
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2809–2821
December 7-11, 2022 ©2022 Association for Computational Linguistics

Fast-R2D2:
A Pretrained Recursive Neural Network based on Pruned CKY

for Grammar Induction and Text Representation

Xiang Hu† Haitao Mi†∗ Liang Li‡ Gerard de Melo§

Ant Group†

{aaron.hx, haitao.mi}@alibaba-inc.com†

School of Cyber Science and Technology, Shandong University, China /
Key Laboratory of Cryptologic Technology and

Information Security of Ministry of Education, Shandong University /
Quancheng Laboratory, China‡

li.liang@sdu.edu.cn‡

Hasso Plattner Institute / University of Potsdam§

gdm@demelo.org§

Abstract

Chart-based models have shown great potential
in unsupervised grammar induction, running
recursively and hierarchically, but requiring
O(n3) time-complexity. The Recursive Trans-
former based on Differentiable Trees (R2D2)
makes it possible to scale to large language
model pretraining even with a complex tree
encoder, by introducing a heuristic pruning
method. However, its rule-based pruning pro-
cess suffers from local optima and slow infer-
ence. In this paper, we propose a unified R2D2
method that overcomes these issues. We use
a top-down unsupervised parser as a model-
guided pruning method, which also enables
parallel encoding during inference. Our parser
casts parsing as a split point scoring task by
first scoring all split points for a given sentence
and then using the highest-scoring one to recur-
sively split a span into two parts. The reverse
order of the splits is considered as the order
of pruning in the encoder. We optimize the
unsupervised parser by minimizing the Kull-
back–Leibler distance between tree probabili-
ties from the parser and the R2D2 model. Our
experiments show that our Fast-R2D2 signifi-
cantly improves the grammar induction quality
and achieves competitive results in downstream
tasks.1

1 Introduction
Compositional, hierarchical, and recursive pro-
cessing are widely believed to be essential traits

∗Work done while at Ant Group. To contact Haitao,
haitaomi@global.tencent.com

1The code is available at: https://github.com/
alipay/StructuredLM_RTDT

of human language across diverse linguistic the-
ories (Chomsky, 1956, 2014). Chart-based mod-
els (Maillard et al., 2017; Kim et al., 2019a; Droz-
dov et al., 2019; Hu et al., 2021) have made promis-
ing progress in both grammar induction and hier-
archical encoding in recent years. The differen-
tial CKY encoding architecture of Maillard et al.
(2017) simulates the hierarchical and recursive pro-
cess explicitly by introducing an energy function
to combine all possible derivations when construct-
ing each cell representation. However, this entails
a cubic time complexity, which makes it impossi-
ble to scale to large language model training like
BERT (Devlin et al., 2018). Simultaneously, its
cubic memory cost also limits the tree encoder’s
ability to draw on huge parameter models as a back-
bone.

Hu et al. (2021) introduced a heuristic pruning
method, successfully reducing the time complexity
to a linear number of compositions. The experi-
ments show that chart-based models exhibit great
potential for grammar induction and representa-
tion learning when applying a sophisticated tree
encoder such as Transformers with large corpus
pretraining, leading to a Recursive Transformer
based on Differentiable Trees, or R2D2 for short.
However, R2D2’s heuristic pruning approach is
rule-based and only considers certain composition
probabilities. Thus, trees constructed in this way
are not guaranteed to be globally optimal. More-
over, as each step during pruning is based on pre-
vious decisions, the entire encoding process is se-
quential and thus slow in the inference stage.

In this work, we resolve these issues by propos-
ing a unified method with a new global pruning

2809

https://github.com/alipay/StructuredLM_RTDT
https://github.com/alipay/StructuredLM_RTDT

strategy based on a lightweight and fast top-down
parser. We cast parsing as split point scoring,
where we first encode the input sentence with a
bi-directional LSTM, and score all split points in
parallel. Specifically, for a given sentence, the
parser first scores each split point between words
in parallel by looking at its left and right contexts,
and then recursively splits a span (starting with the
whole sentence) into two sub-spans by picking the
highest-scoring split point among the current split
candidates. Subsequently, the reverse order of the
sorted split points can serve as the merge order
to guide the pruning of the CKY encoder, which
enables the encoder to search for more reasonable
trees. As the gradient of the pretrained component
cannot be back-propagated to the parser, inspired
by URNNG (Kim et al., 2019b), we optimize the
parser by taking trees sampled from the CKY chart
table generated by the encoder as ground truth.
Thus, the parser and the chart-based encoder pro-
mote each other in this way back and force just like
the strategy and value networks in AlphaZero (Sil-
ver et al., 2017). Additionally, the pretrained tree
encoder can compose sequences recursively in par-
allel according to the trees generated by the parser,
which makes Fast-R2D2 a Recursive Neural Net-
work (Pollack, 1990; Socher et al., 2013) variant.

In this paper, we make the following main con-
tributions:

1. We propose an architecture to jointly pretrain
parser and encoder of a recursive network
in linear memory cost. Experiments show
that our pretrained parser outperforms models
custom-tailored for grammar induction.

2. By encoding in parallel following trees gener-
ated by the top-down parser, Fast-R2D2 sig-
nificantly improves the inference speed 30 to
50 fold compared to R2D2.

3. We pre-train Fast-R2D2 on a large corpus and
evaluate it on downstream tasks. The experi-
ments demonstrate that a pretrained recursive
model based on an unsupervised parser sig-
nificantly outperforms pretrained sequential
Transformers (Vaswani et al., 2017) with the
same parameter size in single sentence classi-
fication tasks.

2 Preliminaries
2.1 R2D2 Architecture
Differentiable Trees. R2D2 follows the work
of Maillard et al. (2017) in defining a CKY-

style (Cocke, 1969; Kasami, 1966; Younger, 1967)
encoder. For a sentence S = {s1, s2, ..., sn} with
n words or word-pieces, it defines a chart table
as illustrated in Figure 1. In the table, each cell
Ti,j is a tuple ⟨ei,j , pi,j , p̃i,j⟩, where ei,j is a vector
representation, pi,j is the probability of a single
composition step, and p̃i,j is the probability of the
subtree for the span [i, j] over the sub-string si:j .
When i equals j, the table has terminal nodes Ti,i
with ei,i initialized with the embeddings of input
tokens si, while pi,i and p̃i,i are set to one. When
j > i, the representation ei,j is a weighted sum of
intermediate combinations cki,j , defined as:

cki,j , p
k
i,j = f(ei,k, ek+1,j) (1)

p̃ki,j = pki,j p̃i,k p̃k+1,j (2)

αi,j = GUMBEL(log(p̃i,j)) (3)

ei,j = [cii,j , c
i+1
i,j , ..., cj−1

i,j]αi,j (4)

[pi,j , p̃i,j] = α⊺
i,j [pi,j , p̃i,j] (5)

k is a split point from i to j − 1, f(·) is an n-layer
Transformer encoder, pki,j and p̃ki,j denote the single
step combination probability and the subtree prob-
ability, respectively, at split point k, pi,j and p̃i,j

are the concatenation of all pki,j or p̃ki,j values, and
GUMBEL is the Straight-Through Gumbel-Softmax
operation of Jang et al. (2017) with temperature set
to one. As GUMBEL picks the optimal splitting
point k at each cell in practice, it is straightforward
to recover the complete derivation tree from the
root node T1,n in a top-down manner recursively.

Figure 1: Chart data structure. There are two alter-
native ways of generating T1,3: combining either
(T1,2, T3,3) or (T1,1, T2,3).

Heuristic pruning. As shown in Figure 2, R2D2
starts to prune if all cells beneath height m have
been encoded. The heuristic rules work as follows:

1. Recover the maximum sub-tree for each cell
at the m-th level, and collect all cells at the
2nd level that appear in any sub-tree.

2810

Figure 2: Example of chart pruning and encoding process. With R2D2’s original heuristic pruning, cells
to merge are selected according to local composition probabilities. For better model-based pruning, we
propose selecting cells according to the merge order estimated by a top-down parser.

2. Rank candidates in Step 1 by the composition
probability pi,j , and pick the highest-scoring
cell as a non-splittable span (e.g., T1,2).

3. Remove any invalid cells that would break the
now non-splittable span from Step 2, e.g., the
dark cells in (c), and reorganize the chart table
much like in the Tetris game as in (d).

4. Encode the blank cells at the m-th level, e.g.,
the cell highlighted with stripes in (d), and
go back to Step 1 until the root cell has been
encoded.

Pretraining. To learn meaningful structures with-
out gold trees, Hu et al. (2021) propose a self-
supervised pretraining objective. Similar to the
bidirectional masked language model task, R2D2
reconstructs a given token si based on its context
representation e1,i−1 and ei+1,n. The probability of
each token is estimated by the tree encoder defined
in R2D2. The final objective is:

min
θ

n∑

i=1

− log pθ(si | e1:i−1, ei+1:n) (6)

3 Methodology
3.1 Global Pruning Strategy
We propose a top-down parser based on syntactic
distance (Shen et al., 2018) to evaluate scores for
all split points in a sentence and generate a merge
order according to the scores.

Top-down parser. Given a sentence S =
{s1, s2, ..., sn}, there are n−1 split points between
words. We define a top-down parser by giving con-
fidence scores to all split points as follows:

v = [v1, v2, ..., vn−1] = f(S; θ) (7)

To keep it simple and rigorously maintain linear
complexity, we select bidirectional LSTMs as the
backbone, though Transformers are also an option.
As shown in Figure 3, first, a bi-directional LSTM

Figure 3: (a) A parsed tree obtained by sorting split
scores (vi). (b) A sampled tree by adding Gumbel
noise (gi in dark vertical bars).

encodes the sentence, and then, for each split point,
an MLP over the concatenation of the left and right
context representations yields the final split scores.
Formally, we have:

−→
h ,
←−
h = BiLSTM(E; θ)

vi = LayerNorm(MLP(
−→
h i ⊕

←−
h i+1))

(8)

Here, E is the embedding of the input sentence
S, while

−→
h and

←−
h denote the forward and re-

verse representation, respectively. vi is the score
of the i-th split point, whose left and right context
representations are

−→
h i and

←−
h i+1. Given scores

[v1, v2, ..., vn−1], one can easily recover the binary
tree shown in Figure 3: We recursively split a span
(starting with the entire sentence) into two sub-
spans by picking the split point with the highest
score in the current span. Taking the sentence in
Figure 3 (a) as an example, we split the overall sen-
tence at split point 3 in the first step, which leads to
two sub-trees over s1:3 and s4:6. Then we split s1:3

2811

at 2 and s4:6 at 4. We can continue this procedure
until the complete tree has been recovered.

Tree sampling. In the training stage, we
perform sampling over the computed scores
[v1, v2, ..., vn−1] in order to increase the robustness
and exploration of our model. LetPt denote the list
of split points at time t in ascending order, which
is {1, 2, 3, ..., n−1} in the first step. Then a partic-
ular split point at is selected from Pt by sampling
based on the probabilities estimated by stacking of
split points scores. The sampled {a1, a2, ..., an−1}
together form the final split point sequence A. At
each time step, we remove at from Pt when at is
selected, then sample the next split point until the
set of remaining split points is empty. Formally,
we have:

at ∼ softmax(vt) (9)

Pt+1 = Pt \ {at} (10)

where vt is concatenation of vi in Pt. As the
Gumbel-Max trick (E.J.Gumbel, 1954; Maddison
et al., 2014) provides a simple and efficient way
to draw samples from a categorical distribution
with class probabilities, we can obtain at via the
Gumbel-Max trick as:

at = argmax
i

[vi + gi], i ∈ Pt, (11)

where gi is the Gumbel noise for the i-th split
point. Therefore, the aforementioned process is
equivalent to sorting the original sequence of split
points scores with added Gumbel noise. Figure 3
(b) shows a sampled tree with respect to the split
point scores. The split point sequence A can hence
be obtained simply as:

A = argsort
i

(v + g) (12)

Here, argsort sorts the array in descending order
and returns the indices of the original array. The
sampled A is {2, 4, 3, 5, 1} in Figure 3 (b).

Span Constraints. As word-pieces (Wu et al.,
2016) and Byte-Pair Encoding (BPE) are com-
monly used in pretrained language models, it is
straightforward to incorporate multiple word-piece
constraints into the top-down parser to reduce word-
level parsing errors. We denote a list of span
constraints composed of beginning and end po-
sitions of non-split-table spans as C, defined as
C = {(b1, e1), (b2, e2), ..., (bn, en)}. For each

(bi, ei) in C, there should be a sub-tree for a span
covering the sub-string sbi:ei . This goal can be
achieved by simply adjusting the scores of all splits
within the spans in C by−δ. To make them smaller
than the scores of span boundaries, δ could be de-
fined as (max(v)−min(v) + c), where c could be
any positive number.

Model-based Pruning. We denote the reverse
order of the split point sequence A asM and then
treat M as a bottom-up merge order inferred by
the top-down parser based on the global context.
Subsequently, the complete pruning process is as
follows:

1. Pick the next merge index by invoking Alg 1.
2. Perform Steps 3 and 4 in the heuristic pruning

part in Section 2.1

As shown in Figure 2, we still retain the thresh-
old and the pruning logic of R2D2, but we select
cells to merge according toM instead of follow-
ing heuristic rules. Specifically, given a shrinking
chart table, we select the next merge index among
the second row by popping and modifyingM in
Algorithm 1.

Algorithm 1 Next merge index in the second row
1: function NEXT-INDEX(M)
2: i = pop(M) ▷ Index
3: for j ∈ 1 to M.len do
4: if Mj > i then ▷ Merging at left
5: Mj = Mj − 1 ▷ Shift left
6: return i

Take the example in Figure 3 (b) for instance:M
starts with {1, 5, 3, 4, 2}. Then we merge the first
cell in the second row in Figure 2 (b), and obtain a
newM = {4, 2, 3, 1}. In the next round, we treat
the 4th cell covering s5:6 as a non-splittable cell in
Figure 2 (e), andM becomes {2, 3, 1}.
3.2 Optimization
We denote the tree probabilities estimated by the
top-down parser and R2D2 as pθ(z|S), qϕ(z|S), re-
spectively. The difficulty here is that while qϕ(z|S)
may be optimized by the objective defined in Equa-
tion 6, there is no gradient feedback for pθ(z|S).
To make pθ(z|S) learnable, an intuitive solution is
to fit pθ(z|S) to qϕ(z|S) by minimizing their Kull-
back–Leibler distance. While the tree probabilities
of both distributions are discrete and not exhaus-
tive, inspired by URNNG (Kim et al., 2019b), a
Monte Carlo estimate for the gradient with respect

2812

to θ can be defined as:

▽θ KL[qϕ(z|S) ∥ pθ(z|S)]

=▽θEz∼qϕ(z|S)[log
qϕ(z|S)
pθ(z|S)

]

≈− ▽θ
1

K

K∑

k=1

log pθ(z(k)|S)

(13)

with samples z(1), ..., z(K) from qϕ(z|S). Algo-
rithm 2 shows the complete sampling process from
qϕ(z|S). Specifically, we sample split points with
corresponding span boundaries recursively as in
previous work (Goodman, 1998; Finkel et al., 2006;
Kim et al., 2019b) with respect to the intermedi-
ate tree probabilities calculated during hierarchical
encoding.

Algorithm 2 Top-down tree sampling for R2D2
1: function SAMPLE(T1,n) ▷ Root cell
2: Q = [T1,n]
3: K = []
4: while Q is not empty do
5: T = pop(Q)
6: i, j = T .i, T .j ▷ Start/end indices
7: L = T .splits ▷ m splits at most
8: τ = 0
9: for k ∈ 1 to len(L) do

10: wk = p̃
L[k]
i,j ▷ Using Equation 2

11: τ = τ + wk ▷ Sum up all wk

12: idx ∼ Cat([w1/τ, ..., wlen(L)/τ])
13: ▷ Sample a split point
14: push(K, (L[idx], i, j))
15: ▷ Keep the split point and span boundary
16: if L[idx] > i then ▷ Add left child
17: push(Q, Ti,L[idx])

18: if L[idx] + 1 < j then ▷ Add right child
19: push(Q, TL[idx]+1,j)

20: return K

A sequence of split points and corresponding
spans is returned by the sampler. For the k-th sam-
ple z(k), let pθ(akt |S) denote the probability of tak-
ing akt as split from span (ikt , j

k
t) at the t-th step.

Formally, we have:

pθ(a
k
t |S) =

e
v
ak
t

e
v
ikt + ...+ e

v
jkt

log pθ(z(k)|S) =
n−1∑

t=1

log pθ(a
k
t |S),

(14)

where ikt and jkt denote the start and end of the
corresponding span. Please note here that the vi
are not adjusted by span constraints.

3.3 Downstream Tasks
Inference. In this paper, we mainly focus on clas-
sification tasks as downstream tasks. We consider
the root representation as representing the entire

sentence. As we have two models pre-trained in
our framework – an R2D2 encoder and a top-down
parser – we have two ways of generating the repre-
sentations:

a) Run forced encoding over the binary tree from
the top-down parser with the R2D2 encoder.

b) Use the binary tree to guide the pruning of the
R2D2 encoder, and take the root representa-
tion e1,n.

It is obvious that the first approach is much faster
than the latter one, as the R2D2 encoder only runs
n− 1 times in forced encoding, and can run in par-
allel layer by layer, e.g., we may run compositions
at a5, a3, and a4 in parallel in Figure 3 (b). We ex-
plore both of these approaches in our experiments.

Training Objectives. As suggested in prior work
(Radford et al., 2018; Howard and Ruder, 2018;
Gururangan et al., 2020), given a pretrained model,
continued pretraining on an in-domain corpus with
the same pretraining objective can yield a better
generalization ability. Thus, we simply combine
our pretraining objectives via summation in all
downstream tasks. At the same time, as the down-
stream task may guide R2D2 to more reasonable
tree structures, we still maintain the KL loss to
enable the parser to continuously update. For the
two inference methods, we uniformly select the
root representation e1,n as the representation for a
given sentence followed by an MLP, and estimate
the cross-entropy loss, denoted as Lforced and Lcky,
respectively. Let LKL denote the KL loss described
in Section 3.2 and Lbilm denote the bidirectional
language model loss described in Eq 6. The final
loss is:

L = Lforced + Lcky + Lbilm + LKL (15)

4 Experiments
4.1 Unsupervised Grammar Induction

4.1.1 Setup

Baselines and Evaluation. For comparison, we
include six recent strong models for unsupervised
parsing with available open source implementa-
tions: StructFormer (Shen et al., 2021), Ordered
Neurons (Shen et al., 2019b), URNNG (Kim
et al., 2019b), DIORA (Drozdov et al., 2019), C-
PCFG (Kim et al., 2019a), and R2D2 (Hu et al.,
2021). To observe the marginal gain from pretrain-
ing, we also include Fast-R2D2 without pretraining

2813

denoted as Fast-R2D2w/o. Following Htut et al.
(2018), we train all systems on a training set con-
sisting only of raw text, and evaluate and report the
results on an annotated test set. As an evaluation
metric, we adopt sentence-level unlabeled F1 com-
puted using the script from Kim et al. (2019a). We
compare against the non-binarized gold trees per
convention. The results of Fast-R2D2 are obtained
from 3 runs of each model with different random
seeds in pre-training. The best checkpoint for each
system is picked based on scores on the validation
set. Fast-R2D2 is pretrained with span constraints
for the word level but without span constraints for
the word-piece level. To support word-piece level
evaluation, we convert gold trees to word-piece
level trees by simply breaking each terminal node
into a non-terminal node with its word-pieces as
terminals, e.g., (NN discrepancy) into (NN (WP
disc) (WP ##re) (WP ##pan) (WP ##cy)).

Environment. EFLOPS (Dong et al., 2020) is
a highly scalable distributed training system de-
signed by Alibaba. With its optimized hardware
architecture and co-designed supporting software
tools, including ACCL (Dong et al., 2021) and
KSpeed (the high-speed data-loading service), it
could easily be extended to 10K nodes (GPUs) with
linear scalability.

Hyperparameters. The tree encoder of our
model uses 4-layer Transformers with 768-
dimensional embeddings, 3,072-dimensional hid-
den layer representations, and 12 attention heads.
The top-down parser of our model uses a 4-layer
bidirectional LSTM with 128-dimensional embed-
dings and 256-dimensional hidden layer. The sam-
pling number K is set to be 256. Training is con-
ducted using Adam optimization with weight decay
using a learning rate of 5 × 10−5 for the tree en-
coder and 1× 10−2 for the top-down parser. The
batch size is set to 64 per GPU for m=4, though
we also limit the maximum total length for each
batch, such that excess sentences are moved to the
next batch. The limit is set to 1,536. It takes about
120 hours for 60 epochs of training with m=4 on 8
A100 GPUs.

Data. For English, to fully leverage the scalabil-
ity of Fast-R2D2, we pretrain Fast-R2D2 on Wiki-
Text103 (Merity et al., 2017) and then fine-tune
the model on the Penn Treebank (PTB) (Marcus
et al., 1993) for 10 epochs with the same objec-
tive. WikiText103 is split at the sentence level, and

eval mem. WSJ CTB
Model gran. cplx F1(µ) F1(µ)

Left Branching (W) WD O(n) 8.15 11.28
Right Branching (W) WD O(n) 39.62 27.53
Random Trees (W) WD O(n) 17.76 20.17
URNNG (W) WD O(n3) 45.4† —
ON-LSTM (W) WD O(n) 47.7† 24.73
DIORA (W) WD O(n3) 51.4 —
StructFormer (W) WD O(n2) 54.0‡ —
C-PCFG (W) WD O(n3) 55.2† 49.95
R2D2 (WP) WD O(n) 48.11 44.85
Fast-R2D2∗(W)w/o WD O(n) 48.24 45.24
Fast-R2D2∗(WP)w/o WD O(n) 48.89 45.26
Fast-R2D2∗(WP) WD O(n) 57.22 53.13
R2D2 (WP) WP O(n) 52.28 63.94
Fast-R2D2(WP) WP O(n) 50.20 67.79
Fast-R2D2∗(WP) WP O(n) 53.88 67.74

Table 1: Unsupervised parsing results with words
(W) or word-pieces (WP) as input. “eval gran.”
is short for evaluation granularity. Values marked
with † are taken from Kim et al. (2019a), while ‡

denotes values taken from Shen et al. (2021). The
bottom three systems are all pre-trained or trained
at the word-piece level without span constraints
and are measured against word-piece level golden
trees. w/o means without pretraining.

sentences longer than 200 after tokenization are dis-
carded (about 0.04‰ of the original data). The total
number of sentences is 4,089,500, and the average
sentence length is 26.97. For Chinese, we use a sub-
set of Chinese Wikipedia (Simplified Characters)
for pretraining, specifically the first 10,000,000
sentences shorter than 150 characters and then fine-
tune on Chinese Penn Treebank (CTB) 8.0 (Xue
et al., 2005). We test our approach on PTB WSJ
data with the standard splits (2–21 for training, 22
for validation, 23 for test) and the same preprocess-
ing as in recent work (Kim et al., 2019a), where
we discard punctuation and lower-case all tokens.
To explore the universality of the model across
languages, we further evaluate using the CTB, on
which we also remove punctuation. Note that in all
settings, the training and fine-tuning is conducted
entirely on raw unannotated text.

4.1.2 Results and Discussion

Table 1 shows the results of all systems with words
(W) and word-pieces (WP) as input on the WSJ and
CTB test sets. When we evaluate all systems on
word-level golden trees, our Fast-R2D2 performs

2814

substantially better than R2D2 across both datasets.
We denote as Fast-R2D2 the method of using the
parser to guide the pruning and selecting the best
tree using the chart table and as Fast-R2D2∗ the
system that uses the top-down parser for tree induc-
tion with subsequent R2D2 encoding. Interestingly,
the results suggest that Fast-R2D2∗ outperforms
Fast-R2D2, especially on the WSJ test set. Addi-
tionally, pretrained Fast-R2D2∗ outperforms the
models specifically designed for grammar induc-
tion.

Model WD NNP VP SBAR

W
SJ

DIORA (WP) 94.63 77.83 17.30 22.16
C-PCFG (W) — — 41.7† 56.1†

C-PCFG (WP) 87.35 66.44 23.63 40.40
R2D2 (WP) 99.76 86.76 24.74 39.81
Fast-R2D2∗ (WP) 97.67 83.44 63.80 65.68

C
T

B C-PCFG(WP) 89.34 46.74 39.53 —
R2D2 (WP) 97.16 67.19 37.90 —
Fast-R2D2∗ (WP) 97.80 68.57 46.59 —

Table 2: Recall of constituents and words. WD
means word. Values with † are taken from Kim
et al. (2019a).

Following Kim et al. (2019b) and Drozdov et al.
(2020), we also compute the recall of constituents
when evaluating on word-piece level golden trees.
Besides standard constituents, we also compare
the recall of word-piece chunks and proper noun
chunks. Proper noun chunks are extracted by find-
ing adjacent unary nodes with the same parent and
tag NNP. Table 2 reports the recall scores for con-
stituents and words on the WSJ and CTB test sets.
Compared with the R2D2 baseline, our Fast-R2D2
performs slightly worse for small semantic units,
but significantly better over larger semantic units
(such as VP and SBAR) on the WSJ test set. On the
CTB test set, our Fast-R2D2 outperforms R2D2 on
all constituents.

From Tables 1 and 2, we conclude that Fast-
R2D2 overall obtains better results than R2D2 on
CTB, while faring slightly worse than R2D2 only
for small semantic units on WSJ. We conjecture
that this difference stems from differences in tok-
enization between Chinese and English. Chinese is
a character-based language without complex mor-
phology, where collocations of characters are con-
sistent with the language, making it easier for the
top-down parser to learn them well. In contrast,
word-pieces for English are built based on statis-
tics, and individual word-pieces are not necessarily

natural semantic units. Thus, there may not be
sufficient semantic self-consistency, such that it is
harder for a top-down parser with a small number
of parameters to fit it well.

4.2 Downstream Tasks

We next consider the effectiveness of Fast-R2D2
in downstream tasks. This experiment is not in-
tended to advance the state-of-the-art on the GLUE
benchmark but rather to assess to what extent our
approach performs respectably against the domi-
nant inductive bias as in conventional sequential
Transformers.

4.2.1 Setup

Data and Baseline. We fine-tune pretrained mod-
els on several datasets, including SST-2, CoLA,
QQP, and MNLI from the GLUE benchmark (Wang
et al., 2018). As sequential Transformers with their
dominant inductive bias remain the norm for nu-
merous NLP tasks, we mainly compare Fast-R2D2
with BERT (Devlin et al., 2018) as a representa-
tive pretrained model based on a sequential Trans-
former. We did not include recursive models such
as Gumbel-Tree-LSTMs (Choi et al., 2018) and
CRvNN (Chowdhury and Caragea, 2021) among
our baselines, as they are not pretrained models. In
order to compare the two forms of inductive bias
fairly and efficiently, we pretrain BERT models
with 4 layers and 12 layers as well as our Fast-
R2D2 from scratch on the WikiText103 corpus fol-
lowing Section 4.1.1. Considering that longer in-
puts in the pre-training stage are helpful for BERT’s
downstream task performance, we use the original
corpus that is not split into sentences as inputs. For
simplicity, Fast-R2D2 is fine-tuned without span
constraints. Following the common settings, we
add an MLP layer over the root representation of
the R2D2 encoder for single-sentence classifica-
tion. For cross-sentence tasks such as QQP and
MNLI, we feed the root representations of the two
sentences into the pretrained tree encoder of R2D2
as left and right inputs, and also add a new task ID
as another input term to the R2D2 encoder. Then
we feed the hidden output of the new task ID into
another MLP layer to predict the final label. We
train all systems across the four datasets for 10
epochs with a learning rate of 5× 10−5, batch size
64, and maximum input length 200. We validate
each model in each epoch and report the best results
on development sets.

2815

Model Para.

Single sent. Cross sent.

SST-2
(Acc.)

CoLA
(Mcc.)

QQP
(F1)

MNLI
m/mm
(Acc.)

BERT (4L) 52M 84.98 17.07 84.01 73.73/74.63
BERT (12L) 116M 90.25 40.72 87.13 80.00/80.41
R2D2 52M 89.33 34.79 84.27 69.35/68.72
Fast-R2D2†

52M/
10M

87.50 8.67 83.97 69.53/69.50
Fast-R2D2∗† 88.30 10.14 84.07 69.36/69.11
Fast-R2D2 90.25 38.45 84.35 69.36/68.80
Fast-R2D2∗ 90.71 40.11 84.32 69.64/69.57

Table 3: Downstream results. All systems are pre-
trained from scratch on WikiText103. Para. de-
scribes the number of parameters for each model.
Fast-R2D2 contains the R2D2 encoder and top-
down parser, two components with 52M and
10M parameters, respectively. Mcc. stands for
Matthew’s correlation coefficient. Fast-R2D2 with
† are models fine-tuned without Lbilm for an abla-
tion study.

4.2.2 Results and Discussion

Table 3 shows the corresponding scores on SST-2,
CoLA, QQPl, and MNLI. In terms of the parame-
ter size, our Fast-R2D2 model has 52M and 10M
parameters for the R2D2 encoder and top-down
parser, respectively. It is clear that 12-layer BERT

is significantly better than 4-layer BERT. As men-
tioned in Section 3.3, Fast-R2D2 has two options
to construct the final tree and representation for a
given input sentence: Fast-R2D2∗ uses the output
tree from the top-down parser, while Fast-R2D2
uses the best tree inferred by the R2D2 encoder.
Similar to the results for unsupervised parsing,
Fast-R2D2∗ in classification tasks again outper-
forms Fast-R2D2. We hypothesize that trees gener-
ated by the top-down parser without Gumbel noise
are more stable and reasonable. Fast-R2D2 sig-
nificantly outperforms 4-layer BERT and achieves
competitive results compared to 12-layer BERT in
single sentence classification tasks such as SST-2
and CoLA, but still performs significantly worse
in the cross-sentence tasks. We believe this is an
expected result, as there is no cross-attention mech-
anism in the inductive bias of Fast-R2D2. However,
the performance of Fast-R2D2 on classification
tasks shows that the inductive bias of R2D2 has
higher parameter utilization than sequentially ap-
plied Transformers. Importantly, we demonstrate
that a Recursive Neural Network variant with an un-
supervised parser can achieve comparable results

Model Sequence Length Ranges
0–50 50–100 100–200 200–500

BERT (12L) 1.36 1.46 1.62 2.38
R2D2 38.06 173.74 555.95 —
Fast-R2D2 4.67 14.91 39.73 150.26
Fast-R2D2* 1.28 2.96 5.56 10.70

Table 4: Inference time in seconds for various sys-
tems to process 1,000 sentences with a batch size
of 50.

to pretrained sequential Transformers even with
fewer parameters and interpretable intermediate re-
sults, Hence, our Fast-R2D2 framework provides
an alternative for NLP tasks.

4.3 Speed Evaluation
To assess the time cost, we mainly compare se-
quential Transformers and Fast-R2D2 in forced
encoding on various sequence length ranges. We
randomly select 1,000 sentences for each range
from WikiText103 and report the average time con-
sumption on a single A100 GPU. BERT is based on
the open source Transformers library2 and R2D2
is based on the official code in Hu et al. (2021).3

Table 4 shows the inference time in seconds for
different systems to process 1,000 sentences with a
batch size of 50. Running R2D2 is time-consuming,
since the heuristic pruning method involves sub-
stantial memory exchanges between GPU and CPU.
In Fast-R2D2, we alleviate this problem by using
model-guided pruning to accelerate the chart table
processing, in conjunction with a code implemen-
tation in CUDA, Fast-R2D2 reduces the inference
time significantly. Fast-R2D2∗ further improves
the inference speed by running forced encoding in
parallel over the binary tree generated by the parser,
which is about 30–50 times faster than R2D2 in var-
ious ranges. Although there is still a gap in speed
compared to sequential Transformers, Fast-R2D2∗

is sufficiently fast for most NLP tasks while pro-
ducing interpretable intermediate representations.

5 Related Work
Many attempts have been done in grammar induc-
tion and hierarchical encoding. Clark (2001) and
Klein and Manning (2002) provided some of the
first successful statistical approaches to grammar
induction. There have been multiple recent papers

2https://github.com/huggingface/
transformers

3https://github.com/alipay/
StructuredLM_RTDT/tree/r2d2

2816

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/alipay/StructuredLM_RTDT/tree/r2d2
https://github.com/alipay/StructuredLM_RTDT/tree/r2d2

that focus on structure induction based on language
modeling objectives (Shen et al., 2019a,b, 2021;
Kim et al., 2019a). Pollack (1990) proposed to use
RvNN as a recursive architecture to encode text
hierarchically, and Socher et al. (2013) showed the
effectiveness of RvNNs with gold trees for senti-
ment analysis. In this work, we focus on models
that are capable of learning meaningful structures
in an unsupervised way and encoding text over the
induced tree hierarchically.

In the line of work on learning a sentence rep-
resentation with structures, Yogatama et al. (2017)
jointly train their shift-reduce parser and sentence
embedding components without gold trees. As
their parser is not differentiable, they have to resort
to reinforcement training, resulting in increased
variance, which may easily collapse to trivial left or
right branching trees. Gumbel-Tree-LSTMs (Choi
et al., 2018) construct trees by recursively select-
ing two terminal nodes to merge and learning
the composition probability via downstream tasks.
CRvNN (Chowdhury and Caragea, 2021) makes
the entire process end-to-end differentiable and
parallel by introducing a continuous relaxation.
URNNG (Kim et al., 2019b) propose the first archi-
tecture to jointly pretrain parser and encoder based
on RNNG (Dyer et al., 2016). However, it has
O(n3) complexity and remains unable to improve
upon a right-branching baseline when punctuation
is removed. Maillard et al. (2017) propose an al-
ternative approach, based on a differentiable CKY
encoding. The algorithm is differentiable due to a
soft-gating approach, which approximates discrete
candidate selection by a probabilistic mixture of
the constituents available in a given cell of the chart.
While their work relies on annotated downstream
tasks to learn structures, Drozdov et al. (2019) pro-
pose a novel auto-encoder-like pretraining objec-
tive based on the inside–outside algorithm (Baker,
1979; Casacuberta, 1994).

6 Conclusion
In this paper, we have presented Fast-R2D2, which
improves the performance and inference speed of
R2D2 by introducing a fast top-down parser to
guide the pruning of the R2D2 encoder. Pretrained
on the same corpus, Fast-R2D2 significantly out-
performs sequential Transformers with a similar
scale of parameters on classification tasks. Experi-
mental results show that Fast-R2D2 is a promising
and feasible way to learn hierarchical text repre-
sentations, which is different from layer stacking

models and can also generate interpretable inter-
mediate representations. As future work, we are
investigating leveraging the intermediate represen-
tations in additional downstream tasks.

7 Limitations
Our approach has three major limitations. First,
Fast-R2D2 has shortcomings with regard to cross-
sentence tasks due to the lack of cross-attention
between sentences. Second, Fast-R2D2 requires
greater memory resources for pretraining compared
to sequential Transformers. At each invocation, the
composition function takes four inputs and runs
on m candidates, which means the total number of
calls to the MLP is 4mn. Hence, the pretraining
time of Fast-R2D2 is about 3 to 4 times that of
BERT with 12 layers. Finally, our model does not
beat most of the baselines in grammar induction
when trained on WSJ only. A side effect of the
pruning strategy is that the chart-table actually is
a sparse table, which means not all tokens are re-
constructed based on complete context. This issue
can be alleviated by pre-training on a large corpus,
which is what our method is designed for, and why
we introduce the ability to parallelize the computa-
tion.

8 Acknowledgement
We would like to thank the Aliyun EFLOPS team
for their substantial support in designing and pro-
viding a cutting-edge training platform to facilitate
fast experimentation in this work. We would also
like to thank the Zhixiaobao team for their support
in applying our model to real applications.

2817

References
James K. Baker. 1979. Trainable grammars for speech

recognition. Journal of the Acoustical Society of
America, 65.

Francisco Casacuberta. 1994. Statistical estimation of
stochastic context-free grammars using the inside-
outside algorithm and a transformation on grammars.
In Grammatical Inference and Applications, Second
International Colloquium, ICGI-94, Alicante, Spain,
September 21-23, 1994, Proceedings, volume 862 of
Lecture Notes in Computer Science, pages 119–129.
Springer.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
5094–5101. AAAI Press.

Noam Chomsky. 1956. Three models for the description
of language. IRE Trans. Inf. Theory, 2(3):113–124.

Noam Chomsky. 2014. Aspects of the Theory of Syntax,
volume 11. MIT press.

Jishnu Ray Chowdhury and Cornelia Caragea. 2021.
Modeling hierarchical structures with continuous
recursive neural networks. In Proceedings of the
38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research,
pages 1975–1988. PMLR.

Alexander Clark. 2001. Unsupervised induction of
stochastic context-free grammars using distributional
clustering. In Proceedings of the ACL 2001 Work-
shop on Computational Natural Language Learning,
CoNLL 2001, Toulouse, France, July 6-7, 2001. ACL.

John Cocke. 1969. Programming Languages and Their
Compilers: Preliminary Notes. New York University,
USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye,
Shaochuang Wang, Fei Feng, Li Zhao, Xiaoyong Liu,
Liuyihan Song, Liwei Peng, Yiqun Guo, Xiaowei
Jiang, Lingbo Tang, Yin Du, Yingya Zhang, Pan Pan,
and Yuan Xie. 2020. EFLOPS: algorithm and system
co-design for a high performance distributed training
platform. In IEEE International Symposium on High
Performance Computer Architecture, HPCA 2020,
San Diego, CA, USA, February 22-26, 2020, pages
610–622. IEEE.

Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng Cao,
Heng Pan, Lingbo Tang, Pengcheng Li, Hao Li,
Qianyuan Ran, Yiqun Guo, Shanyuan Gao, Xin Long,
Jie Zhang, Yong Li, Zhisheng Xia, Liuyihan Song,
Yingya Zhang, Pan Pan, Guohui Wang, and Xiaowei
Jiang. 2021. ACCL: architecting highly scalable dis-
tributed training systems with highly efficient collec-
tive communication library. IEEE Micro, 41(5):85–
92.

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, Tim
O’Gorman, Mohit Iyyer, and Andrew McCallum.
2020. Unsupervised parsing with S-DIORA: Single
tree encoding for deep inside-outside recursive au-
toencoders. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4832–4845, Online. Association
for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1129–1141, Minneapolis, Minnesota.
Association for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

E.J.Gumbel. 1954. Statistical theory of extreme values
and some practical applications: a series of lectures.

Jenny Rose Finkel, Christopher D. Manning, and An-
drew Y. Ng. 2006. Solving the problem of cascading
errors: Approximate bayesian inference for linguistic
annotation pipelines. In EMNLP 2006, Proceedings
of the 2006 Conference on Empirical Methods in Nat-
ural Language Processing, 22-23 July 2006, Sydney,
Australia, pages 618–626. ACL.

Joshua Goodman. 1998. Parsing inside-out. CoRR,
cmp-lg/9805007.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

2818

https://doi.org/10.1007/3-540-58473-0_142
https://doi.org/10.1007/3-540-58473-0_142
https://doi.org/10.1007/3-540-58473-0_142
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16682
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
http://proceedings.mlr.press/v139/chowdhury21a.html
http://proceedings.mlr.press/v139/chowdhury21a.html
https://aclanthology.org/W01-0713/
https://aclanthology.org/W01-0713/
https://aclanthology.org/W01-0713/
https://doi.org/10.1109/HPCA47549.2020.00056
https://doi.org/10.1109/HPCA47549.2020.00056
https://doi.org/10.1109/HPCA47549.2020.00056
https://doi.org/10.1109/MM.2021.3091475
https://doi.org/10.1109/MM.2021.3091475
https://doi.org/10.1109/MM.2021.3091475
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://aclanthology.org/W06-1673/
https://aclanthology.org/W06-1673/
https://aclanthology.org/W06-1673/
http://arxiv.org/abs/cmp-lg/9805007
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman.
2018. Grammar induction with neural language mod-
els: An unusual replication. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4998–5003, Brussels,
Belgium. Association for Computational Linguistics.

Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su,
Jing Zheng, and Gerard de Melo. 2021. R2D2: Re-
cursive transformer based on differentiable tree for
interpretable hierarchical language modeling. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 4897–4908,
Online. Association for Computational Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categori-
cal reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Tadao Kasami. 1966. An efficient recognition and
syntax-analysis algorithm for context-free languages.
Coordinated Science Laboratory Report no. R-257.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,
Chris Dyer, and Gábor Melis. 2019b. Unsupervised
recurrent neural network grammars. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 1105–1117, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2002. A gener-
ative constituent-context model for improved gram-
mar induction. In Proceedings of the 40th Annual
Meeting of the Association for Computational Lin-
guistics, July 6-12, 2002, Philadelphia, PA, USA,
pages 128–135. ACL.

Chris J. Maddison, Daniel Tarlow, and Tom Minka.
2014. A* sampling. In Advances in Neural Infor-
mation Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages
3086–3094.

Jean Maillard, Stephen Clark, and Dani Yogatama.
2017. Jointly learning sentence embeddings
and syntax with unsupervised tree-lstms. CoRR,
abs/1705.09189.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jordan B. Pollack. 1990. Recursive distributed repre-
sentations. Artif. Intell., 46(1-2):77–105.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron C. Courville, and Yoshua Bengio.
2018. Straight to the tree: Constituency parsing with
neural syntactic distance. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 1171–
1180. Association for Computational Linguistics.

Yikang Shen, Shawn Tan, Seyed Arian Hosseini,
Zhouhan Lin, Alessandro Sordoni, and Aaron C.
Courville. 2019a. Ordered memory. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 5038–5049.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron C. Courville. 2019b. Ordered neurons: Inte-
grating tree structures into recurrent neural networks.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron C. Courville. 2021. Structformer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
7196–7209. Association for Computational Linguis-
tics.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis. 2017. Mastering
the game of go without human knowledge. Nat.,
550(7676):354–359.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,

2819

https://doi.org/10.18653/v1/D18-1544
https://doi.org/10.18653/v1/D18-1544
https://doi.org/10.18653/v1/2021.acl-long.379
https://doi.org/10.18653/v1/2021.acl-long.379
https://doi.org/10.18653/v1/2021.acl-long.379
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://proceedings.neurips.cc/paper/2014/hash/309fee4e541e51de2e41f21bebb342aa-Abstract.html
http://arxiv.org/abs/1705.09189
http://arxiv.org/abs/1705.09189
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.1016/0004-3702(90)90005-K
https://doi.org/10.1016/0004-3702(90)90005-K
https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/P18-1108
https://proceedings.neurips.cc/paper/2019/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/

EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1631–1642. ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer.
2005. The penn chinese treebank: Phrase struc-
ture annotation of a large corpus. Nat. Lang. Eng.,
11(2):207–238.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to com-
pose words into sentences with reinforcement learn-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control, 10(2):189–208.

2820

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe

9 Appendix
9.1 Tree Examples

System Tree

FAST-R2D2
pricing cycles to be sure are nothing new for plastics producers

GOLD
pricing cycles to be sure are nothing new for plastics producers

FAST-R2D2
we were all wonderful heroes last year says an executive at one of quantum ’ s competitors

GOLD
we were all wonderful heroes last year says an executive at one of quantum ’s competitors

FAST-R2D2
a quick turn ##around is crucial to quantum because its cash requirements remain heavy

GOLD
A quick turnaround is crucial to Quantum because its cash requirements remain heavy

FAST-R2D2
some analysts saw the payment as an effort also to di ##sp ##el takeover speculation

GOLD
Some analysts saw the payment as an effort also to dispel takeover speculation

FAST-R2D2
ford motor co . said it acquired 5 % of the shares in jaguar plc

GOLD
Ford Motor Co. said it acquired 5 % of the shares in Jaguar PLC

2821

