneumonia due to bacteria with many complica-
tions like a hemorrhage of gastrointestinal tract,
heart failure, and pulmonary collapse. At the same
time, procedures like the enteral infusion of nutri-
tion, insertion/replacement of endotracheal tube,
and temporary tracheostomy are all included to
maintain the patient’s life regarding his/her nutri-
tion and breath. Besides this visit, the remaining
synthetic visits are also reasonable: he/she gets
diagnoses regarding heart failure, respiratory dis-
eases, stomach disorders, etc., which all correspond
to relevant issues appearing in the first visit. These
two cases offer an intuitive demonstration of the
effectiveness of PromptEHR in generating realistic
EHRs, especially when we take the advantage of
multiple imputation functions to generate rather re-
alistic EHRs based on real EHRs, which was hardly
mentioned in previous works.

Table 3: A synthetic patient generated by PromptEHR
from scratch. ICD_abc indicates the first three digits
represented by ICD code of the event.

Visit-1
Diagnosis: Liveborn
Labtest: Hematocrit
Procedure: Prophylactic vaccination

Visit-2

Diagnosis: Streptococcus infection, Extreme
immaturity, Perinatal infection, Neonatal jaun-
dice, Liveborn
Labtest: Anion Gap, Bands, Base Excess,
Bilirubin, Total, Chloride, Eosinophils, Hema-
tocrit, Hemoglobin, Lymphocytes, MCH,
MCHC, MCV, Monocytes, Platelet Count,
Potassium, Red Blood Cells, Sodium, pCO2,
pH, pO2
Drug: Ampicillin Sodium, Heparin Sodium
(Preservative Free), NEO*IV*Gentamicin,
NEO*PO*Ferrous Sulfate Elixir, Send 500mg
Vial, Syringe (Neonatal) *D5W*
Procedure: Biopsy of spinal cord
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Table 4: A synthetic patient generated by PromptEHR
based on a real patient record. The imputed events are
marked yellow. For demonstration, we cut the events
after the fifth for each visit due to the space limit.

Visit-1
Diagnosis: Pneumonia, Hematemesis, Heart failure,

Emphysema
Labtest: Leukocytes , Urea Nitrogen , Calcium , Ketone
Procedure: Enteral infusion of nutrition,
Insertion of airway , Replace tracheostomy tube ,

Temporary tracheostomy

Visit-2
Diagnosis: Heart failure , Respiratory conditions ,

Tracheostomy status , Stomach disorder
Labtest: Urine Appearance, Yeast, Platelet Count ,
Calculated Total CO2

Procedure: Biopsy of bronchus, Replace gastrostomy tube,
Invasive mechanical ventilation , Infusion of nesiritide

Visit-3
Diagnosis: Pneumonia, Mechanical complication,

Pulmonary manifestations , Disorders of urinary tract
Labtest: INR(PT), Epithelial Cells, RBC,
Urine Appearance

Procedure: Insertion of airway, Enterostomy ,

Lysis of peritoneal adhesions , Lung biopsy

Visit-4
Diagnosis: Mechanical complication, Hodgkin’s paragranu-

loma, Pressure ulcer , Heart failure
Labtest: Urine Color , Urobilinogen , Bands ,

Urea Nitrogen
Procedure: Infusion of nesiritide ,
Endoscopy of small intestine , Gastrostomy ,

Replace tracheostomy tube

Visit-5

Diagnosis: Urethra disorder, Attention to tra-

cheostomy/gastrostomy, Pneumonia , Heart failure
Labtest: MCH, Bacteria , Lymphocytes ,

Calculated Total CO2
Drug: Fluticasone Propionate 110mcg, SW , Bisacodyl ,

Iso-Osmotic Dextrose
Procedure: Replace tracheostomy tube ,

Heart cardiac catheterization ,
Enteral infusion of nutrition

Visit-6

Diagnosis: Pneumonia, Heart failure,

Endomyocardial fibrosis , Mechanical complication
Labtest: pH, Epithelial Cells, WBC , Protein
Drug: Neutra-Phos, Mirtazapine , Fluconazole , SW
Procedure: Invasive mechanical ventilation,
Airway infusion , Monitoring of cardiac output ,

Lung biospy
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