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Abstract
We investigate model calibration in the setting
of zero-shot cross-lingual transfer with large-
scale pre-trained language models. The level
of model calibration is an important metric
for evaluating the trustworthiness of predic-
tive models. There exists an essential need
for model calibration when natural language
models are deployed in critical tasks. We study
different post-training calibration methods in
structured and unstructured prediction tasks.
We find that models trained with data from the
source language become less calibrated when
applied to the target language and that calibra-
tion errors increase with intrinsic task difficulty
and relative sparsity of training data. Moreover,
we observe a potential connection between the
level of calibration error and an earlier pro-
posed measure of the distance from English
to other languages. Finally, our comparison
demonstrates that among other methods Tem-
perature Scaling (TS) generalizes well to dis-
tant languages, but TS fails to calibrate more
complex confidence estimation in structured
predictions compared to more expressive alter-
natives like Gaussian Process Calibration.

1 Introduction

While deep neural networks, especially large pre-
trained language models, have driven striking im-
provements on various standard benchmarks (Wang
et al., 2018, 2019), it is never a good practice to
assume their predictions are accurate and should be
taken blindly. In many cases, it is important to un-
derstand “what a model does not know” through its
estimation of its uncertainty. For example, reliable
model confidence is important in high-stakes do-
mains (Begoli et al., 2019; Zhong et al., 2019), or
when downstream tasks leverage confidence scores
to mitigate error propagation (Chang et al., 2007).
Moreover, accurate confidence can serve as a mea-
sure of the value of information in iterative data
collection or human-in-the-loop learning (Zhang
et al., 2019; Chaudhary et al., 2021).

Figure 1: Averaged Expected Calibration Error (ECE)
before and after temperature scaling on English (top)
and Arabic (bottom) xlm-roberta-large; lower
is better. Multiple bars for a task reference full-data,
low-data, and very-low-data (from left to right) settings.
Models appear less calibrated when transferred to other
languages while temperature scaling remains effective.

Whether the model confidence is accurate is usu-
ally measured by how well it matches the observa-
tional data – through confidence calibration (Guo
et al., 2017). Yet modern neural networks are criti-
cized for being overconfident with their predictions,
given their increased capacity to fit the training
dataset (Guo et al., 2017). This problem is exac-
erbated by domain-shift (Ovadia et al., 2019) or
zero-/few-shot transfer (Liu et al., 2018). An im-
portant task that is often concerned with such data
shift is zero-shot cross-lingual transfer, which has
been viewed as a natural extension to domain adap-
tation (Ruder et al., 2019; Xian et al., 2021).

Existing studies in natural language processing
have mainly focused on zero-shot transfer accu-
racy alone (Wu and Dredze, 2019; K et al., 2020;
Lauscher et al., 2020), without concern for the un-
certainty measures of massive cross-lingual pre-
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training models (Devlin et al., 2019; Conneau et al.,
2020a; Liu et al., 2020; Xue et al., 2021). On the
other hand, large-scale uncertainty estimation and
calibration work have mostly been conducted in
the vision domain (Ovadia et al., 2019; Minderer
et al., 2021). Large-scaled calibration studies put
predominant importance on computer vision. In
natural language processing, while model calibra-
tion has wide applications w.r.t tasks such as text
classification (Jung et al., 2020; Kong et al., 2020),
seq2seq generation (Ott et al., 2018; Dong et al.,
2018; Wang et al., 2020), question answering (Ye
and Durrett, 2022; Kamath et al., 2020) and zero-
shot learning (Zhao et al., 2021), benchmarking
results are not as comprehensive as in vision.

In this work, we evaluate how the calibration
of large-scale multilingual models is affected by
the zero-shot cross-lingual transfer, and whether
we might mitigate calibration error with standard
techniques relying solely on the source language1.
We conduct our experiments on six standard cross-
lingual transfer tasks across seven typologically
diverse target languages, using English as the an-
notated source language. Our key findings include:

• NLP models become less calibrated under
cross-lingual transfer.

• Task difficulty, data sparsity, and distance be-
tween source and target languages each im-
pact model calibration, as shown in fig. 1.

• Post-training calibration methods using only
the source language effectively mitigates mis-
calibration on target languages.

• Post-training calibration in structured predic-
tion is more challenging and requires a more
expressive calibration function family.

2 Background

2.1 Calibration in NLP Tasks
Why calibration in NLP tasks? Uncertainty quan-
tification for neural networks and model calibra-
tion has received attention from various machine-
learning-related fields, especially when machine
learning is applied in the high-stakes decision-
making (Gal and Ghahramani, 2016; Kendall and
Gal, 2017; Lakshminarayanan et al., 2017; Grath-
wohl et al., 2020; Thulasidasan et al., 2019). In par-
ticular, in NLP tasks, uncertainty plays an impor-
tant role in AI-aided mental health diagnosis (Chan-
dler et al., 2022) and human-in-the-loop active data

1source code available at: https://github.com/
zipJiang/cross-lingual-calibration

curation (Yuan et al., 2022). Also, in language-
model-based reasoning engines, the searching or
filtering step often requires a faithful scoring rule
(Dalvi et al., 2021; Weir and Van Durme, 2022;
Creswell and Shanahan, 2022), which could be
a potential application of a calibrated entailment
classifier.

Calibration of large scale models Noticeably,
Ovadia et al. (2019); Minderer et al. (2021) have
produced large-scale benchmarks over a variety of
tasks and existing calibration methods with mixed
results. While empirically Ovadia et al. (2019)
shows that the traditional post-training calibration
methods such as temperature scaling do not always
transfer under domain shift, results from Minderer
et al. (2021) indicates that there is a correlation be-
tween in-domain and out-of-domain calibration er-
ror for models with large capacities like ViT (Doso-
vitskiy et al., 2021), and that model calibration
decreases more slowly than accuracy.

In NLP, Desai and Durrett (2020) shows that
pretrained transformer models achieve better cal-
ibration and that temperature scaling further re-
duces calibration error in-domain. Mohta and Raf-
fel (2021) demonstrates that the benefit of the pre-
trained model diminishes as the domain shift in-
creases. Our work extends these analyses to model
calibration under zero-shot cross-lingual transfer.

Calibration of structured prediction Calibra-
tion of structured prediction models is relatively
under-explored, due to the difficulty in defining the
calibration setting (Kuleshov and Liang, 2015). Ja-
gannatha and Yu (2020) proposed a general calibra-
tion scheme where the calibration is measured on
the sequence level. Yet under challenging transfer
conditions for difficult tasks, the top-k sequences
do not contain enough positive events, and letting
the event set of interest depends on model pre-
diction making cross-method comparison difficult.
In this paper, we investigate model calibration of
structured prediction tasks as well as classification,
given the high interest in tasks with a sequence
tagging nature where one has to model inter-label
dependencies in the multilingual community. We
employ a slightly different setting with (Jagannatha
and Yu, 2020) whence either tag-wise calibration
is measured (Reich et al., 2020; Kranzlein et al.,
2021), or a balanced set of a positive or negative set
of spans is used to construct the event set of interest.
In section 3.3 we discuss our formulation in detail,
and show that it is compatible with the framework
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proposed by Kuleshov and Liang (2015).

2.2 Understanding Cross-Lingual Transfer

Since massive language model pretraining yielded
promising zero-shot transfer results on cross-
lingual datasets (Conneau et al., 2018), much ef-
fort has been put into understanding why these
language models work and what is the limit of
standard and direct zero-shot transfer paradigms
(Wu and Dredze, 2019; Pires et al., 2019; Conneau
et al., 2020b; Libovický et al., 2020; Chi et al.,
2020; Hewitt and Manning, 2019; Yarmohammadi
et al., 2021). While useful, these works tend to em-
ploy model performance as the sole metric; in this
work, we investigate the reliability of confidence
estimation.

A frequently discussed topic for cross-lingual
transfer evaluation is how language-specific fea-
tures are able to influence transfer performance.
A common way to do this is to differentiate lan-
guages by language groups (Wu and Dredze, 2020;
Chi et al., 2020). Other works rely on the nu-
meric distance calculated from information depict-
ing some specific aspect of language similarity
(Lauscher et al., 2020; Pires et al., 2019). A line
of research that tries to parameterize language rela-
tionships is typological embeddings (Littell et al.,
2017; Malaviya et al., 2017; Cotterell and Eisner,
2017). Results from comprehensive transfer evalu-
ation work also induce certain proximity between
languages (Wu and Dredze, 2019; Han et al., 2019;
Fan et al., 2021; Yu et al., 2021). We observe
these various notions of distance result in similar
orderings across languages. Therefore we follow
previous work by loosely referring to this language-
specific characteristic as “language similarity”.2

3 Metrics and Methods

3.1 Measuring Model Calibration

Consider a classifier p̂ : X → ∆k−1 that maps
each instance x ∈ X to some class member-
ship probability, (p̂i(x), p̂2(x), . . . p̂k(x)). We
describe p̂ as calibrated, or more specifically
confidence-calibrated (Kull et al., 2019), if for
any c ∈ [0, 1]:

Pr(Y=argmax
i

p̂i(x)|max
i

p̂i(x)=c) = c. (1)

2Each proposed similarity metric is based on statistics
about certain aspects of languages, they are not necessarily
serving as a measurement of universal language distance.

Directly calculating probability in eq. (1) with
a finite number of examples is impossible. Sev-
eral empirical approximations have been proposed
(Guo et al., 2017). Here we adopt the Expected Cal-
ibration Error (Naeini et al., 2015) (ECE), which
is the most prevailing statistic, and the Brier Score
(Brier et al., 1950).

For N predictions, ECE approximates eq. (1)
by splitting [0, 1] into M equal length bins
{B1, B2, . . . , BM}, and calculates a weighted av-
erage of absolute difference between within-bin
accuracy and within-bin average confidence:

ECE =

M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)|.

The ECE score is sensitive to the choice of bin-
ning schemes, and a model can trivially achieve a
perfect ECE score by returning the marginal class
probability. As a result, several works have pro-
posed alternatives to ECE to mitigate such prob-
lems (Nixon et al., 2019). Kull et al. (2019) pro-
poses the classwise-ECE, where the ECE is calcu-
lated and averaged across all class labels. Kumar
et al. (2019) shows that it is always possible to
construct a poorly calibrated prediction even when
ECE = 0. Despite these shortcomings, we still
use the ECE as our primary statistics for evaluating
calibration error for two reasons. First, we observe
only a little variance when gradually reducing the
number of bins from 100 to 10. Second, some of
our experiments require the classification among
an indefinite number of labels, making classwise
statistics inapplicable.

3.2 Post-training Calibration

For each task, we tune the calibrator parameter
with a development (dev) set that is different from
the model-selection dev on English only. We
study four carefully-selected post-training calibra-
tion methods (listed below) on typical zero-shot
cross-lingual transfer tasks. Firstly, the methods
should be intuitively extendable to an indefinite
number of classes that suit our tasks like depen-
dency head predictions. Secondly, they have rel-
atively fewer hyperparameters to tune and thus
tend to be largely accuracy-preserving (Gruber and
Buettner, 2022). Specifically, for methods that are
only applicable to binary classifications (e.g., his-
togram binning and beta calibration), we follow
previous practice by Wenger et al. (2020) and Patel
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et al. (2021) to use a one-vs-rest extension to multi-
class classification over the outputs of multi-class
classifiers. All the methods share the same class-
wise binning strategy. We do not renormalize the
scaled probability following previous work as it is
reported to mitigate the accuracy degradation Patel
et al. (2021).
Temperature Scaling (Guo et al., 2017) Given a
logits vector z = (z0, z1, . . . , zk) ∈ RK , tempera-
ture scaling produces a normalized class member-
ship probability vector (q0,q1, . . . ,qk) by a single
scalar parameter T > 0:

qi =
exp(zi/T )∑K
i=1 exp(zi/T )

.

Temperature scaling has been proven effective
in other scenarios (Ovadia et al., 2019; Desai and
Durrett, 2020) and has the property of not chang-
ing model prediction orders. This makes the post-
training calibration orthogonal to the overall model
performance.
Histogram Binning (Zadrozny and Elkan, 2002)
divides all uncalibrated predictions p̂y(x) into M
mutually exclusive bins {B1, . . . , BM} and assigns
calibrated probabilities qm

y (x) that minimizes the
bin-wise square loss:

L(q) =
M∑

m=1

∑

x∈X
1
[
x ∈ Bm

]
(qm

y (x)− y)2.

Notice that evaluating against ECE instead of
class-wise metrics enables us to jointly calibrate all
one-vs-rest probabilities induced from multi-class
classifiers without renormalization.
Beta Calibration (Kull et al., 2017) is a calibra-
tion function family defined based on the likeli-
hood ratio between two Beta distributions. In the
one-vs-rest case the calibration map can be re-
parameterized into a bivariate logistic regression
with ln p̂y(x) and − ln(1 − p̂y(x)) to predict a
binary label 1[ŷ = y].
GPcalib (Wenger et al., 2020) fits a one-
dimensional Gaussian process to the latent function
g : R → R that transforms raw logits. Given uncal-
ibrated logits vector z, the model output probability
qi is then given by:

qi =
exp(g(zi))∑K
j=1 exp(g(zj))

.

When the dataset is large, Wenger et al. (2020) pro-
poses to use inducing point methods (Hensman

et al., 2015) for scalability. Since the GPcalib
framework uses the same function to transfer all
components of z, it is straightforward to batch the
latent process along a dimension with an indefinite
number of classes.

3.3 Calibration for Structured Prediction

For structure prediction tasks, a natural question
is whether explicitly modeling inter-label depen-
dencies can help with model calibration. A similar
comparison has been hinted by Jagannatha and Yu
(2020) and Reich et al. (2020), but no experiments
has been proposed. However, the label space is
exponentially large when we consider predictions
over a complete sequence. It is thus difficult to
define a calibration objective.

In this work, we follow previous efforts and de-
fine a set of “Events of Interests” I(x) (Kuleshov
and Liang, 2015; Jagannatha and Yu, 2020). Given
the complete label space Y of a structured predic-
tion task, an event E ∈ I(x) is a subset E ⊂ Y ,
whose probability we would like to calibrate. For
sequence labeling tasks, a natural choice for I(x)
is the model prediction at each position. This falls
back to calibrating a multi-class classifier at each
sequence position for a standard masked language
model with a classification head. But we need to
perform the constrained forward-backward (Cu-
lotta and McCallum, 2004) marginalization for a
conditional random field (Lafferty et al., 2001)
based model. A more interesting case will be
named entity recognition (NER), where extracting
an entity span often consists of multiple tag-level
predictions. Jagannatha and Yu (2020) proposes
to define each E ∈ I(x) as a set of tag sequences
{y1, . . . , yN} that contains a single span from top-
k p(y|x) decoding. This does not suit our purpose
as it is not convenient to compare calibration per-
formance between models under that setup. For
example, the model with very high precision and
confidence would be considered more calibrated
than its counterparts with more diverse candidates.

To remedy this problem, we define I(x) as a
set of events where each event E corresponds to
a set of sequences that extracts one of all possi-
ble span candidates s ∈ S. This is equivalent to
evaluating a model to perform binary classifica-
tions over whether a candidate is actually a valid
span. Since the number of possible span candidates
grows quadratically with the sequence length, we
only consider spans with no more than a certain

2651



length l. Specifically, given a NER task with named
entity type space C (e.g., “PER”, “LOC”, etc.), de-
note the corresponding tag space by B (“B-PER”,
“I-PER”, “O”, etc.). The probability of a span s with
type c ∈ C and end points 1 ≤ i < j ≤ N = |x|
being extracted under BIO sequence tagging can
be written as:

Pr(s, c|x) =
∑

y∈Y

{
p(y|x)

j+1∏

k=i

1
[
yk ∈ sk

]}
,

where (si, . . . , sj , sj+1) is the tag subset sequence
({B-c}, . . . , {I-c},B \ {I-c}). The classifier out-
put can be directly multiplied to obtain the condi-
tional probability when tags are independent. In the
case of linear-chain CRF, we apply a constrained
Forward-Backward (FB) algorithm.

4 Experiments

Tasks We consider six zeros-shot cross-lingual
transfer tasks: part-of-speech tagging (POS), uni-
versal dependency parsing (UDP), named entity
recognition (NER), cross-lingual natural language
inference (XNLI), Automatic Content Extraction
(ACE) and the Better Extraction from Text Towards
Enhanced Retrieval (BETTER). These six tasks
are of distinct formulations and have a reasonable
spread over difficulty levels. For detailed data con-
figuration and task descriptions, please refer to
appendix A. Also, only plots relevant to the dis-
cussion are presented inline, please also refer to
appendix A for complete experiment data.

Evaluation we evaluate the calibration be-
fore and after a post-training calibration step us-
ing ECE. To properly evaluate the ECE, we set
num_bins=100. We choose this number to bal-
ance granularity with the amount of data, as we
observe ECE tends to converge after the number
of bins increases above a threshold. This binning
scheme has been employed to evaluate calibra-
tion methods (Wenger et al., 2020; Minderer et al.,
2021).

Base models We experiment with three
common multilingual transformer encoders:
bert-base-multilingual-cased, xlm-
roberta-base and xlm-roberta-large .
3 We keep the token embedding weight fixed for
all our experiments, and use learning_rate
= 1.2e-5 for pretrained transformer parameters,
and learning_rate = 1e-5 for the rest of

3https://huggingface.co/models

models (except for very-low-data NLI, where we
choose learning_rate = 1e-4).

Varying training size We evaluate our pipeline
with three training-data-size configurations when
available (that is, on POS, UDP NER and XNLI):
full-dataset, where all the specified training data are
used; low-data, where 1000 sentences are sampled
for the sentence-level dataset, or 50 documents are
sampled for the doc-level dataset; very-low-data,
where 100 sentences or 10 documents are sampled
respectively.

Training details We train our models on a single
RTX 6000 GPU until convergence or a maximum
number of epochs (256) is reached. We use the
dev set for model selection and early stopping, and
gradually scale our learning rate by .25 on a plateau.
For all tasks, we apply the four calibration methods
mentioned in section 3.2 as the post-training cal-
ibration step. We set learning_rate = .1
and use a large batch size to tune the calibration
module parameters. We also gradually scale the
learning rate by .25 on a plateau. The learning
rate for temperature scaling is determined via an
Optuna (Akiba et al., 2019) trial with a searching
range between [5e-2, .5] on subtasks. For each
calibration method, we do 10 runs and do a signif-
icant test with classic bootstrap from the dataset
to address the concern of randomness raised by
Vaicenavicius et al. (2019).

Figure 2: Averaged ECE before and after temperature
scaling on English (top) and Arabic (bottom) for xlm-
roberta-base; lower is better. Each bar in a group
corresponds to a training data theme as in fig. 1.
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4.1 Impact of Training Configurations

Impact of Data Size In most cases, training with
more data helps calibration, especially when the
difference in training data size is large (e.g., com-
paring the full-data setting and very-low-data set-
ting. see fig. 2). However, we do not observe such
a tendency when the task is simple enough and the
model performance is reasonably high, like in POS.
It indicates that the representation for the task has
already been learned well during the pre-training
phase, and the relevant information is easily re-
covered even with a small number of examples.
Interestingly, the XNLI model trained under a very-
low-data setting can be similarly or even better
calibrated compared to the XNLI model trained un-
der a full-data setting after post-training calibration,
though the gap of accuracy for models trained with
different data amounts is large (accuracy results
are available in the appendix A). It indicates that a
more accurate model is not always more calibrated.
Impact of Language Similarity Our result indi-
cates that target language calibration errors are gen-
erally lower when the target language is similar to
English as measured by human language learning
distances (Chiswick and Miller, 2005) (see fig. 1,
fig. 4, etc.). While the distance between languages
is an intuitive concept among linguists in the ab-
stract, there is no prevailing theory on how this
should be quantitatively measured. We abstain
from calculating direct correlations with scores
proposed by Chiswick and Miller (2005), merely
noting that further investigations into the relation-
ship between language distance and domain shift
are worth future consideration. This echoes the
result from the previous research (Lauscher et al.,
2020; Pires et al., 2019) showing that commonly
perceived language difference influences the diffi-
culty of zero-shot transfer. However, post-training
calibration often has a smaller effect on more simi-
lar target languages.
Impact of Pretrained Model Size Giving the simi-
lar trend observed for different calibration methods,
here we only plot post-training calibration statis-
tics for temperature scaling (See section 4.2 below).
Comparing results shown in fig. 1 and fig. 2, we
come to the conclusion that the larger pre-trained
language model is usually more calibrated before
and after the post-training calibration. Though both
large and base models become less and less cali-
brated while gradually transferring to more and
more distant languages, the calibration error in-

Figure 3: Calibration plot for different models when
transferred to different languages on UDP (top) with
very-low-data, and XNLI (bottom) with full-data. The
result shows that a larger model generalizes better when
the training data size is small or the task is difficult.

creases more slowly than the calibration error of
smaller models. This becomes more prominent
when the training data is smaller or the target lan-
guage is more distant (see fig. 3). We hypothesize
this is probably because a larger language model
learns better cross-lingual representations that al-
low a better zero-shot cross-lingual transfer with
sufficient training data. This echos previous find-
ings by Minderer et al. (2021), where they have
shown that the calibration error increases more
slowly for larger models.

4.2 Comparing Calibration Methods

We do 10 runs of classic bootstrap from each
dataset to evaluate all four calibration methods men-
tioned in section 3.2. All of the methods are able to
significantly reduce the calibration error in terms
of the ECE (see appendix A for complete statistics).
fig. 4 demonstrates the effectiveness of different
post-training calibration methods. In most cases,
different calibration methods have similar perfor-
mance. Models calibrated by any of the methods
are still likely to be less and less calibrated when
zero-shot transferred to more and more distant lan-
guages as described in section 4.1. In most cases,
either temperature scaling or GPcalib is at or near
the best, under all training data source settings.
Histogram binning performs well in the source lan-
guage, but it may decline the most in effectiveness
in the test language. Moreover, when the model
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is zero-shot transferred to more distant languages,
temperature scaling gains a small edge compared
to other methods.

Figure 4: Box-and-whisker plots for different calibra-
tion methods for xlm-roberta-large when zero-
shot transferred to different languages, sorted by lan-
guage distance to English (Chiswick and Miller, 2005).
Each calibration method is tested 10 times with boot-
strapping.

Another observation is that the calibration ef-
fectiveness of methods is more variable on XNLI
than other tasks, and the model calibration error
after post-training calibration follows the language
distance less strictly. This becomes more notable
when examining smaller models and fewer training
samples, as shown in fig. 5. This could be due to
that XNLI requires more complex semantic knowl-
edge (Lauscher et al., 2020) that is not directly
accessible in the multilingual encoder, making the
calibration less transferable to other languages.

Figure 5: Box-and-whisker plots for different cali-
bration methods for xlm-roberta-base on very-
low-data setting when zero-shot transferred to differ-
ent languages, sorted by language distance to English
(Chiswick and Miller, 2005). Each calibration method
is tested 10 times with bootstrapping.

4.3 Calibration for Structured Prediction

We also consider model calibration for two struc-
tured prediction tasks: POS tagging and NER. We
follow the definition of I(x) in section 3.2. The
WikiAnn dataset (Pan et al., 2017) is very suit-
able for our purposes as it contains many short
sequences that avoid span number explosion. We
further restrict the maximum span length l = 5
and the maximum sequence length s = 32 to re-
duce the search space. To prevent the model from
reducing calibration error by scaling down the ex-
traction probability of all spans, we further sub-
sample negative samples by probability p = .01.
Notice that this kind of subsampling can be viewed
as an adjusted environment for robust calibration
and should not affect a perfectly calibrated model
(Wald et al., 2021). It also corresponds in practice
to the use case of performing span filtering from a
high-quality subset.

However, when applied to structured labels like
in span extraction, temperature scaling could be
less effective. Particularly in NER calibration, we
observe that GPcalib achieves a significantly better
calibration result when compared to temperature
scaling (see fig. 6), while on POS we do not ob-
serve such a gap. It could be that the structure for
label spans is more complex and usually involves
multiple labeling predictions. Therefore, in order
to calibrate these probability combinations, one
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Figure 6: Top: Adding a CRF module doesn’t helpful
to model calibration either on the source language or on
the target language, regardless of model size. Bottom:
GPcalib is more effective in calibrating structured pre-
diction regardless of the underlying model structure.

will need a more complex function family, which
is not included in temperature scaling.

4.4 Evaluating on More Difficult Tasks

We further experiment with two more information
extraction tasks, ACE and BETTER, where the
training resource is more limited and the ontologies
are more complex. For labeling problems, we fol-
low the general setting in section 4.1. For tagging
problems, we calibrate the label-wise probability
for positive labels as discussed in section 3.3. In
case of a linear chain CRF, we marginalize out all
other positions to obtain the label-wise probability
following Culotta and McCallum (2004) and Reich
et al. (2020). For ACE and BETTER we do not
evaluate under low-data and very-low-data setting
given the relatively small size of their dev sets.

Impact of Task Type and Difficulty Our results
align with the discovery of Lauscher et al. (2020),
who showed that the transfer performance depends
on a hypothetical “task level”. Here we observe
a larger ECE on ACE and BETTER as well as in
“high level” semantic tasks like XNLI compared to
“low level” sequence tagging tasks like POS, UDP,
NER defined by Lauscher et al. (2020).

As shown in table 1 and table 2, in general, the
structured prediction components (f-ECE) are less
calibrated and remain so after temperature scaling,
though for ACE there is some irregularity given
the sparse event/argument span annotations on the

Task F-1 t-ECE f-ECE

mBERT

ACE
raw 58.57 12.67 21.42
cal. - 10.73 21.89

BETTER
raw 35.26 17.85 32.87
cal. - 12.98 22.37

XLM-R

ACE
raw 58.19 11.30 36.76
cal. - 11.45 32.56

BETTER
raw 36.24 14.60 39.83
cal. - 10.70 18.69

Table 1: Results for En-Ar transference (English). The
raw row corresponds to out-of-the-box model and the
cal. row shows the calibration error reduction by tem-
perature scaling. t-ECE corresponds to the ECE of span
typing, f-ECE corresponds to the ECE of span finding.

Task F-1 t-ECE f-ECE

mBERT

ACE
raw 19.13 20.49 72.59
cal. - 12.68 71.76

BETTER
raw 18.45 23.68 58.37
cal. - 9.5 27.00

XLM-R

ACE
raw 26.74 13.84 67.40
cal. - 13.36 62.40

BETTER
raw 23.68 21.05 57.26
cal. - 9.96 8.29

Table 2: Results for En-Ar transference (Arabic). The
row & column interpretation is similar to table 1.

English side on which our model has very high ac-
curacy. To further show the impact of task difficulty
on the model calibration, we observe that when try-
ing to perform post-training calibration of ACE
and BETTER models with temperature scaling, the
scaling parameters tend to be larger, even reaching
38.45 for span-finding under a particular configu-
ration while normally the scaling parameters are
below 5 as shown in table 3 and table 4.

5 Conclusions

We explore the model calibration of large language
models under the zero-shot cross-lingual transfer
scenario. Our results show that the extent of mis-
calibration varies according to a number of aspects
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Size POS UDP-label UDP-head NER ACE-t ACE-f BETTER-t BETTER-f

full 1.5 1.58 1.85 1.9 3.32 1.11 3.00 10.94
low 1.42 1.77 3.23 1.97 - - - -

very-low 1.47 2.12 2.96 1.88 - - - -

Table 3: Temperature scaling parameter for bert-base-multilingual-cased, from one run. In multilingual
experiments, scaling parameters tend to be larger when the training data size is small, and scaling parameters for
BETTER-{t, f} are larger as the task is more difficult.

Size POS UDP-label UDP-head NER ACE-t ACE-f BETTER-t BETTER-f

full 1.30 1.51 1.72 1.47 1.01 1.12 3.80 38.45
low 1.66 1.80 3.39 1.79 - - - -

very-low 1.43 2.10 2.09 2.01 - - - -

Table 4: Temperature scaling parameter for xlm-roberta-base, from one run. Scaling parameters exhibit
similar trends as in the bert-base-multilingual-cased case.

of the training configuration. First, training with
more data improves the cross-lingual calibration.
Second, transferring from English to non-English
intensifies miscalibration as the target language
is farther from English. Also, larger models are
likely to be less miscalibrated when the model is
transferred to a different target language zero-shot.
Moreover, our result shows that temperature scal-
ing and Gaussian Process calibration methods are
among the top-performing methods. While temper-
ature scaling is easy to implement and generalizes
well to distant languages, it’s less effective when
applied to complex structured probabilities. Finally,
models are least calibrated on “high levels” tasks
like XNLI and span extraction. Models are most
calibrated on simple “low-level” tasks like POS.

Our results demonstrate that model confidence
scores are useful metrics to understand the model
behavior and language transfer pairs in cross-
lingual tasks. We encourage users to calibrate
their model before zero-shot deployment to pro-
duce more reliable confidence estimation and pre-
vent over-confidence for downstream tasks.

6 Limitations

We discuss several limitations of the work. Re-
garding the research approach, our work focuses
on the empirical investigation of model calibration
under zero-shot cross-lingual transfer. We are in-
terested in extensive theoretical explanations for
the variability of model calibration under zero-shot
cross-lingual transfer in the future. Also, regarding
the results, even though we show promising calibra-
tion performances on pre-trained models, we are

aware that calibration of LLMs is generally very
hard, especially when the task is not a standard
classification task and the validation data is not
available. This is a promising research direction
that should draw more attention by the community.
It is especially relevant to the application of LLMs
to safety-critical or high-stakes tasks. We leave fur-
ther investigation of calibration for LLMs to future
work.
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A Appendix

A.1 Detailed Task Descriptions

We evaluate the model calibration for the zero-shot
cross-lingual transfer on a variety of classification
and sequence-tagging tasks when they are used
out-of-box and after post-training calibration. Our
experiments largely follow the established settings
by Yarmohammadi et al. (2021). For multi-lingual
experiments, we consider Part-Of-Speech (POS)
tagging, Universal Dependency Parsing (UDP),
Named Entity Recognition (NER), and Natural
Language Inference (NLI). For English-Arabic ex-
periments, we additionally consider ACE4 and
BETTER5as they are only available to limited lan-
guages. We use English as the source language
and seven target languages that are diverse in their
typology (Clark et al., 2020; Pimentel et al., 2021).
In cases where alternative English-side dev sets are
available (NLI, POS, UDP) we directly use differ-
ent dev sets for model selection and post-training
calibration, otherwise, we split the dev set.

4https://www.ldc.upenn.edu/
collaborations/past-projects/ace

5https://www.iarpa.gov/index.php/
research-programs/better
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Part-of-speech (POS) Tagging We use the Univer-
sal Dependencies (UD) Treebank (v2.9; Zeman et
al, 2021).6 The UD Treebank consists of data from
a variety of sources, such that there may be poten-
tial domain mismatch across different treebanks
(Sato et al., 2017). To overcome the domain dis-
crepancy across different languages, we use the
New Parallel UD (PUD) (Zeman et al., 2017) tree-
bank test set in the UD Treebanks as the test set,
which is available to all our target languages. Sim-
ilar to NER, we generate the word representation
by attention-weighting all subword token represen-
tations. We use a linear classifier to predict corre-
sponding POS tags. We evaluate the performance
by the accuracy of predicted POS tags.
Universal Dependency Parsing (UDP) We use
the same set of treebanks as in appendix A.1 for
the POS tagging task. To predict the dependency
heads and dependency labels, we use a biaffine at-
tention layer (Dozat and Manning, 2017). As in
POS and NER, we generate word-level represen-
tations by attention-weighting the subword token
representations. We evaluate the performance by
labeled attachment score (LAS). For this task, we
evaluate the model calibration for both the head
prediction and the label prediction.
Named Entity Recognition (NER) We rely on
WikiAnn (Pan et al., 2017) for named entity recog-
nition. We use the Hugging Face Datasets version7

which corresponds to the balanced train, dev, and
test splits in Rahimi et al. (2019). Labels of the
dataset consist of three types of named entities:
PER, LOC, and ORG. We use an additional linear
layer to predict word-level labels over the word
representation, which is aggregated through an at-
tention layer over the subword-level representation
generated by the encoder. We evaluate the NER
performance by the F1 score of the predicted entity.
Natural Language Inference (NLI) We evaluate
the cross-lingual natural language inference perfor-
mance with XNLI (Conneau et al., 2018). We train
on the MultiNLI (Williams et al., 2018) training set.
For a given instance, we concatenate the premise p
and the hypothesis h as the joint input to our model.
To predict the entailment label, we apply a linear
classification head over the pooled sentence rep-
resentation. We evaluate the model performance

6We train on the following English treebanks: English-
Atis, English-EWT, English-GUM, English-LinES, English-
ParTUT, and English-Pronouns.

7https://huggingface.co/datasets/
wikiann

using the prediction accuracy.
ACE We use the English and Arabic subset of Au-
tomatic Content Extraction (ACE) 2005 (Walker
et al., 2006) following Yarmohammadi et al. (2021).
We evaluate our model on the trigger extraction and
the argument extraction subtasks. We utilize the
event extraction model of Xia et al. (2021), which
consists of a BiLSTM-CRF BIO tagger (Panchen-
drarajan and Amaresan, 2018) and a type-classifier
trained to predict child spans conditioned on par-
ent spans and labels. This model structure yields
a comparable performance to the state-of-the-art
OneIE (Lin et al., 2020) on the trigger and argu-
ment identification. Here we use a shared model
structure with other tasks in BETTER to facilitate
the direct performance comparison. We use the
same English split as in Lin et al. (2020), and for
the Arabic split, we follow Lan et al. (2020).
BETTER The Better Extraction from Text To-
wards Enhanced Retrieval (BETTER) Program
aims to “develop enhanced methods for personal-
ized, multilingual semantic extraction and retrieval
from the text”, given gold annotations only in En-
glish. Unlike in Yarmohammadi et al. (2021) which
focused on “Abstract” event extraction, here we
focus on the richer “Basic” task. Basic event ex-
traction, structurally related to the FrameNet pars-
ing, requires a model to identify a finer-grained
set of event types than Abstract, along with their
respective agent, patient, or event references. The
documents come from the news-specific portion of
Common Crawl. Performance on BETTER Basic
is evaluated according to a program-defined “com-
bined F1” metric, which is the product of “event
match F1” and “argument match F1”, calculated
based on the best-effort alignment of predicted and
reference event structures. We use the same model
structure as in ACE. We run the model for multiple
passes to produce level-wise predictions in parallel
at the inference time.

A.2 Complete Multilingual Experiment
Results

In this section, we present additional results
for the multilingual experiment setting for
all three encoders (xlm-roberta-large,
xlm-roberta-base and bert-base-
multilingual-uncased) and all training
data size configurations (full-data, low-data and
very-low-data). Results are shown in table 5 to
table 11. As discussed in the main paper, the
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general trend is that models before and after post-
training calibration become less calibrated with
less training data. Also, as models are transferred
to more distant languages the, the calibration error
before and after post-training calibration usually
becomes higher. Under most circumstances for
classification tasks, the improvement is significant
for any of the standard calibration methods when
comparing with off-the-shelf models. In particular,
temperature scaling (TS) performs on par with
more expressive calibration function families.
However as shown in table 14 and table 15, for
more structured prediction tasks, more expressive
calibration methods like GPcalib are preferred over
TS, usually, with a significant margin.

Table 5, table 6 and table 7 show the results
for xlm-roberta-large on three data settings.
xlm-roberta-large in general achieves the
best predictive performance as well as the best
calibration in the zero-shot transfer, especially
on distant languages. Table 8, table 9 and ta-
ble 10 show the results for xlm-roberta-base
on three data settings. They exhibit similar
trends with results achieved by xlm-roberta-
large. Similarly, table 11, table 12 and table 13
show the same general trends for bert-base-
multilingual-uncased. These results indi-
cate that the tendency of zero-shot cross-lingual cal-
ibration transfer is consistent across LMs with dif-
ferent backbones. In all these experiments, we ob-
serve significant improvements in ECE after post-
training calibration, both on the source language
and on target languages.

Table 14 and table 15 show the result for struc-
tured prediction tasks with and without a CRF pre-
diction head for POS-tagging and NER. For POS-
tagging, TS tends to be effective compared to GP-
calib. But its effectiveness on a more complex task,
NER, is less pronounced. For NER, the model
has to make correct probability prediction on a se-
quence of tokens. In this kind of task, GPcalib
often significantly out-performed TS.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.47 91.60 90.98 91.17 91.21 82.29 84.59 74.36
ECE 3.16 7.15 6.97 7.50 7.70 13.39 12.42 18.56
TS 1.98 5.15 5.30 5.43 4.41 10.02 6.54 10.75

Beta 1.66 4.24 4.18 4.16 3.90 8.40 5.64 13.18
GPcalib 1.36 3.81 3.43 3.83 4.35 7.57 7.25 13.93
HIST 1.32 4.85 4.81 4.92 4.99 9.89 8.09 12.97

UDP LAS 88.10 84.45 82.34 79.43 78.73 50.76 65.51 48.38
l-ECE 2.48 5.87 5.50 8.61 7.18 16.20 15.71 19.36
l-TS 1.65 3.66 3.72 5.84 4.50 9.25 10.60 11.82

l-Beta 1.02 2.76 2.78 5.12 3.59 9.55 10.15 13.17
l-GPcalib 0.71 2.76 2.49 5.03 3.36 9.21 9.79 13.30
l-HIST 0.81 3.46 3.40 6.09 4.49 12.04 11.84 15.08
h-ECE 7.17 6.43 9.40 10.06 9.49 26.14 14.23 29.96
h-TS 2.18 2.35 3.20 3.30 2.75 11.07 4.11 18.29

h-Beta 2.03 1.90 2.95 3.28 2.41 12.82 4.41 19.19
h-GPcalib 1.78 2.87 2.86 2.74 2.88 9.87 3.64 17.31
h-HIST 2.12 1.97 4.13 4.43 3.93 15.70 6.93 21.20

NER F-1 87.69 85.01 81.12 80.35 77.31 81.62 68.72 58.85
ECE 5.04 4.16 9.17 10.52 8.76 8.86 17.04 13.33
TS 0.86 1.12 3.85 3.60 2.57 3.18 6.29 3.51

Beta 0.96 0.93 4.21 3.92 3.24 3.11 8.81 5.71
GPcalib 0.85 0.74 4.08 3.88 2.86 3.15 7.22 4.38
HIST 1.17 1.59 4.88 5.13 4.12 3.53 10.44 7.61

XNLI Acc 87.86 81.80 82.44 83.51 79.12 75.71 77.94 78.36
ECE 6.55 10.44 11.19 9.60 12.54 14.66 12.73 11.92
TS 4.52 3.81 4.22 3.74 4.73 5.59 4.14 4.62

Beta 3.36 3.87 4.62 3.86 5.18 6.47 5.11 4.56
GPcalib 3.73 3.95 4.46 3.70 5.06 6.30 4.50 4.37
HIST 3.89 3.67 4.18 3.42 4.66 6.47 5.02 4.27

Table 5: Experiment result with xlm-roberta-large on the full-data setting, shaded cells indicate significant
improvements in calibration decided by a bootstrap from dataset and an independent t-test with p < .05.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.33 91.93 85.74 90.42 90.96 79.78 85.10 67.22
ECE 3.26 6.74 7.57 9.90 7.32 15.27 10.55 20.34
TS 1.62 6.79 6.63 10.50 3.02 13.39 4.85 6.49

Beta 1.45 6.42 5.00 8.24 2.78 10.97 4.42 8.19
GPcalib 1.15 2.47 3.87 4.60 2.46 7.34 3.82 13.46
HIST 0.52 6.40 6.23 7.99 3.62 11.33 6.61 10.53

UDP LAS 88.27 78.38 77.15 74.92 71.00 45.77 58.25 44.35
l-ECE 3.04 6.99 7.07 9.86 9.24 20.36 18.42 21.58
l-TS 3.55 6.08 5.63 7.90 7.27 12.73 13.16 13.87

l-Beta 1.57 2.94 2.71 4.98 4.27 10.94 10.60 12.22
l-GPcalib 1.58 1.79 3.11 3.53 2.88 8.40 7.68 11.32
l-HIST 1.90 4.34 5.88 7.47 7.24 18.53 16.37 20.39
h-ECE 7.11 12.28 14.28 14.13 16.05 33.06 20.41 35.48
h-TS 4.25 4.46 6.26 5.28 4.33 8.84 6.24 14.46

h-Beta 3.95 2.39 3.15 3.07 3.23 15.15 5.38 19.62
h-GPcalib 5.46 5.95 6.68 5.87 5.41 6.43 7.35 10.79
h-HIST 3.65 1.66 3.87 3.37 4.37 16.52 7.09 21.03

NER F-1 82.91 83.62 80.40 79.18 71.73 77.76 69.78 55.61
ECE 7.51 4.56 8.76 11.21 10.66 11.62 15.63 14.76
TS 1.41 3.03 2.20 3.39 2.56 3.79 2.91 3.97

Beta 1.26 2.18 1.66 2.76 2.49 3.19 3.25 3.92
GPcalib 0.83 1.84 1.34 2.94 2.10 3.35 3.34 4.36
HIST 1.31 2.97 2.04 3.09 3.09 3.85 6.00 5.87

XNLI Acc 76.79 70.86 71.98 73.25 68.84 65.23 66.83 67.60
ECE 22.00 27.62 26.60 25.33 29.43 32.87 31.35 30.47
TS 7.20 10.71 10.14 9.26 12.00 14.46 13.23 12.41

Beta 5.71 8.66 8.07 7.29 9.49 11.83 11.08 10.17
GPcalib 4.30 6.65 6.40 6.20 7.93 9.66 9.16 7.99
HIST 1.51 6.68 5.64 4.66 8.63 12.00 10.24 9.32

Table 6: Experiment result with xlm-roberta-large under the low-data setting. The color scheme is the same
as figures above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 95.45 91.46 84.00 89.96 90.39 79.60 84.55 64.80
ECE 3.27 6.76 6.44 10.74 5.71 12.95 7.76 15.42
TS 1.70 7.06 6.58 11.13 3.07 11.75 4.02 5.65

Beta 1.48 6.08 4.81 8.74 2.87 9.03 3.20 6.67
GPcalib 1.28 3.26 3.59 7.16 2.17 7.67 2.49 12.19
HIST 0.92 5.78 5.18 7.84 3.59 9.15 3.76 8.83

UDP LAS 77.62 66.92 65.18 63.55 61.19 36.31 47.84 34.03
l-ECE 4.30 7.48 7.33 10.36 8.99 20.49 16.10 19.97
l-TS 4.54 5.50 5.89 6.33 6.97 9.37 9.11 9.30

l-Beta 2.28 2.69 2.34 4.54 3.59 11.87 8.07 11.77
l-GPcalib 2.77 2.30 3.80 3.59 3.45 7.98 4.62 8.97
l-HIST 2.82 3.44 4.53 5.87 5.28 15.88 10.97 15.69
h-ECE 9.96 13.82 15.14 14.60 17.13 31.44 20.18 35.51
h-TS 2.43 3.73 4.81 5.22 4.45 13.12 5.54 18.43

h-Beta 4.40 3.31 3.82 4.41 2.61 13.47 4.14 17.81
h-GPcalib 6.00 9.00 9.64 10.20 6.65 6.09 10.26 9.48
h-HIST 4.34 2.83 4.16 4.75 4.01 15.63 6.52 19.84

NER F-1 70.90 72.46 68.69 69.97 52.60 69.35 55.34 35.75
ECE 14.17 8.51 15.69 17.32 20.54 18.81 26.45 32.04
TS 2.90 4.33 2.96 3.55 6.88 4.69 7.95 14.16

Beta 2.16 3.61 2.20 3.34 6.09 3.66 7.65 12.98
GPcalib 1.33 3.51 2.10 3.64 5.06 4.48 6.78 12.30
HIST 1.79 4.65 1.99 4.41 6.96 5.03 10.55 15.19

XNLI Acc 40.54 38.08 40.32 39.38 35.99 39.04 38.92 37.98
ECE 33.31 33.14 24.96 32.19 37.99 31.07 28.90 30.82
TS 2.75 3.68 4.64 2.95 4.87 3.79 3.51 3.54

Beta 2.19 4.76 3.02 3.39 6.90 3.54 2.88 3.70
GPcalib 2.33 3.87 3.08 2.68 5.40 3.38 2.52 3.35
HIST 3.99 5.28 5.02 4.20 7.03 5.53 3.98 5.18

Table 7: Experiment result with xlm-roberta-large under the low-low data setting. The color scheme is the
same as figures above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.39 91.53 90.31 90.81 91.09 74.48 82.87 77.70
ECE 2.27 5.52 5.03 5.64 6.18 15.82 10.31 14.20
TS 1.42 3.72 3.16 4.02 4.42 13.38 7.00 10.41

Beta 0.91 2.94 2.54 3.01 3.80 11.70 5.96 10.54
GPcalib 1.02 3.42 3.45 3.92 4.53 13.42 7.75 12.45
HIST 1.17 3.64 3.64 4.01 4.39 13.92 7.52 11.42

UDP LAS 87.74 81.23 79.48 76.29 75.78 46.25 58.62 42.22
l-ECE 2.03 5.99 5.25 8.09 6.54 15.11 14.69 17.02
l-TS 1.07 3.25 3.02 4.64 3.16 6.74 7.97 7.75

l-Beta 0.98 3.04 2.57 4.92 3.07 9.06 9.52 10.56
l-GPcalib 0.73 3.23 2.65 4.79 2.95 8.77 9.31 10.92
l-HIST 1.10 4.74 4.26 6.52 4.95 14.60 13.24 16.80
h-ECE 5.70 5.92 8.74 9.37 9.35 22.56 14.26 24.42
h-TS 1.19 2.72 2.87 2.56 2.64 8.75 4.15 8.55

h-Beta 1.29 2.05 2.75 2.76 2.58 11.59 4.87 12.87
h-GPcalib 1.29 2.90 2.81 2.59 2.71 8.26 4.41 6.82
h-HIST 1.22 2.61 3.88 3.93 3.83 14.33 7.11 15.33

NER F-1 86.99 79.84 78.38 78.56 68.02 70.11 58.42 40.23
ECE 3.86 4.77 8.40 8.63 11.26 13.17 16.97 19.15
TS 0.72 1.91 4.11 3.59 6.75 8.24 9.52 13.13

Beta 0.68 1.69 3.59 3.10 6.62 7.59 9.81 13.71
GPcalib 0.51 1.46 3.62 3.04 6.10 7.47 8.50 12.32
HIST 1.53 2.50 4.31 4.35 7.33 8.70 11.69 14.72

XNLI Acc 83.97 76.01 77.23 78.10 74.59 68.52 71.42 73.13
ECE 10.83 17.20 17.08 15.58 18.71 22.74 20.12 18.16
TS 3.98 7.52 7.82 6.15 8.60 11.74 9.06 7.38

Beta 3.55 6.29 6.15 4.70 7.03 9.70 7.59 5.71
GPcalib 3.59 6.38 6.35 5.08 7.44 10.23 7.66 5.93
HIST 2.80 5.48 5.34 4.07 6.22 9.71 6.89 5.03

Table 8: Experiment result with xlm-roberta-base under the full-data setting. The color scheme is the same
as figures above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.05 89.68 87.55 89.46 89.84 73.84 80.93 75.42
ECE 3.49 8.55 9.77 8.98 8.41 19.74 14.50 15.88
TS 2.27 4.07 5.29 5.09 3.76 11.09 7.64 5.88

Beta 2.07 3.37 4.45 4.44 3.55 9.71 6.25 4.91
GPcalib 1.20 2.29 4.51 3.65 2.82 11.04 5.83 8.16
HIST 0.77 3.45 4.83 4.01 4.06 11.70 7.65 8.32

UDP LAS 80.68 75.34 72.81 71.62 67.19 35.68 52.74 34.89
l-ECE 3.88 7.71 8.61 11.18 10.22 21.92 21.45 25.98
l-TS 3.31 5.20 5.77 7.71 7.01 12.25 13.49 16.21

l-Beta 1.65 2.45 2.89 5.07 3.90 11.44 12.38 15.37
l-GPcalib 1.65 1.50 2.75 3.29 2.67 6.80 8.47 11.04
l-HIST 2.48 5.01 6.97 9.17 8.71 23.50 21.20 27.30
h-ECE 12.69 13.46 15.26 14.95 18.29 40.68 21.83 39.58
h-TS 3.71 6.86 7.51 6.94 5.33 11.58 7.01 10.52

h-Beta 4.61 6.96 6.61 6.39 4.57 14.35 5.24 13.69
h-GPcalib 3.99 7.39 8.25 7.06 5.99 10.13 7.96 8.10
h-HIST 4.85 4.79 3.30 3.33 3.53 17.50 6.27 17.19

NER F-1 80.42 76.31 77.43 78.28 66.52 69.54 69.92 39.04
ECE 7.91 6.93 9.66 10.44 12.04 16.01 14.79 31.51
TS 2.00 3.37 2.44 2.59 5.43 7.27 4.21 20.70

Beta 1.53 2.45 1.98 1.91 4.47 6.59 3.83 20.48
GPcalib 1.09 2.12 1.46 1.81 4.20 6.23 3.30 19.93
HIST 1.56 3.39 2.13 2.51 4.79 6.94 4.99 21.57

XNLI Acc 60.10 57.43 57.56 58.76 54.47 53.53 54.63 55.73
ECE 30.40 32.16 32.57 31.58 35.92 35.57 34.45 33.57
TS 4.17 5.10 5.25 4.71 7.72 7.10 7.10 6.02

Beta 4.33 4.20 4.89 4.93 7.31 6.60 6.47 5.58
GPcalib 4.30 4.41 4.62 4.08 7.56 6.45 6.18 5.44
HIST 4.07 4.92 5.05 5.20 8.00 8.34 7.01 6.15

Table 9: Experiment result with xlm-roberta-base under the low-data setting. The color scheme is the same
as figures above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 95.26 89.99 88.98 89.84 90.24 74.38 82.37 76.36
ECE 3.55 7.24 7.28 7.48 6.62 14.29 11.64 11.84
TS 2.68 3.23 4.81 3.92 3.30 9.20 5.85 6.54

Beta 2.30 2.10 3.83 2.45 3.70 7.21 4.56 5.74
GPcalib 1.73 1.63 2.65 2.43 2.38 6.58 3.40 4.69
HIST 1.09 2.48 3.89 2.72 3.48 11.12 5.68 7.48

UDP LAS 76.06 66.31 64.30 63.97 59.64 32.11 45.39 27.93
l-ECE 4.62 8.11 9.71 12.01 10.76 23.95 20.90 25.38
l-TS 4.55 5.09 5.43 7.35 6.99 12.04 12.22 13.69

l-Beta 2.71 2.95 3.11 5.14 3.72 13.64 11.55 15.17
l-GPcalib 2.80 2.06 3.00 3.75 2.96 8.99 7.67 10.31
l-HIST 6.63 7.43 10.01 11.96 11.75 29.34 22.97 33.68
h-ECE 10.98 15.14 15.20 14.68 19.24 37.07 24.39 36.01
h-TS 2.61 3.06 5.17 5.19 5.29 17.11 7.62 14.46

h-Beta 5.30 3.19 4.60 4.84 3.40 17.22 6.25 16.17
h-GPcalib 7.59 8.62 11.49 10.37 7.08 7.84 6.98 4.61
h-HIST 5.56 2.74 3.66 3.92 3.25 17.66 6.70 16.69

NER F-1 70.09 69.02 67.81 67.07 55.29 64.94 53.13 30.55
ECE 13.06 7.81 14.51 16.65 16.43 17.86 25.96 36.34
TS 2.30 5.71 2.10 4.40 3.31 5.00 10.49 21.82

Beta 2.14 5.18 2.11 4.45 2.77 5.06 10.80 21.70
GPcalib 1.86 5.33 2.27 4.11 2.97 5.52 10.68 22.12
HIST 1.85 5.67 2.93 5.13 4.26 5.99 12.80 22.74

XNLI Acc 39.34 39.28 38.56 38.86 39.12 39.54 37.70 39.66
ECE 58.11 57.91 58.69 58.17 58.09 56.93 59.33 57.34
TS 2.92 3.40 3.23 3.20 3.22 2.54 4.00 2.76

Beta 2.23 1.79 1.82 1.49 1.41 1.75 1.87 2.46
GPcalib 2.66 2.31 2.24 2.04 1.95 2.63 2.34 1.99
HIST 2.01 2.36 3.12 2.64 2.85 2.78 3.95 2.14

Table 10: Experiment result with xlm-roberta-base under the very-low-data setting. The color scheme is the
same as figures above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.31 90.26 89.19 89.12 89.35 72.33 79.15 70.13
ECE 2.86 7.47 7.45 7.89 8.02 18.31 14.78 21.84
TS 1.88 4.57 3.86 4.46 4.59 12.26 9.11 14.91

Beta 1.22 3.37 2.81 3.10 3.76 9.96 7.07 13.28
GPcalib 0.99 3.05 2.51 2.83 3.65 9.64 7.08 13.22
HIST 0.96 4.38 4.20 4.34 4.73 12.57 8.67 14.44

UDP LAS 87.30 77.51 79.65 75.70 72.77 34.30 58.40 41.04
l-ECE 2.37 7.16 5.54 8.61 7.66 19.22 14.97 18.92
l-TS 1.31 3.46 2.67 4.74 3.59 9.52 7.41 11.02

l-Beta 0.84 3.22 2.30 4.77 3.18 12.49 8.77 12.66
l-GPcalib 0.78 3.41 2.23 4.76 3.45 11.64 8.65 12.26
l-HIST 1.57 6.63 5.18 8.25 7.66 24.50 17.37 23.27
h-ECE 6.25 7.34 9.10 10.10 11.46 31.07 14.63 29.57
h-TS 1.56 3.34 2.57 2.38 2.28 12.51 3.46 13.68

h-Beta 1.53 2.66 2.37 2.58 2.17 16.72 3.22 16.41
h-GPcalib 1.57 3.76 2.61 2.30 2.07 11.24 3.51 12.56
h-HIST 1.56 2.95 3.47 3.37 3.32 17.99 5.28 17.75

NER F-1 87.71 85.16 79.88 80.88 71.68 75.19 57.67 56.46
ECE 3.95 3.07 8.80 8.19 9.06 9.72 20.08 17.72
TS 1.14 1.10 5.09 3.75 4.54 4.46 12.53 11.44

Beta 0.93 0.82 4.60 3.47 4.24 4.41 12.23 11.06
GPcalib 0.91 0.95 4.73 3.49 4.28 4.57 12.67 11.41
HIST 1.21 1.35 5.08 4.28 4.79 5.01 13.01 12.23

XNLI Acc 81.90 70.24 73.61 73.73 67.03 59.42 64.21 68.84
ECE 10.90 18.51 17.29 16.68 22.75 27.82 22.82 20.40
TS 3.20 7.53 7.05 6.18 11.36 15.74 10.66 9.02

Beta 2.85 6.32 5.82 4.88 10.02 14.42 9.46 7.91
GPcalib 3.46 6.01 5.86 4.80 9.87 14.39 9.32 7.72
HIST 3.59 6.41 5.70 4.99 9.86 14.59 9.28 7.79

Table 11: Experiment result with bert-base-multilingual-cased under the full-data setting. The color
scheme is the same as figures above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 95.52 89.55 88.22 88.57 87.43 69.59 78.09 69.44
ECE 3.50 7.90 9.27 8.95 8.95 19.42 14.45 20.13
TS 2.29 4.12 5.02 5.84 3.93 13.72 7.96 12.45

Beta 1.85 2.44 3.58 4.32 2.54 10.04 5.32 10.77
GPcalib 1.45 2.22 3.75 4.11 2.28 9.30 5.22 10.65
HIST 0.59 2.93 4.45 4.23 4.00 12.13 6.42 12.32

UDP LAS 81.61 71.18 72.07 70.90 65.23 25.92 50.87 36.01
l-ECE 3.78 8.34 7.87 10.99 11.28 26.63 20.55 22.99
l-TS 3.68 5.06 4.90 7.51 7.44 14.84 11.58 13.93

l-Beta 2.14 2.18 3.57 4.23 3.40 14.56 9.68 12.02
l-GPcalib 2.22 2.53 4.56 3.31 2.74 9.90 6.54 8.51
l-HIST 3.43 6.56 7.09 9.21 10.17 31.69 21.06 26.81
h-ECE 11.16 13.98 14.73 14.39 17.39 44.02 21.94 38.38
h-TS 5.24 10.22 12.40 10.17 7.70 9.53 8.64 9.68

h-Beta 6.55 9.54 9.86 8.74 6.49 15.95 6.06 12.28
h-GPcalib 6.23 13.03 14.97 11.79 10.03 5.29 10.79 8.00
h-HIST 6.53 7.01 6.17 5.39 4.13 18.28 6.68 15.03

NER F-1 83.09 83.26 82.10 82.19 65.62 71.29 58.79 57.56
ECE 7.69 4.61 8.69 8.95 13.52 14.18 22.22 18.80
TS 2.66 4.02 2.97 3.71 5.30 5.34 9.48 8.93

Beta 2.29 2.74 2.33 2.91 4.96 5.28 10.34 9.24
GPcalib 2.03 2.42 2.34 3.03 4.46 4.83 9.50 8.93
HIST 1.04 3.29 1.38 2.10 5.38 6.12 11.42 10.18

XNLI Acc 59.36 55.91 56.05 55.83 54.65 52.85 54.59 54.23
ECE 26.37 27.20 27.72 28.04 26.66 26.95 26.99 27.54
TS 6.78 7.44 7.43 6.70 5.64 4.51 5.32 6.43

Beta 5.80 6.11 6.28 5.75 4.68 3.93 4.18 5.52
GPcalib 6.58 6.74 6.70 6.14 5.52 4.80 4.67 5.99
HIST 5.23 5.64 5.42 4.55 5.80 5.53 4.96 5.45

Table 12: Experiment result with bert-base-multilingual-cased under the low-data setting. The color
scheme is the same as figures above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 94.49 91.40 89.16 90.17 88.44 74.31 78.68 69.05
ECE 4.13 5.70 7.65 6.93 7.54 16.03 13.07 20.31
TS 3.16 2.83 3.07 4.02 2.18 11.75 5.98 10.90

Beta 2.45 2.62 2.59 2.66 2.40 9.57 5.83 9.47
GPcalib 1.87 3.23 2.09 2.37 2.66 7.53 3.91 8.25
HIST 1.93 2.40 1.86 1.88 3.00 9.52 5.81 10.92

UDP LAS 76.99 60.45 66.59 64.60 56.21 22.45 41.67 30.93
l-ECE 4.76 10.30 9.68 12.74 14.05 26.13 22.90 23.64
l-TS 4.63 5.25 5.55 7.62 8.19 8.74 11.02 10.25

l-Beta 2.62 3.14 2.94 5.38 5.23 14.45 12.05 12.70
l-GPcalib 3.02 2.12 2.79 3.75 3.29 9.76 8.84 9.14
l-HIST 6.87 10.60 9.62 12.11 15.44 35.66 27.01 30.90
h-ECE 11.80 19.07 15.30 15.18 19.72 43.00 25.54 38.62
h-TS 8.14 7.76 11.40 11.17 7.50 9.21 6.51 8.86

h-Beta 5.73 2.86 5.22 5.50 2.36 20.42 5.23 17.14
h-GPcalib 7.16 8.03 10.94 10.77 8.28 7.26 7.13 7.29
h-HIST 5.61 2.40 3.82 3.81 2.93 21.62 6.31 18.20

NER F-1 72.56 73.71 71.47 70.56 50.96 62.88 54.51 41.96
ECE 11.00 5.23 12.18 15.33 17.79 18.86 25.29 33.03
TS 2.63 7.07 2.48 3.58 5.90 4.65 9.29 19.58

Beta 2.57 6.36 2.50 3.73 5.65 5.06 10.24 19.53
GPcalib 2.36 5.98 2.72 4.18 6.07 5.97 10.51 19.53
HIST 1.53 6.02 3.16 4.21 6.36 5.63 11.61 20.43

XNLI Acc 45.51 43.81 44.85 45.53 44.87 41.58 43.93 45.79
ECE 45.87 45.91 45.04 44.66 44.37 47.20 45.54 43.91
TS 5.40 4.92 4.11 6.01 4.18 5.32 4.88 4.86

Beta 2.90 2.36 2.88 3.31 2.75 2.43 2.35 2.77
GPcalib 4.72 3.56 4.31 3.88 3.71 4.29 3.82 3.42
HIST 3.45 4.38 4.12 3.67 3.85 7.34 4.89 4.64

Table 13: Experiment result with bert-base-multilingual-cased under the very-low-data setting. The
color scheme is the same as figures above.
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Source en de fr es ru hi ar zh

full

ori 3.07 6.81 7.52 6.63 5.80 13.06 10.36 34.08
TS 1.58 4.25 3.96 3.80 3.00 8.44 5.89 25.41

GPcalib 1.17 3.79 4.54 3.48 2.47 7.49 4.84 27.89
ori 3.32 7.38 8.06 7.10 6.72 14.14 12.02 28.79

-crf TS 2.11 5.19 4.94 4.80 4.36 9.75 7.59 17.71
GPcalib 1.63 4.09 3.47 3.84 3.36 9.43 6.83 9.74

low-data

ori 3.29 6.89 8.82 6.65 6.78 14.37 10.66 25.84
TS 1.79 2.88 3.37 3.18 2.64 8.21 5.83 12.14

GPcalib 1.01 2.03 3.78 1.75 1.52 5.82 3.00 15.83
ori 3.31 6.64 8.45 6.37 6.68 14.04 11.59 39.26

-crf TS 1.66 2.75 3.46 3.26 2.11 8.02 4.46 27.48
GPcalib 1.42 5.39 7.25 6.44 2.72 10.25 6.04 21.25

very-low-data

ori 3.65 5.88 8.50 4.93 6.07 11.91 10.94 35.32
TS 1.94 2.56 4.80 1.82 2.73 7.82 5.53 28.19

GPcalib 1.66 2.06 4.59 1.46 2.04 7.41 5.88 30.15
ori 4.23 7.17 9.22 6.30 7.42 13.45 13.34 43.21

-crf TS 2.11 2.66 4.26 1.88 2.88 7.63 5.66 36.80
GPcalib 1.57 2.33 2.85 1.58 2.59 7.76 3.91 34.24

Table 14: structured prediction experiments: POS, comparing different calibration methods with statistical signifi-
cance tests. Blue shaded cells indicate significantly better performance in calibration by GPcalib vs TS decided by a
bootstrap from the dataset and an independent t-test with p < .05. Brown shaded cells indicate significantly worse
performance in calibration by GPcalib vs TS decided by the same criteria.
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Source en de fr es ru hi ar zh

full

ori 5.49 5.55 6.70 8.68 7.84 9.59 14.62 9.03
TS 4.66 4.74 5.80 7.70 7.08 8.53 13.75 8.30

GPcalib 1.47 1.26 2.65 4.52 3.61 4.68 8.83 3.97
ori 5.94 5.50 6.55 7.49 9.41 12.62 19.14 18.25

-crf TS 5.99 5.09 6.48 7.11 8.30 11.38 17.92 17.69
GPcalib 2.67 2.59 2.16 2.69 3.36 7.07 12.40 10.57

low-data

ori 9.14 6.99 8.28 8.01 12.57 14.78 18.48 20.49
TS 7.85 6.48 8.13 7.28 11.55 14.42 17.53 20.21

GPcalib 3.20 3.04 2.91 3.82 4.76 7.63 9.91 10.37
ori 8.59 7.26 8.01 7.58 12.28 13.18 18.56 20.48

-crf TS 7.55 6.45 7.31 6.77 11.17 12.68 17.60 20.26
GPcalib 2.40 1.90 2.46 2.89 3.84 6.73 10.35 12.00

very-low-data

ori 14.67 11.09 14.41 15.96 14.72 19.43 20.58 18.25
TS 10.14 7.08 9.65 10.69 8.88 13.26 12.65 12.82

GPcalib 2.82 3.63 3.27 4.58 3.57 7.17 6.09 5.18
ori 15.44 13.63 14.50 15.63 21.42 21.08 24.23 20.34

-crf TS 6.71 4.29 7.63 8.20 6.10 7.61 7.62 11.07
GPcalib 2.24 3.71 2.90 4.08 5.93 6.56 8.13 5.89

Table 15: structured prediction experiments: NER, comparing different calibration methods with statistical signifi-
cance tests. Color scheme same as the one in the previous table.
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