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Abstract

Multi-turn dialogue modeling as a challeng-
ing branch of natural language understanding
(NLU), aims to build representations for ma-
chines to understand human dialogues, which
provides a solid foundation for multiple down-
stream tasks. Recent studies of dialogue mod-
eling commonly employ pre-trained language
models (PrLMs) to encode the dialogue history
as successive tokens, which is insufficient in
capturing the temporal characteristics of dia-
logues. Therefore, we propose Bidirectional
Information Decoupling Network (BiDeN) as
a universal dialogue encoder, which explic-
itly incorporates both the past and future con-
texts and can be generalized to a wide range
of dialogue-related tasks. Experimental re-
sults on datasets of different downstream tasks
demonstrate the universality and effectiveness
of our BiDeN. The official implementation of
BiDeN is available at https://github.com/
EricLee8/BiDeN.

1 Introduction

Multi-turn dialogue modeling as one of the core
tasks in natural language understanding, aims to
build representations for machines to understand
human dialogues. It is the foundation of solving
multiple dialogue-related tasks such as selecting
a response (Lowe et al., 2015; Zhang et al., 2018;
Cui et al., 2020), answering questions (Sun et al.,
2019a; Yang and Choi, 2019; Li et al., 2020a), or
making a summarization according to the dialogue
history (Gliwa et al., 2019; Chen et al., 2021).

Dialogue contexts possess their intrinsic nature
of informal, colloquial expressions, discontinu-
ous semantics, and strong temporal characteristics
(Reddy et al., 2019; Yang and Choi, 2019; Chen
et al., 2020; Qin et al., 2021a), making them harder
for machines to understand compared to plain texts
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(Rajpurkar et al., 2016; Cui et al., 2020; Zhang
et al., 2021). To tackle the aforementioned obsta-
cles, most of the existing works on dialogue mod-
eling have made efforts from three perspectives.
The first group of works adopt a hierarchical en-
coding strategy by first encoding each utterance in
a dialogue separately, then making them interact
with each other by an utterance-level interaction
module (Zhang et al., 2018; Li and Choi, 2020;
Gu et al., 2021). This strategy shows sub-optimal
to model multi-turn dialogue owing to the neglect
of informative dialogue contexts when encoding
individual utterances. The second group of works
simply concatenate all the utterances chronologi-
cally as a whole (together with response candidates
for the response selection task), then encode them
using pre-trained language models (PrLMs) (Zhang
et al., 2020a; Smith et al., 2020). This encoding
pattern has its advantage of leveraging the strong
interaction ability of self-attention layer in Trans-
former (Vaswani et al., 2017) to obtain token-level
contextualized embedding, yet ignores utterance-
level modeling in dialogue contexts. Sankar et al.
(2019) also demonstrate that the simple concate-
nation is likely to ignore the conversational dy-
namics across utterances in the dialogue history.
The third group of works employ a pack and sepa-
rate method by first encoding the whole dialogue
context using PrLMs, then separating them to form
representations of different granularities (turn-level,
utterance-level, etc.) for further interaction (Zhang
et al., 2021; Liu et al., 2021a).

Unfortunately, all works mentioned above paid
little attention to the temporal characteristics of
dialogue texts, which are supposed to be useful
and essential for modeling multi-turn dialogues.
Different from previous works and to fill the gap
of effectively capturing the temporal features in
dialogue modeling, we propose a simple but ef-
fective Bidirectional Information Decoupling Net-
work (BiDeN), which explicitly incorporates both
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#Person1#: Hi, Della. How long are you going to stay here?
#Person2#: Only 4 days. I know that's not long enough, but
I have to go to London after the concert here at the weekend.
#Person1#: I'm looking forward to your concert very much.
Can you tell me where you sing in public for the first time?
#Person2#: Hmmm... At my high school concert, my legs
shook uncontrollably and I almost fell.
#Person1#: I don't believe that. Della, have you been to any
clubs in Manchester?
#Person2#: No, I haven’t. But my boyfriend and I just plan
to visit one this evening.

Dialogue Context:

a). Response selection: (Classification style)
A: #Person1#: Great, I can recommend some hotels to you.
B: #Person1#: Great, I can recommend some clubs to you.
C: #Person1#: What a pity that you are not interested in clubs.
Answer: B
b). Extractive QA: (Retrieval style)
Question: Where the conversation takes place?
Answer: in Manchester
c). Dialogue summarization: (Generative style)
Summary: #Person1# asks Della where she sing in public for 
the first time and her plans in Manchester.

Downstream tasks:

Figure 1: An example of different downstream tasks
based on dialogue contexts.

the past and future information from the dialogue
contexts. Our proposed model can serve as a univer-
sal dialogue encoder and be generalized to a wide
range of downstream dialogue-related tasks cover-
ing classification, retrieval, and generative styles as
illustrated in Figure 1.

In detail, we first concatenate all the utter-
ances to form a dialogue context, then encode it
with a PrLM. After obtaining the representations
output by the PrLM, three additional parameter-
independent information decoupling layers are ap-
plied to decouple three kinds of information en-
tangled in the dialogue representations: past-to-
current, future-to-current, and current-to-current
information. Respectively, the past-to-current in-
formation guides the modeling of what the current
utterance should be like given the past dialogue
history, the future-to-current information guides
the modeling of what kind of current utterance will
lead to the development of the future dialogue, and
the current-to-current information guides the mod-
eling of the original semantic meaning resides in
the current utterance. After obtaining these repre-
sentations, we fuse them using a Mixture of Experts
(MoE) mechanism (Jacobs et al., 1991) to form the
final dialogue history representations.

Let’s focus again on Figure 1 and take the re-
sponse selection task as example. When modeling
the three candidate responses, the past-to-current
information of the responses and the future-to-

current information of each utterance in the context
will detect incoherent temporal features in response
A and C, and coherent feature of response B, which
help the model to deduce the final answer.

We conduct experiments on three datasets that
belong to different types of dialogue-related tasks:
Multi-Turn Dialogue Reasoning (MuTual, Cui
et al. 2020) for response selection, Molweni (Li
et al., 2020a) for extractive question-answering
(QA) over multi-turn multi-party dialogues, and
DIALOGSUM (Chen et al., 2021) for dialogue
summarization. Experimental results on these three
datasets show that BiDeN outperforms strong base-
lines by large margins and achieves new state-of-
the-art results.

The contributions of our work are three-fold:
• The proposed model can serve as a universal

dialogue encoder and easily be applied to various
downstream dialogue-related tasks.

• The proposed model is designed to model the in-
dispensable temporal characteristics of dialogue
contexts, which are ignored by previous works.
To the best of our knowledge, this is the first pa-
per that introduces the back-and-forth reading
strategy (Sun et al., 2019b) to the modeling of
temporal characteristics of dialogues.

• Experimental results on three benchmark datasets
show that our simple but effective model out-
performs strong baselines by large margins, and
achieves new state-of-the-art results.

2 Related Works

2.1 Pre-trained Language Models

Our model is implemented based on pre-trained
language models (PrLMs), which have achieved
remarkable results on many natural language un-
derstanding (NLU) tasks and are widely used as a
text encoder by many researchers (Wu et al., 2022;
Li et al., 2022). Based on self-attention mechanism
and Transformer (Vaswani et al., 2017), together
with pre-training on large corpora, PrLMs have a
strong capability of encoding natural language texts
into contextualized representations. To name a few,
BERT (Devlin et al., 2019), ALBERT (Lan et al.,
2020) and ELECTRA (Clark et al., 2020) are the
most prominent ones for NLU; GPT (Radford et al.,
2019), T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020) are the most representative ones for
natural language generation. In our work, we se-
lect BERT, ELECTRA, and BART as the encoder
backbones of our model.
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Figure 2: The overview of our model, which consists of three main parts: a pre-trained language model encoder
(PrLM encoder), a Bidirectional Information Decoupling Module (BIDM) and a Mixture of Experts (MoE) module.
A gray square in the middle part means the representation of this token in this channel is invalid, which will be
ignored by the MoE module.

2.2 Multi-turn Dialogue Modeling

There are several previous studies on multi-turn
dialogue modeling for different downstream tasks.
Li et al. (2021b) propose DialoFlow, which uti-
lizes three novel pre-training objectives to cap-
ture the information dynamics across dialogue ut-
terances for response generation. Zhang et al.
(2021) design a Pivot-oriented Deep Selection
mode (PoDS) to explicitly capture salient utter-
ances and incorporate common sense knowledge
for response selection. Liu et al. (2021a) pro-
pose a Mask-based Decoupling-Fusing Network
(MDFN), which adopts a mask mechanism to ex-
plicitly model speaker and utterance information
for two-party dialogues. Liu et al. (2021b) propose
a Graph Reasoning Network (GRN) to explicitly
model the reasoning process on multi-turn dialogue
response selection. Different from all these detailed
works focusing on specific tasks, in this work, we
devote ourselves to a universal dialogue modeling
enhancement by effectively capturing the long-term
ignored temporal features of dialogue data.

3 Methodology

In this part, we introduce BiDeN and its three mod-
ules, whose overview is shown in Figure 2. The
left part is a pre-trained language model encoder.
Given a sequence of input tokens, the PrLM en-
coder yields their contextualized representations.
The middle part is a Bidirectional Information De-

coupling Module (BIDM), which decouples the en-
tangled representations into three channels for each
utterance: future-to-current representations, past-
to-current representations and current-to-current
representations. The right part is a Mixture of Ex-
perts (MoE) module, which calculates an expert
distribution to dynamically fuse the three kinds of
representations for each token. In the following
sections, we will introduce them in detail, respec-
tively.

3.1 Pre-trained Language Model Encoder

Given a set of input tokens X = {w1, w2, ..., wn},
we first embed them into a high dimensional em-
bedding space using an embedding look-up table ϕ:
ET = ϕ(X) = {e1, e2, ..., en} ∈ Rn×d, where d
is the hidden size defined by the PrLM. After that,
positional embedding EP and segment embedding
ES will be added to ET to model the positional
and segment information: E = ET + EP + ES .
E is later fed into the Transformer layers to ob-
tain the contextualized representations H . We first
introduce the multi-head self-attention (MHSA)
mechanism:

Attn(Q, K, V ) = softmax(
QKT

√
dk

)V

headi = Attn(EW Q
i , EW K

i , EW V
i )

MultiHead(H) = [head1, . . . , headh]W O

(1)
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where W Q
i ∈ Rd×dq , W K

i ∈ Rd×dk , W V
i ∈

Rd×dv , W O ∈ Rhdv×d are transformation ma-
trices with trainable weights, h is the number of
attention heads, and [; ] denotes the concatenation
operation. dq, dk, dv are the hidden sizes of the
query vector, key vector and value vector, respec-
tively. MHSA is the foundation of Transformer,
which is easier to train and can model long dis-
tance dependencies. Given the input embeddings
E, the Transformer layers Trans(E) is formulated
as follows:

H0 = E ∈ Rn×d

H i
tmp = LN(MultiHead(H i−1) + H i−1)

H i = LN(FFN(H i
tmp) + H i

tmp)

FFN(x) = ReLU(xW1 + b1)W2 + b2

(2)

where LN is layer normalization, ReLU is a non-
linear activation function and W1, W2, b1, b2 are
trainable linear transformation matrices and bias
vectors, respectively.

We denote the stack of L Transformer layers
as Trans-L, the final representation output by the
PrLM encoder is:

H = Trans-L(E) ∈ Rn×d (3)

3.2 Bidirectional Information Decoupling

Given the token representations output by the PrLM
encoder, the Bidirectional Information Decoupling
Module will decouple them into three channels in
a back-and-forth way. We first introduce a masked
Transformer layer MTrans(E,M) by modifying
the first equation on Eq. (1) to:

Attn(Q, K, V ) = softmax(
QKT

√
dk

+M)V (4)

where M is an n × n attention mask matrix. The
function of M is to convert the original fully-
connected attention graphs to partially-connected
ones, so that each token will be forced to only focus
on part of the input sequence. Here we introduce
three kinds of attention masks, which guide the
decoupling process of the future-to-current chan-
nel, current-to-current channel, and past-to-current
channel, respectively. Specifically, suppose I(i)
means the index of the utterance that the ith token
belongs to, the three kinds of masks are obtained

by:

Mf2c[i, j] =

{
0, if I(i) < I(j)

−∞, otherwise

Mc2c[i, j] =

{
0, if I(i) = I(j)

−∞, otherwise

Mp2c[i, j] =

{
0, if I(i) > I(j)

−∞, otherwise

(5)

where Mf2c, Mc2c and Mp2c are future-to-current
mask, current-to-current mask and past-to-current
mask, respectively. After obtaining these masks,
three parameter-independent MTrans-1(H,M)
are applied to decouple the original representation
H as follows:

Hf2c = MTrans-1f2c(H,Mf2c)

Hc2c = MTrans-1c2c(H,Mc2c)

Hp2c = MTrans-1p2c(H,Mp2c)

(6)

Note that there are tokens who has no connec-
tions to any tokens in certain channels, e.g. the
tokens of the first utterance has no connections to
other tokens in past-to-future channel since there
are no previous utterances. To handle this case,
we simply ignore the invalid representations (gray
squares in Figure 2) by adding a fusion mask dur-
ing the fusion process, which will be introduced in
Section 3.3.

After the decoupling process, Hp2c contains the
information of the influence that the past dialogue
history brings about to the current utterance, or in
other words, it reflects what the current utterance
should be like given the past dialogue history. Hf2c

contains the information of the influence that the
current utterance brings about to future dialogue
contexts, or put it another way, it reflects what kind
of current utterance will lead to the development of
the future dialogue. Finally, Hc2c contains the in-
formation of the original semantic meaning resides
in the current utterance. By explicitly incorporat-
ing past and future information into each utterance,
our BIDM is equipped with the ability to capture
temporal features in dialogue contexts.

3.3 Mixture of Experts Module
We first introduce the Mixture of Experts (MoE)
proposed by Jacobs et al. (1991). Specifically,
m experts {fi(x)}m

i=1 are learned to handle dif-
ferent input cases. Then a gating function G =
{gi(x)}m

i=1 are applied to determine the importance
of each expert dynamically by assigning weights
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to them. The final output of MoE is the linear
combination of each expert:

MoE(x) =
m∑

i=1

gi(x) · fi(x) (7)

In this work, MTransf2c, MTransc2c and
MTransp2c are treated as three experts. We design
the gating function similar as Liu et al. (2021a) that
utilizes the original output H to guide the calcu-
lation of expert weights. In detail, we first calcu-
late a heuristic matching representation between H
and the three outputs of Section 3.2, respectively,
then obtain the expert weights G by considering
all three matching representations and calculate the
final fused representation He as follows:

Heuristic(X, Y ) = [X; Y ; X − Y ; X ⊙ Y ]

Sf = ReLU(Heuristic(H,Hf2c)Wf + bf )

Sc = ReLU(Heuristic(H,Hc2c)Wc + bc)

Sp = ReLU(Heuristic(H,Hp2c)Wp + bp)

G = Softmax([Sf ; Sc; Sp]Wg + Mg) ∈ Rn×d×3

He = Sum(Stack(Hf2c; Hc2c; Hp2c) ⊙ G)
(8)

Here He ∈ Rn×d, ⊙ represents element-wise
multiplication, Wf , Wc, Wp ∈ R4d×d and bf ,
bc, bp ∈ Rd are trainable transformation matrices
and bias vectors, respectively. Wg ∈ R3d×d×3 is a
trainable gating matrix that generates feature-wise
expert scores by considering all three kinds of in-
formation. Mg is a fusion mask added for ignoring
invalid tokens, which is introduced in Section 3.2.

After incorporating future-to-current, past-to-
current and current-to-current information, we ob-
tain temporal-aware representation He, which can
be used for various dialogue-related tasks described
in Section 4.

4 Experiments

4.1 Benchmark Datasets

We adopt Multi-Turn Dialogue Reasoning (Mutual,
Cui et al. 2020) for response selection, Molweni
(Li et al., 2020a) for extractive QA over multi-turn
multi-party dialogues, and DIALOGSUM (Chen
et al., 2021) for dialogue summarization.

MuTual is proposed to boost the research of the
reasoning process in retrieval-based dialogue sys-
tems. It consists of 8,860 manually annotated two-
party dialogues based on Chinese student English
listening comprehension exams. For each dialogue,

four response candidates are provided and only one
of them is correct. A plus version of this dataset is
also annotated by randomly replacing a candidate
response with safe response (e.g. I didn’t hear you
clearly), in order to test whether a model is able to
select a safe response when the other candidates are
all inappropriate. This dataset is more challenging
than other datasets for response selection since it
requires some reasoning to select the correct candi-
date. This is why we choose it as our benchmark
for the response selection task.

Molweni is a dataset for extractive QA over
multi-party dialogues. It is derived from the large-
scale multi-party dialogue dataset — Ubuntu Chat
Corpus (Lowe et al., 2015), whose main theme
is technical discussions about problems on the
Ubuntu system. In total, it contains 10,000 di-
alogues annotated with questions and answers.
Given a dialogue, several questions will be asked
and the answer is guaranteed to be a continuous
span in the dialogue context. The reason we choose
this dataset as a benchmark for retrieval style task
is that we want to test whether our model still holds
on multi-party dialogue contexts.

DIALOGSUM is a large-scale real-life dialogue
summarization dataset. It contains 13,460 daily
conversations collected from different datasets or
websites. For each dialogue context, annotators are
asked to write a concise summary that conveys the
most salient information of the dialogue from an ob-
server’s perspective. This dataset is designed to be
highly abstractive, which means a generative model
should be adopted to generate the summaries.

4.2 Experimental Setups

On the MuTual dataset, ELECTRA is adopted as
the PrLM encoder for a fair comparison with pre-
vious works. We follow Liu et al. (2021a) to get
the dialogue-level representation Hd from He. We
first obtain the utterance-level representations by
applying a max-pooling over the tokens of each
utterance, then use a Bidirectional Gated Recur-
rent Unit (Bi-GRU) to summarize the utterance-
level representations into a single dialogue-level
vector. For one dialogue history with four can-
didate responses, we concatenate them to form
four dialogue contexts and encode them to obtain
HD = {H i

d}4
i=1 ∈ Rd×4. Given the index of the

correct answer itarget, we compute the candidate
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Model MuTual MuTualplus

R@1 R@2 MRR R@1 R@2 MRR
From Paper (Cui et al., 2020)
DAM 0.239 0.463 0.575 0.261 0.520 0.645
SMN 0.274 0.524 0.575 0.264 0.524 0.578
BERT 0.657 0.867 0.803 0.514 0.787 0.715
RoBERTa 0.695 0.878 0.824 0.622 0.853 0.782
ELECTRA 0.907 0.975 0.949 0.826 0.947 0.904

+BIDM ∗0.916 ∗0.980 ∗0.955 0.830 0.950 0.906
+BiDeN ∗∗0.935 ∗0.979 ∗∗0.963 ∗∗0.839 0.951 ∗0.910

Table 1: Results on the development sets of MuTual and MuTualplus. The first four rows are directly taken from the
original paper of MuTual. Here ∗ denotes that the result outperforms the baseline model significantly with p-value
< 0.05 in paired t-test and ∗∗ denotes < 0.01.

distribution and classification loss by:

PD = Softmax(wT
d HD) ∈ R4

LD = −log(PD[itarget])
(9)

where wd ∈ Rd is a trainable linear classifier and
LD is the cross entropy loss.

On the Molweni dataset, BERT is adopted as the
PrLM encoder for a fair comparison with previous
works. We simply regard the question text as a
special utterance and concatenate it to the end of
the dialogue history to form the input sequence.
After obtaining He, we add two linear classifiers
to compute the start and end distributions over all
tokens. Given the start and end positions of the
answer span [as, ae], cross entropy loss is adopted
to train our model:

Pstart = Softmax(Hew
T
s ) ∈ Rn

Pend = Softmax(Hew
T
e ) ∈ Rn

LSE = −(log(Pstart[as]) + log(Pend[ae]))
(10)

where ws and we ∈ Rd are two trainable linear
classifiers.

On the DIALOGSUM dataset, BART is chosen
as our backbone since it is one of the strongest
generative PrLMs. Different from the previous two
PrLMs, BART adopts an encoder-decoder archi-
tecture where the encoder is in charge of encoding
the input texts and the decoder is responsible for
generating outputs. Therefore, we add our BIDM
after the encoder of BART. Note that BART is pre-
trained on large corpora using self-supervised text
denoising tasks, hence there is a strong coupling
on the pre-trained parameter weights between the
encoder and decoder. Under this circumstance,
simply adding our BIDM after the encoder will
destroy the coupling between encoder and decoder,
resulting in the decline of model performance. To

tackle this problem, we propose novel a copy-and-
reuse way to maintain the parameter-wise coupling
between the encoder and decoder. Specifically,
instead of using randomly initialized decoupling
layers, we reuse the last layer of BART encoder
and load the corresponding pre-trained weights to
initialize the future-to-current, current-to-current,
and past-to-current decoupling layers, respectively.
We train this model by an auto-regressive language
model loss:

LG = −
N∑

t=1

log p (wt | θ, w<t) (11)

where θ is the model parameters, N is the total
number of words in the target summary and wt is
the token at time step t. We also conduct experi-
ments on the SAMSum (Gliwa et al., 2019) dataset,
and the results are presented in Appendix B.

For hyper-parameter settings and more details
about our experiments, please refer to Appendix A.

4.3 Results

In this section, we will briefly introduce the base-
line models and evaluation metrics, then present
the experimental results on different datasets.

4.3.1 Results on MuTual
Table 1 shows the results on the development sets
of MuTual and MuTualplus, respectively. Follow-
ing Cui et al. (2020), we adopt R@k (Recall at K)
and MRR (Mean Reciprocal Rank) as our evalu-
ation metrics. The baseline models we compare
here are: two PrLM-free methods DAM (Zhou
et al., 2018) and Sequential Matching Network
(SMN, Wu et al. 2017), who encode the context
and response separately and match them on dif-
ferent granularities. Three PrLM-based baselines:
BERT, RoBERTa (Liu et al., 2019) and ELECTRA.
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Model MuTual / MuTualplus

R@1 R@2 MRR
GRN 0.915 / 0.841 0.983 / 0.957 0.954 / 0.913
MDFN 0.916 / — 0.984 / — 0.956 / —
DAPO 0.916 / 0.836 0.988 / 0.955 0.956 / 0.910
CF-DR 0.921 / 0.810 0.985 / 0.946 0.958 / 0.896
BiDeN 0.930 / 0.845 0.983 / 0.958 0.962 / 0.914

Table 2: Results on the hidden test sets from the leader-
board of MuTual dataset.

We see from Table 1 that PrLM-free models per-
form worse than PrLM-based models and different
PrLMs have different results, where ELECTRA
is the best. Compared with vanilla ELECTRA,
simply adding BIDM is able to improve the per-
formance, demonstrating that explicitly incorpo-
rating the temporal features has a heavy impact
on understanding dialogue contexts. By further
equipping BiDeN, we observe giant improvements
over ELECTRA by 2.8% and 1.3% R@1 on Mu-
Tual and MuTualplus, respectively. Note that the
absolute improvements on R@2 are not as high
as on R@1. We infer this is because the scores
on this metric are already high enough, thus it is
harder to achieve very large absolute improvements.
However, when it comes to the error rate reduction,
BiDeN impressively reduces the error rate from
2.5% to 2.0%, which is a 20% relative reduction.

Table 2 presents the current SOTA models on
the leaderboard of MuTual, which is tested on the
hidden test set. Graph Reasoning Network (GRN,
Liu et al. 2021b) utilizes Graph Convolutional Net-
works to model the reasoning process. MDFN (Liu
et al., 2021a) is introduced in Section 2.2, Dialogue-
Adaptive Pre-training Objective (DAPO, Li et al.
2020b) designs a special pre-training objective for
dialogue modeling. CF-DR is the previous first
place on the leaderboard, but without a publicly
available paper. We see from the table that BiDeN
achieves new SOTA results on both datasets, espe-
cially on MuTual, where we observe a performance
gain of 0.9% R@1 score.

4.3.2 Results on Molweni
Table 3 shows the results on Molweni dataset,
where we use Exactly Match (EM) and F1 score
as the evaluation metrics. DADGraph (Li et al.,
2021a) utilizes the discourse parsing annotations
in the Molweni dataset and adopts Graph Neu-
ral Networks (GNNs) to explicitly model the dis-
course structure of dialogues. Compared with them,
BiDeN needs no additional discourse labels but per-

Model EM F1
BERTDADGraph (Li et al., 2021a) 0.465 0.615
BERTSUP (Li and Zhao, 2021) 0.492 0.640
BERT 0.458 0.602

+BIDM ∗0.475 ∗∗0.626
+BiDeN ∗∗0.481 ∗∗0.632

SUP+BiDeN ∗∗0.503 ∗∗0.659

Table 3: Results on Molweni, where ∗ and ∗∗ represent
the same as in Table 1.

Model Rouge-1 Rouge-2 Rouge-L
DialoBART 0.533 0.296 0.520
DialSent-PGG 0.547 0.305 0.535
BART 0.528 0.289 0.511

+BIDM 0.535 ∗0.301 ∗0.523
+BiDeN ∗∗0.548 ∗∗0.307 ∗∗0.532

Table 4: Results on DIALOGSUM, where ∗ and ∗∗

represent the same as in Table 1.

forms better. SUP (Li and Zhao, 2021) designs aux-
iliary self-supervised predictions of speakers and
utterances to enhance multi-party dialogue com-
prehension. We see from the table that our model
outperforms vanilla BERT by large margins, which
are 2.2% on EM and 2.5% on F1, respectively. In
addition, SUP can be further enhanced by BiDeN.

4.3.3 Results on DIALOGSUM

Table 4 presents the results on DIALOGSUM. We
follow Chen et al. (2021) to adopt Rouge (py-
rouge) as our evaluation metric, which is widely
used in dialogue summarization field (Gliwa et al.,
2019; Chen et al., 2021). Rouge-n computes the
overlapping ratio of n-grams between the predic-
tion and reference summaries. ROUGE-L com-
putes the longest common subsequence (LCS) be-
tween the candidates and references, then calcu-
lates the F1 ratio by measuring the recall over ref-
erences and precision over candidates. Following
(Jia et al., 2022), we compute the maximum Rouge
score among all references for each sample. Table
4 shows our model again outperforms the strong
baseline BART by large margins, with over 2.0%
improvements on all metrics. Besides, compared
with the current SOTA models, BiDeN also ex-
hibits its superior capability in summarizing dia-
logue texts. DialoBART (Feng et al., 2021) utilizes
DialoGPT (Zhang et al., 2020b) to annotate key-
words, redundant utterances and topic transitions
in a dialogue, then explicitly incorporates them
into the dialogue texts to train BART. Their work
requires annotators to extract additional knowl-
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Model R@1 R@2 MRR
BiDeN 0.935 0.979 0.963

w/o BIDM 0.912 0.976 0.953
w/o BIDM (same #params) 0.923 0.981 0.958
w/o MoE 0.916 0.980 0.955
w/o Bi-GRU 0.927 0.980 0.960

Table 5: Ablation study on development set of MuTual

Model R@1 R@2 MRR
ELECTRA 0.907 0.975 0.949

+ Bi-LSTM 0.912 0.977 0.952
+ Bi-GRU 0.915 0.978 0.955
+ BiDeN 0.935 0.979 0.963

Table 6: Results of naive temporal modeling

edge, while our BiDeN still outperforms it on all
metrics. DialSent-PGG (Jia et al., 2022) designs
a pseudo-paraphrasing process to generate more
dialogue-summary pairs from the original dataset,
then post-trains the model on the pseudo-summary
dataset. After post-training, they fine-tune the sum-
marization model on the original dataset. Com-
pared with their work, which requires an additional
post-training process, BiDeN is much simpler and
faster to train, yet achieves comparable results.

5 Analysis

In this section, we conduct experiments on MuTual
dataset to get an in-depth understanding of BiDeN.

5.1 Ablation Study

To investigate the effectiveness of temporal mod-
eling, we remove BIDM to see how it affects the
performance. A sharp performance drop of 2.3%
is observed on R@1, demonstrating the necessity
and significance of explicit temporal modeling. In
order to probe into whether the performance gain
comes from the increment of model parameters,
we conduct experiments by simply replacing the
three kinds of masks defined in Eq. (5) with all-
zero masks (fully-connected attention graphs). We
see from the table that the increment of parameters
does add to the performance. Nevertheless, it is
sub-optimal compared with explicitly modeling the
temporal features by our BIDM.

We also remove MoE to see whether the dynamic
fusion mechanism helps. Specifically, we replace
this module with a simple mean pooling over the
three decoupled representations. Result shows that
MoE makes a huge contribution to the final result.
To explore the effect that the task-specific design,

[0, 4) [4,6) [6,8)  8
Number of utterances

0.90

0.92

0.94

0.96

Sc
or

es

Baseline-r1
BiDeN-r1
Baseline-mrr
BiDeN-mrr

Figure 3: Model performance v.s. the number of utter-
ances in a dialogue, where the post-fix -r1 represents
the R@1 score and -mrr stands for the MRR score.

Bi-GRU, brings about to our model, we remove
the Bi-GRU and simply average the utterance rep-
resentations to get the dialogue-level vector. We
see from the table that Bi-GRU does have positive
effects on the final performance, yet only to a slight
extent compared with other modules.

5.2 Naive Temporal Modeling
When it comes to bidirectional temporal model-
ing, the simplest way is to use Bidirectional Recur-
rent Neural Networks (Bi-RNNs). To investigate
whether BiDeN can be replaced by these naive
temporal modeling methods, we conduct experi-
ments by adding Bi-LSTM or Bi-GRU on top of
PrLMs instead of BiDeN. We see from Table 6 that
utilizing Bi-RNNs can improve the performance
slightly, but they are far behind BiDeN. This is be-
cause RNNs model the bidirectional information
only at token-level, while BiDeN models them by
explicitly modeling the utterance boundary with
attention masks, which is more consistent with the
data characteristics of dialogue texts.

5.3 Influence of Dialogue Length
Intuitively, with longer dialogue contexts comes
more complicated temporal features. Based on this
point, we analyze the model performance with re-
gard to the number of utterances in a dialogue. As
illustrated in Figure 3, the scores first increase from
short dialogues to medium-length dialogues. This
is because medium-length dialogues contain more
information for response matching than short ones.
For long dialogues, the baseline model suffers a
huge performance drop (see the blue and green
lines), while our BiDeN keeps bringing perfor-
mance improvement, demonstrating a strong ability
of it to capture complicated temporal features.
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5.4 Visualization of Attentions
To intuitively investigate how BiDeN works, we
visualize the attention weights of both current-to-
past and current-to-future attentions. Figure 4 (a)
shows the current-to-past attention weights. We
see that the utterance My boss told me not to go to
work again tends to focus on not in a good mood
of the previous utterance, which is a causal discov-
ery. Similarly, the last utterance I am so sorry that
you lost your job focuses more on not in a good
mood and not to go to work. Figure 4 (b) shows
an example of current-to-future attention, which is
an incorrect response example taken from MuTual
dataset. We see that the current utterance pays great
attention on the name Jane, which is supposed to
be Joe. This observation indicates that BiDeN is
capable of detecting the logical errors in the future
responses that contradict previous utterances. For
more visualizations, please refer to Appendix C.

6 Conclusion

In this paper, we propose Bidirectional Informa-
tion Decoupling Network (BiDeN) to explicitly
model the indispensable temporal characteristics
of multi-turn dialogues, which have been ignored
for a long time by existing works. BiDeN shows
simple but effective to serve as a universal dialogue
encoder for a wide range of dialogue-related tasks.
Experimental results and comprehensive analyses
on several benchmark datasets have justified the
effectiveness of our model.

Limitations

Despite the contributions of our work, there are
also unavoidable limitations of it.

First, we claim our BiDeN as a universal di-
alogue encoder which can be used in multiple
dialogue-related tasks. In our paper, without the
loss of generality, we select three most representa-
tive tasks in classification style, retrieval style, and
generative style tasks, respectively. However, there
are still so many other tasks such as dialogue emo-
tion recognition and dialogue act classification (Qin
et al., 2021b), and also so many other large-scale
datasets such as Ubuntu, Douban or E-Commerce
(Lowe et al., 2015; Zhang et al., 2018; Wu et al.,
2017). Due to the lack of computational resources
and page limits, our BiDeN is not tested on them.
We leave them to the readers who are interested
in our model and encourage them to utilize our
BiDeN in these tasks.
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[SEP]
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[SEP]
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[SEP]
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Figure 4: Visualization of attention weights.

Second, the three decoupling layers and the MoE
gates add to additional number of parameters (from
348M to 408M), resulting in the increment of com-
putational overheads during training and inference
(1.2× slower, 1.2× of GPU memory consumption).
However, we argue that the performance gains are
worth the additional overheads.
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A Hyper-parameter Settings

In this section, we present the detailed hyper-
parameter settings of each dataset.

A.1 Hyper-parameters for MuTual
For both MuTual and MuTualplus, we set the maxi-
mum input sequence length to 320, where the max-
imum response length is set to 52 which means the
maximum dialogue history length is 268. When
truncating the input sequence, we only truncate the
dialogue history and leave the response candidates
intact. To guarantee the fluency of dialogue history,
we truncate them from the front, and at the unit
of utterances instead of tokens. The learning rate,
training epochs, and batch size are set to 6e-6, 3,
and 2, respectively. We use AdamW as our train-
ing optimizer and a linear scheduler to schedule
the learning rate. The learning rate is first linearly
warmed up from 0 to 6e-6 at the first 1% steps then
decreased linearly to 0 until the end of training.

A.2 Hyper-parameters for Molweni
For the Molweni dataset, the maximum input se-
quence length is set to 384, where the maximum
question length is 32. Similar to the MuTual
dataset, we only truncate the dialogue history and
leave the question sentence intact. The learning
rate, training epochs, and batch size are set to 7e-5,
5, and 16, respectively. As for the optimizer and
scheduler, they are the same as the ones on MuTual
dataset.

A.3 Hyper-parameters for DIALOGSUM
For the DIALOGSUM dataset, the maximum input
sequence length and maximum summary length
are set to 512 and 100, respectively. The learning
rate, training epochs, and batch size are set to 2e-5,
15, and 12, respectively. During inference, we use
beam search to generate summaries, and set the
beam size to 4.

B Results on SAMSum Dataset

For the dialogue summarization task, we also con-
duct experiments on the SAMSum (Gliwa et al.,
2019) dataset. SAMSum is a dialogue summa-
rization dataset that contains 16,369 dialogues in
the form of online chatting messages. Compared
with DIALOGSUM, which is taken from real-life
person-to-person conversations, this dataset con-
tains dialogues that are more informal and collo-
quial. However, the summaries in this dataset are

Model Rouge-1 Rouge-2 Rouge-L
Multi-View BART 0.534 0.280 0.499
DialSent-PGG 0.535 0.289 0.502
DialoBART 0.537 0.288 0.508
ConDigSum 0.542 0.289 0.509
BART 0.526 0.271 0.492

+BIDM ∗0.531 ∗0.278 ∗0.498
+BiDeN ∗∗0.540 ∗∗0.291 ∗∗0.506

Table 7: Results on SAMSum, where ∗ and ∗∗ represent
the same as in Table 1.

less abstractive than DIALOGSUM (Chen et al.,
2021).

Results on SAMSum are tabulated in Table 7,
where we can see that BiDeN consistently outper-
forms the strong baseline BART by large margins.
We also compare BiDeN with different models that
are also built on BART. Multi-View BART (Chen
and Yang, 2020) incorporates different information
like topic and stage of dialogues to generate sum-
maries using a multi-view decoder. ConDigSum is
the current SOTA model on the SAMSum dataset,
which designs two contrastive auxiliary tasks: Co-
herence Detection and Sub-summary Generation
to implicitly model the topic information of dia-
logues. This model is trained with an alternating
updating strategy, which is approximately three
times slower than our BiDeN during training since
it requires three backward calculations in a single
batch. DialoBART and DialSent-PGG are intro-
duced in Section 4.3.3. Table 7 shows that BiDeN
achieves comparable results to ConDigSum and
outperforms all other models. It is worth noting
that all of the previous models require additional
dialogue annotators or training stages, while our
BiDeN is annotator-free, plug-and-play, and easy
to use.

Note that the original results of Multi-View and
ConDigSum are obtained by the files2rouge pack-
age based on the official ROUGE-1.5.5.pl Perl
script, while DialoBART and DialSent-PGG adopt
py-rouge. To make fair comparisons, we download
the output predictions of Multi-View and ConDig-
Sum, then run the py-rouge script to get the corre-
sponding results, which are the ones presented in
Table 7.

For the SAMSum dataset, we set the maximum
dialogue history length to 800, and the maximum
summary length to 100. The learning rate, training
epochs, and batch size are set to 2e-5, 5, and 4,
respectively. We also adopt beam search during
inference, where the beam size is also set to 4.
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C More Visualizations

We present more examples of the three kinds of
attentions: current-to-past attention, current-to-
future attention, and current-to-current attention,
for readers to further explore how BiDeN works.

Figure 5 (a) illustrates a conversation about a
concert, where the female thinks the dancing and
singing are perfect but the male disagrees. We can
see from the attention weights that when modeling
the second utterance, BiDeN focuses mostly on
dancing and singing, especially on singing, which
is consistent with its semantic meaning that some
singers sang awfully. In other words, BiDeN is ca-
pable of extracting the key information of previous
utterances when modeling the current utterance.

Figure 5 (b) is another example of Current-to-
future attention, where the male is unhappy because
he lost his job and the female feels sorry about that.
It can be observed that when modeling the second
utterance, BiDeN attends more on sorry and you
lost your job. This observation demonstrates that
BiDeN is able to locate the key information in the
future utterances to model what kind of current
utterance will lead to the development of the future
dialogue.

Figure 5 (c) shows an example of current-to-
current attention, which is the self-attention within
each utterance. Let’s focus on each utterance. The
first utterance mainly attends to shoes and nice,
which are two keywords that best reflect the se-
mantic meaning of this utterance. Similar observa-
tions can be seen in the rest three utterances, where
the most prominent words are expensive shoes and
fashionable, try on, and you need another size, re-
spectively. This observation indicates that BiDeN
can model the most salient and concise semantic
meaning in each utterance.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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(b) Current-to-future Attention
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[SEP]
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[SEP]
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[SEP]
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Figure 5: More visualization results.
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