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Abstract

Parameter-Efficient Tuning (PETuning) meth-
ods have been deemed by many as the new
paradigm for using pretrained language mod-
els (PLMs). By tuning just a fraction amount
of parameters comparing to full model finetun-
ing, PETuning methods claim to have achieved
performance on par with or even better than
finetuning. In this work, we take a step back
and re-examine these PETuning methods by
conducting the first comprehensive investiga-
tion into the training and evaluation of them.
We found the problematic validation and testing
practice in current studies, when accompanied
by the instability nature of PETuning methods,
has led to unreliable conclusions. When being
compared under a truly fair evaluation protocol,
PETuning cannot yield consistently competi-
tive performance while finetuning remains to
be the best-performing method in medium- and
high-resource settings. We delve deeper into
the cause of the instability and observed that
the number of trainable parameters and training
iterations are two main factors: reducing train-
able parameters and prolonging training itera-
tions may lead to higher stability in PETuning
methods.1

1 Introduction

Pretrained Language Models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have orchestrated tremendous progress
in NLP in the past few years, achieving state of
the art on a large variety of benchmarks such as
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019). Most successful applications of PLMs
follow the pretraining-and-finetuning transfer learn-
ing paradigm (Devlin et al., 2019), where PLMs are
used as backbones to be combined with additional
parameters and finetuned on downstream tasks in

∗Corresponding author.
1Our code is available at https://github.com/

guanzhchen/PETuning.
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Figure 1: The relative performance difference of PETun-
ing methods, i.e., Adapter, prefix tuning (PT), LoRA,
BitFit, comparing with the full finetuning (FT) over
different training data size of 12 tasks from GLUE
and SuperGLUE. The tasks and their split into the
three resource bands are illustrated in Appx. §B.1. The
size of each point denotes the standard deviation and
the colours of PETuning methods denote the percent-
age of trainable parameters over different tasks com-
pared to full finetuning. The key takeaway message is
that PETuning methods outperform finetuning only in
the low-resource tasks but remain on par or behind in
medium and high-resource settings.

an end-to-end manner. Whilst being simple and ef-
fective, such paradigm requires task-specific tuning
of the full model that consists of hundreds of mil-
lions (Devlin et al., 2019; Liu et al., 2019), or even
billions (Radford et al., 2019; Brown et al., 2020;
Raffel et al., 2020) of parameters for each task,
which is time-consuming and resource-intensive.

To avoid full model finetuning, there has been
a surge of studies on Parameter-Efficient Tuning
(PETuning) methods, which aim to tune the PLMs
by adjusting lightweight trainable parameters while
keeping most pretrained parameters frozen. Vari-
ous ways have been used in these PETuning meth-
ods to introduce the lightweight trainable parame-
ters. Adapter (Houlsby et al., 2019; Pfeiffer et al.,
2020) is one of these that injects a small por-
tion of model-level parameters within each trans-
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former (Vaswani et al., 2017) layer of the pretrained
language model. Prompt-tuning (Qin and Eisner,
2021; Liu et al., 2021b; Lester et al., 2021) is an-
other class of methods that introduce trainable con-
tinuous embeddings into the original sequences of
input token embeddings to augment the PLMs on
the feature level. Diff-pruning (Guo et al., 2021)
learns and updates additional sparse diff-vector for
all pretrained parameters, and LoRA (Hu et al.,
2022) learns low-rank matrices to approximate the
updated matrices, both of which update the PLMs
on the parameter level. Moreover, BitFit (Ben Za-
ken et al., 2022) partially tunes the bias terms of
PLMs, without even introducing any new param-
eters. More details for these methods can be seen
in Appx. §A.

Given the various exciting progresses of PETun-
ing methods that all seem to demonstrate their com-
petitive performance with higher training efficiency,
the idea that PETuning could be a new general
paradigm in place of full finetuning for transfer
learning in NLP becomes never more tempting (Liu
et al., 2021a). We, however, argue that current ev-
idences are insufficient to support the complete
overthrow of full finetuning. First, we point out
that the current evaluation strategy, i.e., the de-
velopment set is used for both early stopping and
reporting results, used in a number of studies for
PETuning (Lester et al., 2021; Vu et al., 2022; Liu
et al., 2022; Pfeiffer et al., 2021) does not provide
fair model comparisons. This essentially causes
data leakage that results in misleading conclusions
(§2). Second, statistical significance is rarely re-
ported when comparing PETuning methods. This
is an especially crucial issue as we show that the
finetuning and PETuning processes are inherently
unstable due to various randomness, such as weight
initialization and training data order (§3.3).

To fairly compare these tuning strategies, this
study conducts a comprehensive re-examination
on the effectiveness of PETuning methods. Our
main contributions are: 1) We conduct controlled
experiments (§2) and reveal the fundamental flaw
of the current evaluation scheme (i.e., its failure to
assess generalisation) and how that leads to mis-
interpretations of the progress in the field. 2) We
offer a more reliable practice for model selection
that is not prone to overfitting. 3) We revisit the
performance of PETuning in comparison with fine-
tuning across tasks with various, and have reached
very different conclusions on different data scales.

4) We conduct the first comprehensive study to
investigate the stability of off-the-shelf PETuning
methods and identify the main contributing factors.

Key Findings: 1) Finetuning cannot be fully re-
placed so far, since there is no PETuning method
that can consistently outperform finetuning across
all tasks and settings. We conclude that PETuning
may be more suitable for low-resource tasks, but
struggle on medium-resource tasks and fall behind
finetuning across the board on high-resource tasks
(see Figure 1). 2) All the PETuning methods unan-
imously show instability across different random
seeds similar to finetuning (Dodge et al., 2020),
where the randomness comes from both weight ini-
tialisation and training data order. 3) We found
prompt-tuning lags far behind finetuning, which
is a very different conclusion from previous stud-
ies. We show that prompt-tuning is highly unstable
and cannot robustly and consistently re-produce
its reported competitive performance (usually re-
ported as a single run or the optimal run across
multiple episodes (Lester et al., 2021; Liu et al.,
2022)) in our fair evaluation setup. 4) Within each
PETuning method, reducing the size of trainable
parameters is likely to yield better stability (but not
necessary to yield better or poorer performance). 5)
The stability of PETuning methods is substantially
proportional to the scale of training data, and we
further highlight the most crucial factor behind is
the number of training iterations.

For the rest of the paper, we begin with the
analysis on why the current evaluation protocol
can be flawed (§2), and follow with a rigorous re-
examination with a fairer protocol to benchmark
the performance and stability of PETuning (§3).

2 The Broken Protocol

GLUE2 and SuperGLUE3 have become the de
facto benchmarks for verifying model effectiveness
in Natural Language Understanding. For the sake
of validity and fairness of the evaluation, the labels
of test sets in these benchmarks are not released.
Instead, web portals are provided for submitting
and evaluating the prediction results. Due to the
limited number of allowed evaluation submissions
to these benchmarks, a large number of works have
followed a common practice that the model perfor-
mance is only reported and compared based on the
dev sets rather than the real test sets, where the dev

2https://gluebenchmark.com.
3https://super.gluebenchmark.com.
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set is treated as the “test set” (Lester et al., 2021; Vu
et al., 2022; Liu et al., 2022; Pfeiffer et al., 2021).

While this practice is a convenient approxima-
tion of model performance as it allows quickly ob-
taining results from large-scaled experiments, there
has been a serious data leakage problem in this
setting: a single set is often used for both validat-
ing and testing the model. Therefore, the reported
results under such setting might come from overly-
optimistic checkpoints since early stopping is ap-
plied on the same set. We argue that such practice
breaches the standard train/dev/test paradigm and
compromises fair and rigorous comparison, leading
to unreliable conclusions and misunderstandings
of the examined models.

To verify the above concerns, we scrutinise the
broken status-quo protocol by comparing it with a
newly defined rigorous evaluation protocol. The
new protocol has strictly separated sets for val-
idation and testing. We provide comprehensive
analyses to reveal the negative effects of using the
dev sets for both checkpoint selection (i.e., early
stopping) and testing.

Compared Methods. We have chosen four rep-
resentative PETuning methods: Adapter, Prompt-
tuning (PT), LoRA, and BitFit, which corre-
spond to model-level, feature-level, parameter-
level, and partial-finetuning PETuning methods,
respectively4.

For Adapter, we use the Pfeiffer architec-
ture (Pfeiffer et al., 2020) since it has reported
better performance than others. For Prompt-tuning,
due to the poor performance of standard prompt
tuning (Lester et al., 2021) on small PLMs, e.g.,
base versions of Bert and RoBERTa, we adopt the
settings of prefix tuning (Li and Liang, 2021) (or
P-Tuning v2 (Liu et al., 2022)) to add continuous
prompts for each transformer layer of PLMs. For
LoRA & BitFit, we take the architectures from their
original papers (Hu et al., 2022; Ben Zaken et al.,
2022).

Evaluation Setup. We adopt RoBERTabase (Liu
et al., 2019) as our base model, and experiment
on the RTE dataset, which is a textual entailment
dataset included in both GLUE and SuperGLUE.

4Some works of Adapter (Pfeiffer et al., 2020) and Prompt-
tuning (Lester et al., 2021; Vu et al., 2022; Liu et al., 2022)
adopt the problematic early stopping strategy (described in
their experimental settings (Lester et al., 2021; Vu et al., 2022;
Pfeiffer et al., 2021) or code bases (Liu et al., 2022)), while
LoRA and BitFit adopt the standard train/dev/test paradigm.

Evaluation loss Accuracy

RTE1−2 RTE2−2 RTE1−2 RTE2−2

FT 78.89±1.36 78.89±1.36 79.28±1.9 79.62±2.22

Adapter 75.1±1.60 76.3±4.26 76.55±3.57 78.42±3.7

PT 57.55±2.71 66.19±8.51 57.84±4.85 67.19±11.37

LoRA 75.22±2.77 75.94±3.39 75.11±3.3 77.7±4.57

BitFit 70.79±10.38 71.3±10.19 66.76±12.98 68.2±13.72

Table 1: Mean and standard deviation results with differ-
ent dev/test splits for RTE task across 20 runs. Evalua-
tion loss and accuracy are the stopping metrics. Bold de-
notes the highest mean value for corresponding method
with specific stopping metric.

We divide the original dev set of the RTE dataset
by a 50%/50% split5 (denoted by dev.1 and dev.2
respectively), and compare the performance over
finetuning and the four PETuning methods. In par-
ticular, we use the dev.2 set as the test set, and
use the dev.1 set or the dev.2 set as the dev set for
model selection, respectively (denoted by RTE1−2

or RTE2−2). We set the number of epochs to 50
and early stop when validation scores do not im-
prove for 10 consecutive epochs following Mao
et al. (2022). Results will be shown for using ei-
ther evaluation loss or accuracy as the stopping
metrics.6

Results and Analyses. From Table 1, we can see
that using a single set as both the dev and test sets
(i.e. RTE2−2) can substantially boost the perfor-
mances of PETuning models, comparing with using
two separate ones (i.e., RTE1−2). Particularly, pre-
fix tuning (PT) gains ∼10% improvements using
either evaluation loss or accuracy as the stopping
metric. However, such performance boost does
not mean genuine improvement in terms of better
generalisation.

To demonstrate this in a more intuitive way, we
plot the evaluation performance on dev sets (i.e.
dev.1 and dev.2 respectively) over training steps
in Figure 2.7 For each model, its early stopped
epochs over the two sets are drastically different,
suggesting that there is significant behavioural dif-
ference of the models across sets and best check-

5A normal way to create new dev set is to separate part of
training set while using original dev set as test set, as what we
do in §3.1. However, to highlight the data leakage issue from
the misused early stopping with a more controlled setting, we
create the new dev and test sets from the same (original) dev
set with similar size and distribution and fairly compare their
impact for early stopping.

6See Appx. §B.2 for the full hyperparameters settings.
7The best-performing runs of RTE1−2 and RTE2−2 are

used for this visualisation.
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Figure 2: Comparing early stopped points selected by
RTE1−2 and RTE2−2, i.e., checkpoints with the best ac-
curacy scores from dev.1 and dev.2 over training epochs.
The markers denote the epochs selected by early stop-
ping. Comparing the two checkpoint results on dev.2
(i.e. test performance), the RTE2−2 (same set for test
and dev) checkpoint usually shows higher performance
than the checkpoint selected in RTE1−2 by a large gap.

point selected on one set does not necessarily gen-
eralise well on the other set. In fact, the ability
of models to mitigate such gap (e.g., from the
best-performing checkpoints on dev.1 to the best-
performing ones on unseen dev.2) precisely denotes
corresponding ability of generalisation, which is
the most essential criteria to measure the models’
effectiveness (Raschka, 2018). However, the eval-
uation scheme RTE2−2, i.e., the broken protocol,
reuses the test set multiple times during training
stage, which is tantamount to leaking the test in-
formation to erase this gap, resulting in unreliable
evaluation.

These observations motivates us to re-examine
these PETuning methods with a fairer evaluation.

3 Experiments with Fair Evaluation

In this section, we use a fairer evaluation protocol
that strictly separates dev and test sets. Based on
this protocol, we conduct extensive experiments to
investigate the effectiveness of PETuning methods
(concluded in Figure 1). First, we experiment over
a wide range of tasks under various levels of re-
source abundance to comprehensively compare the
performance of PETuning with finetuning (§3.2).
Further, we provide in-depth analyses for the in-
stability of PETuning methods, investigating the
possible causes and provide practical suggestions
of using PETuning methods (§3.3).

3.1 Experimental Setup
Data Setup. We conduct experiments on 12
datasets from GLUE and SuperGLUE, which are

divided into three levels according to their sizes:
(1) low-resource (< 1k data points), including
CB (de Marneffe et al., 2019), COPA (Roemmele
et al., 2011), and WSC (Levesque et al., 2012);
(2) medium-resource (1k ~10k data points), in-
cluding RTE (Wang et al., 2018), MRPC (Dolan
and Brockett, 2005), WiC (Pilehvar and Camacho-
Collados, 2019), STS-B (Cer et al., 2017), and
BoolQ (Clark et al., 2019); (3) high-resource (>
10k data points), including SST-2 (Wang et al.,
2018), MNLI (Williams et al., 2018), QNLI (Wang
et al., 2018), and QQP8.

Since using a single set for both early stopping
and testing could result in unreliable results (§2),
we use separate dev and test sets for all our experi-
ments. Specifically, the original training set of each
dataset is split into new train set and dev set by a
90%/10% proportion, and the original dev set is
used as the test set.9

Evaluation Setup. For the aforementioned four
PETuning methods, i.e., Adapter, prefix tuning,
LoRA, and BitFit, we again experiment with the
RoBERTabase model (Liu et al., 2019) on our 12
datasets. All experimental results are reported
across 20 runs for low- and medium-resource tasks,
and 10 runs for high-resource tasks with different
random seeds, respectively. We train for 50 epochs
and early stop the training when evaluation loss
does not decrease for 10 consecutive epochs.10

3.2 Analysis of Performance

From the average performance for all tasks in Ta-
ble 2, we can observe that most of the PETuning
methods (i.e., Adapter, LoRA, and BitFit) indeed
have some performance gains when compared with
finetuning. It is known that PETuning methods
have far better tuning efficiency, with significantly
less tuning parameters (< 2% of full model pa-
rameters), comparing with full finetuning (Mao
et al., 2022). However, it remains questionable
whether PETuning methods are more advantageous
as the overall comparison may neglect important
divergences in the wide range of tasks with dif-
ferent scales of training data. To provide a finer-

8https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

9Ideally, the standard train-dev-test splits of GLUE and
SuperGLUE should be used. However, due to the amount
of experiments and evaluations need to be done in our ultra-
large-scale investigation, we create our own splits instead of
submitting models to the learderboards.

10See Appx. §B.2 for the full hyperparameters settings.
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Dataset↓, Model→ FT Adapter PT LoRA BitFit
Low-Resource

CB 70.00±13.32 77.49±13.20 46.55↓±5.74 82.05↑±9.62 81.12↑±8.94

COPA 54.70±3.36 65.90↑±5.42 55.35±5.07 66.4↑±9.05 56.65±3.72

WSC 63.46±0.0 63.46±0.0 58.7↓±4.69 63.46±0.0 63.46±0.0

Avg. (Low) 62.72±4.58 68.95↑±4.83 53.53↓±3.22 70.64↑±4.32 67.08↑±3.57

Medium-Resource

RTE 73.77±3.17 73.88±1.88 57.36↓±8.01 69.69↓±7.89 70.67±10.77

MRPC 90.54±1.05 91.06±0.63 89.35↓±1.31 91.03±0.95 91.06±0.71

WiC 65.47±2.04 65.12±1.88 62.12↓±1.32 61.29↓±6.7 66.0±1.41

STS-B 90.42±0.26 90.23↓±0.1 89.64±0.39 90.47±0.11 90.44±0.15

BoolQ 78.75±0.72 76.93±0.92 75.44±0.47 76.92±1.33 76.9±0.84

Avg. (Medium) 79.79±0.99 79.44±0.74 74.78↓±1.62 77.88↓±2.02 79.01±2.22

High-Resource

SST-2 94.15±0.0 93.34↓±0.31 94.15±0.0 94.15±0.0 93.92±0.07

QNLI 92.40±0.12 92.31±0.09 92.31±0.27 91.00±0.69 91.60±1.01

QQP 91.38±0.06 90.28±0.0 88.90↓±0.32 90.45↓±0.17 89.28↓±0.0

MNLI 87.42±0.20 86.88↓±0.17 86.30↓±0.08 86.96±0.24 85.50↓±0.32

Avg. (High) 91.34±0.09 90.70↓±0.12 90.42↓±0.14 90.64↓±0.21 90.08↓±0.29

Avg. (All) 79.37 80.57 74.68 80.32 79.72

Table 2: Mean and standard deviation results for each of the 12 tasks across finetuning (FT) and four PETuning
methods. We report the F1 score for CB and MRPC, Pearson correlation for STS-B, and accuracy for other tasks
(matched accuracy for MNLI). Higher is better for all metrics. One-tailed t-test is used for the comparison between
PETuning and finetuning. One PETuning method outperforms (↑) or falls behind (↓) finetuning when accepting the
corresponding alternative hypothesis, where p-value < 0.05 (meaning the difference is significant).

Low Medium High

Adapter ↗ −→ ↘
PT ↘ ↘ ↘
LoRA ↗ ↘ ↘
BitFit ↗ −→ ↘

Table 3: Performance comparison between PETuning
and finetuning on low-, medium-, and high-resource
settings, respectively. Arrows indicate whether corre-
sponding PETuning method significantly outperforms
finetuning (↗), falls behind (↘), or their results across
multiple runs without significant differences (→).

grained view for the comparison between finetun-
ing and PETuning, we group the results of the 12
tasks in Table 2 into low-, medium-, and high-
resource tasks. Whilst most PETuning methods
outperform finetuning on low-resource settings, the
best PETuning is merely comparable to finetuning
in medium-resource tasks and lags behind finetun-
ing in high-resource tasks. We summarise the trend
in Table 3, and provide more detailed analyses in
the following.

Adapter & LoRA & BitFit only perform better on
low-resource tasks. From Table 2, we observe
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Figure 3: Relative performance differences of prefix tun-
ing (PT) over full finetuning (FT) on the upper bounds
of multi-run results. PT achieves close upper bounds
compared with FT on most of the 12 tasks.

that Adapter, LoRA, and BitFit obtain outstanding
performance on the low-resource tasks and signif-
icantly outperform finetuning by large margins11

(especially LoRA obtains ~8% performance gains
on average). However, the trend changes when
training data size gets larger. For the medium-
resource tasks, only Adapter and BitFit can main-
tain a comparable performance with finetuning.
LoRA and prefix tuning lags behind substantially.
For the high-resource setting, finetuning performs
consistently better than all PETuning methods.12 In

11Similar observation for Adapter was previously reported
in He et al. (2021). We extend it to more PETuning methods.

12These findings are also observed on the same task with
different number of training instances. See Appx. §C.1 for
more details.
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Figure 4: The experimental results over 20 different random seeds across CB, COPA, WSC, and RTE datasets,
where finetuning and PETuning methods show large instability. The dashed rhombuses denote the mean (horizontal
dashed line) and standard deviation (vertical distance).

particular, among the PETuning methods, Adapter
obtains the highest scores on high-resource tasks.
These results suggest that low-resource is the only
setting where PETuning methods could outperform
full finetuning.

Prefix tuning consistently underperforms fine-
tuning. According to Table 2 and Table 3, fine-
tuning beats prefix tuning by large margins on most
tasks across multiple runs, contradicting to what
has been reported in Liu et al. (2022). One possi-
ble reason is that prefix tuning is highly unstable
to train and thus may have exploited the broken
protocol more than other PETuning methods (see
Figure 2). Besides using a flawed evaluation pro-
tocol, previous works on prefix tuning only report
their result of a single run (Liu et al., 2022; Lester
et al., 2021; Vu et al., 2022), which might lead to
biased conclusion. In Figure 3 we further plot the
upper bounds of these runs, and we indeed observe
that the optimal run from prefix tuning achieves
competitive performance compared with finetuning
on many tasks. However, the results in Table 2 ver-
ify that this competitiveness would plummet across
different runs by varying the random seeds. Such
instability of prefix tuning leads to its poor aver-
age performance in our experiments. We further
discuss this in §3.3.

Finetuning cannot be fully replaced. To sum-
marise, PETuning has exceptional performance in

WI DO Global

FT 55.40±4.55 55.35±3.32 54.70±3.36

Adapter 67.15±5.40 66.35±7.36 65.90±5.42

PT 55.00±5.13 54.75±4.97 55.35±5.07

LoRA 63.60±7.93 64.60±8.56 66.40±9.05

BitFit 58.40±2.29 56.00±4.00 56.65±3.72

Table 4: Performance over 20 runs on COPA task, con-
trolled by global random seeds, weight initialization
(WI) random seeds, and data order (DO) random seeds,
respectively. (Visualised in Figure 12 in the Appendix.)

resource-poor scenarios and usually outperform
the more expensive full-model finetuning. How-
ever, when dataset size increases, finetuning regains
dominance in medium- and high-resource setups.
This indicates that finetuning cannot be fully re-
placed so far. We also delved deeper into under-
standing why finetuning lags behind PETuning on
low-resource settings. Our investigation points to
the different fitting capabilities of finetuning and
PETuning. Specifically, finetuning is more prone
to overfitting on low-resource tasks.13

3.3 Analysis of Stability

By revisiting the results in Table 2, we can observe
that both finetuning and all PETuning methods ex-
hibit large standard deviations on several tasks, i.e.,

13See Appx. §C.2 for more details and analyses.
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and large parameter scales on COPA task across 20 runs. (See the numerical results and analyses in Appx. §C.3.)

CB, COPA, WSC, and RTE. To further understand
this phenomenon, in Figure 4, we visualise the per-
formance distribution of 20 runs of finetuning and
PETuning methods on these tasks. Surprisingly,
large fluctuations are seen on all four tasks across
all methods, where the margins between the lower
and upper bounds could reach over 30%. While
Dodge et al. (2020); Mosbach et al. (2021) have
previously identified such variation exists for fine-
tuning, our experiments further validate that such
instability also occurs in all PETuning methods and
could be even more prominent in certain tasks.

This level of instability severely hampers the
application of PETuning and there is a pressing
need to understand the underlying cause. However,
to the best of our knowledge, no previous studies
have systematically discussed the instability issue
in PETuning methods. In this section, we provide
the first comprehensive investigation on this matter.
While instability is measured as the performance
differences between random seeds, we further dis-
entangle two randomness sources (weight initial-
isation and training data order) to better describe
model instability. We then investigate two factors
that might affect model instability: (1) trainable
parameter size; and (2) training data size and train-
ing iterations. Through controlled experiments,
we find that model instability is reflected by both
changing data order and changing weight initialisa-
tion. Reducing model size and increasing training
iteration seems to have positive impact on model
stability. We discuss all these points in detail in the
followings.

Weight initialisation and data order work to-
gether. Instability is measured from performance
changes due to randomness introduced by random
seeds. Two key things impacted by random seeds
are (a) the initialisation of trainable weights (in-

cluding extra parameters of PETuning methods and
the classification head), and (b) the order of train-
ing data fed to the model. To disentangle these two
factors, following the setting in Dodge et al. (2020),
we use two separate random seeds to control weight
initialisation and training data order respectively,
comparing with using one global random seed to
control these two factors simultaneously.

Table 4 demonstrates that each of the two factors
could individually lead to large standard deviations,
which means the instability of PETuning methods
are sensitive to either training data order, or weight
initialisation, or both. This observation indicates
that the sources of instability for PETuning can be
multifaceted – isolating and enhancing stability via
controlling individual factor can be challenging.14

Models with fewer trainable parameters are
more stable. To investigate the impact of model
size on model stability, we define three sizes, small,
medium, and large, for each PETuning method.
The three sizes correspond to the reduction factor
of {64, 16, 2} for Adapter15, the prompt length of
{32, 64, 128} for prefix tuning, and the rank of {8,
16, 32} for LoRA. We conduct a set of controlled
experiments on the COPA task where PETuning
methods exhibit high instability. We perform 20
runs for each setting and use kernel density estima-
tion (KDE) (Chen, 2017) to estimate the probability
density curves of the multi-run results.

As shown in Figure 5, for all PETuning methods,
we consistently observe that the probability density
curves would be progressively flatter (having lower

14Prior works mainly focused on obtaining better prior
(e.g., prompt/weight initialisation) to improve model perfor-
mance/stability but did not touch upon the multifaceted nature
of instability (Pfeiffer et al., 2021; Lester et al., 2021; Vu et al.,
2022).

15The smaller the reduction factor, the more parameters the
model has.
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Figure 6: Standard deviations of data size in {1k (solid
line), 2k (dashed line)} over training steps on WiC task
across 20 runs. (See that on BoolQ task in Figure 13 in
the Appendix.)

peak) as the number of parameters increase from
small to large. This suggests that more trainable
parameters for PETuning leads to a wider range of
performance distribution, resulting in higher insta-
bility. That said, when it comes to model perfor-
mance, the best-performing model usually is not
the smallest one. We conjecture that models with
fewer trainable parameters converge quickly to the
rough global minima but could be underfitting the
real data manifold.

Data size does not affect instability directly, but
training steps do. Figure 1 and Table 2 suggest
that PETuning methods almost always have larger
standard deviations on lower-resource tasks.16 To
investigate if training data size directly affects the
stability of PETuning, inspired by Mosbach et al.
(2021), we compare models that are trained with
randomly sampled 1k and 2k training instances
from WiC training set and validated with another
separately sampled 1k dev set.

In Figure 6, we observe that the solid and dashed
lines of each PETuning method are substantially
intertwined, which means the standard deviations
(instability) of PETuning methods trained by 1k or
2k samples would not have significant differences
with the same number of steps. The true underlying
variable that leads to the discrepancy of instability
across different training data sizes is essentially
the number of training iterations/steps. As shown
in Figure 6, the standard deviations of PETuning
methods have an initial ascent stage where mod-
els are fitting to the training data and thus having
fluctuating performance. After the ascent stage, the

16This is further confirmed in Appx. §C.1.

standard deviations substantially decrease as the
number of training steps get larger. With number
of epochs being fixed, the total number of itera-
tions on small datasets is small and the standard
deviation has yet to decrease, causing the higher in-
stability in lower-resource tasks. In particular, due
to the weaker fitting capabilities (Ding et al., 2022),
prefix tuning (PT) has a longer ascent stage, which
might need more training iterations to obtain more
stable performance. That said, prolonging the train-
ing on small datasets does not necessarily enhance
model performance, and the best checkpoint may
still be only appearing when the standard deviation
is high.

4 Related Work

Instability of finetuning PLMs. While our study
is, to the best of our knowledge, the first to system-
atically investigate PETuning instability, prior stud-
ies have looked into the instability of finetuning
PLMs. Dodge et al. (2020) illustrated the inher-
ent instability of finetuning by controlling random
seeds and provided a new early stopping strategy
to improve instability. Lee et al. (2020) proposed a
new regularisation method by mixing two models
based on dropout to prevent catastrophic forgetting
and to improve instability. More recently, Mosbach
et al. (2021) revisited the hypotheses of finetun-
ing instability proposed by previous studies and
found that optimisation difficulties can lead to van-
ishing gradients, which further causes finetuning
instability. Zhang et al. (2021) also revealed that
optimisation significantly affects the instabilities in
few-sample fine-tuning.

Analysis of PETuning. As PETuning methods
have become a prominent research direction, a
great number of studies aim to analyse the char-
acteristics of these methods. He et al. (2021) in-
vestigated the effectiveness of Adapter across dif-
ferent scales and Han et al. (2021) provided a ro-
bust strategy for training Adapter. Recently, He
et al. (2022) and Mao et al. (2022) proposed a uni-
fied view to connect various PETuning methods.
However, there has not been reliable validation and
comparison for off-the-shelf PETuning methods
in terms of stability and effectiveness, and this is
where our paper bridges the gap.

5 Conclusion

This work conducted a rigorous re-examination
on the current Parameter-Efficient Tuning (PETun-

2619



ing) methods. We demonstrated that performing
early stopping and evaluation on the same dataset
(a common practice used in many past studies)
could lead to unreliable conclusions. This issue
is more pronounced when accompanied by the in-
stability nature of PETuning, leading to inflated
results and overly optimistic estimates of PETun-
ing approaches. We re-evaluated these PETuning
methods on the performance and stability aspects
on a rigorous evaluation protocol that strictly sep-
arates validation and test sets. By conducting a
set of fine-grained comparisons between PETuning
and finetuning, we found that PETuning methods
are not consistently competitive with finetuning.
Namely, prefix tuning performs poorly across tasks
and most PETuning methods perform worse than
finetuning on higher-resource settings. By system-
atically investigating the instability of PETuning
methods, we found that models’ instability is sensi-
tive to both weight initialisation and training data
order. We identify two major factors behind such
instability: 1) models with fewer parameters are
more stable within each PETuning method class;
2) more training iterations can usually reduce in-
stability. Our overall re-examination conclude that
finetuning still cannot be fully replaced by PETun-
ing so far, and there are many key challenges for
PETuning in terms of both performance and insta-
bility, which need to be addressed in future work.

Limitations

This work provides a comprehensive study and
analysis for the existing popular PETuning meth-
ods, i.e., Adapter, Prompt-Tuning (prefix tuning),
LoRA, and BitFit, focusing on their performance
and stability. Empirically, we use standard devi-
ations to measure the stability of these PETuning
methods across multiple runs. Standard deviation
is more reliable when having more number of runs.
A larger number of runs would contribute to more
precise estimation of such stability. We chose 20
runs for low- and medium-resource tasks and 10
runs for high-resource tasks. However, larger num-
bers of runs can consolidate our conclusions.

Besides, we used the available train and dev sets
from GLUE and SuperGLUE to simulate a standard
train/dev/test split. The conclusion would be more
comparable to existing works if having access to
the real testing data.

Last but not least, we covered four representative
PETuning methods. However, PETuning is a fast-

moving field and our conclusions do not necessarily
generalise to all existing and upcoming models.
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Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. AdapterHub: A
Framework for Adapting Transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 46–54.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the Word-in-Context Dataset for Eval-
uating Context-Sensitive Meaning Representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1267–1273.

Guanghui Qin and Jason Eisner. 2021. Learning How to
Ask: Querying LMs with Mixtures of Soft Prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
Models are Unsupervised Multitask Learners. Ope-
nAI blog, (8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. J. Mach. Learn. Res., pages 140:1–
140:67.

Sebastian Raschka. 2018. Model Evaluation, Model Se-
lection, and Algorithm Selection in Machine Learn-
ing. arXiv preprint arXiv:1811.12808.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of Plausible Alter-
natives: An Evaluation of Commonsense Causal Rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90–95.

Timo Schick and Hinrich Schütze. 2021. It’s Not Just
Size That Matters: Small Language Models Are Also
Few-Shot Learners. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2339–2352.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039–5059, Dublin, Ireland. Association
for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A Stickier
Benchmark for General-Purpose Language Under-
standing Systems. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1112–1122.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2021. Revisiting Few-sample
BERT Fine-tuning. In International Conference on
Learning Representations.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual Probing Is [MASK]: Learning vs. Learning
to Recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017–5033.

2622

https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2021.emnlp-main.383
https://doi.org/10.18653/v1/2021.emnlp-main.383
https://doi.org/10.18653/v1/2021.emnlp-main.383
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.1811.12808
https://doi.org/10.48550/ARXIV.1811.12808
https://doi.org/10.48550/ARXIV.1811.12808
https://www.researchgate.net/profile/Cosmin-Bejan/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning/links/5c129b024585157ac1c05c6e/Choice-of-Plausible-Alternatives-An-Evaluation-of-Commonsense-Causal-Reasoning.pdf
https://www.researchgate.net/profile/Cosmin-Bejan/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning/links/5c129b024585157ac1c05c6e/Choice-of-Plausible-Alternatives-An-Evaluation-of-Commonsense-Causal-Reasoning.pdf
https://www.researchgate.net/profile/Cosmin-Bejan/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning/links/5c129b024585157ac1c05c6e/Choice-of-Plausible-Alternatives-An-Evaluation-of-Commonsense-Causal-Reasoning.pdf
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398


Appendix

A PETuning Methods

PETuning methods are unique in keeping (most)
pretrained parameters of PLMs frozen and finetun-
ing only light-weight additional parameters or a
fraction of the PLM’s parameters for downstream
tasks.

To achieve efficient tuning of PLMs, existing
PETuning methods are generally designed by two
different manners: (1) training additional parame-
ters on different levels of PLMs, including model-
level (Appx. §A.1), feature-level (Appx. §A.2), and
the parameter-level (Appx. §A.3), or (2) tuning par-
tial parameters of the base model (Appx. §A.4).
Figure 7 shows the difference of these PETuning
methods.

A.1 Model-Level
Adapter-Tuning. Adapters (Houlsby et al., 2019;
Pfeiffer et al., 2020, 2021; Meng et al., 2021) are
a type of PETuning approaches that insert small
newly initialised parameter modules on the model-
level (i.e., each transformer layer) of PLMs. In
particular, these adapter modules are normally
moulded by a two-layer feed-forward neural net-
work with a bottleneck: (1) a down-projection with
Wdown ∈ Rd×r to project the input hi to a lower-
dimensional space specified by bottleneck dimen-
sion r; (2) an up-projection with Wup ∈ Rr×d to
project back to the input size. Mathematically, the
adapter can be defined as:

ha = W⊤
upf

(
W⊤

downhi

)
, (1)

where ha is the output and f(·) is the activation
function. During the finetuning, the model only up-
dates the parameters of the adapter modules while
keeps the underlying pretrained model fixed.

A.2 Feature-Level
Prompt-Tuning. Prompt-Tuning (Lester et al.,
2021) is another type of PETuning approaches
that introduce additional tunable parameters on
the feature-level. Specifically, prompt-tuning in-
troduces additional tunable prefix (or suffix) vec-
tors, namely prompts (Zhong et al., 2021; Schick
and Schütze, 2021), to extend the input text fea-
tures (or the input of each transformer layer (Li
and Liang, 2021; Liu et al., 2022)), and tunes only
the prompts. Besides its simplicity and lightness,
prompt-tuning could achieve on par performance,
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LoRA

Figure 7: Different PETuning methods by adjusting
trainable parameter on model level (Adapter), feature
level (Prompt-tuning), parameter level (Diff Pruning
and LoRA), and partial-tuning level (BitFit).

particularly in billions-size PLMs, and even bet-
ter performance, comparing with the full finetun-
ing (Liu et al., 2022).

A.3 Parameter-Level
Diff-Pruning. Diff-pruning (Guo et al., 2021)
works on all parameters of PLMs, which aims to
learn additional trainable sparse parameters for the
entire PLMs. Specifically, for the pretrained pa-
rameters Θ, diff-pruning reparameterizes the task-
specific model parameters Θτ as:

Θτ = Θ+ δτ , (2)

where δτ denotes the trainable diff vector, which is
regularised to be sparse.

LoRA. LoRA (Hu et al., 2022) focuses on the up-
dating procedure of the language model parameters.
For a pretrained weight matrix W ∈ Rd×k, LoRA
uses trainable low-rank matrices to approximate
the updates (∆W) by:

W +∆W = W +BA, (3)

where B ∈ Rd×r,A ∈ Rr×k, and the rank r ≪
min(d, k).

A.4 Partial Finetuning
BitFit. Partial finetuning aims to tune a frac-
tion of PLMs parameters without introducing any
additional ones. For example, Lee et al. (2019)
only tunes the top layers, however, which usually
performs much worse than full finetuning. With
the principle of efficiency and effectiveness, Bit-
Fit (Ben Zaken et al., 2022) turns to tune the bias
terms of PLMs to obtain competitive performance.
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B General Experimental Setup

In this section, we illustrate the general task and
hyperparameter settings. Apart from that, in §2 and
§3, we will additionally illustrate their specific data
and evaluation setups, respectively.

B.1 Task Setup
In order to extensively compare the performance
and stability of PETuning methods with the full-
model finetuning, we select a full set of 12
tasks across low-, medium- and high-resource
scales of GLUE and SuperGLUE, including natu-
ral language inference (CB, RTE, MNLI, QNLI),
question answering (COPA, BoolQ), paraphras-
ing (MRPC, QQP), sentiment analysis (SST-2),
sentence similarity (STS-B), word sense disam-
biguation (WiC), and coreference resolution (WSC)
tasks. According to the dataset sizes, we divide
these tasks into three levels:

• Low-Resource: the tasks with training data
size smaller than 1k, including CB, COPA,
and WSC.

• Medium-Resource: the tasks with training
data size between 1k and 10k, including RTE,
MRPC, WiC, STS-B, and BoolQ.

• High-Resource: the tasks with training data
size larger than 10k, including SST-2, QNLI,
QQP, and MNLI.

B.2 Hyperparameter Setup
We adopt Robertabase as the base model released
by Huggingface17. The grid search is used to se-
lect the learning rate from {1e-6, 1e-5, 5e-5, 1e-4,
5e-4, 1e-3, 5e-3, 1e-2} and batch size from {16,
32}. We search the reduction factor from {2, 16,
64} following (Pfeiffer et al., 2021) for Adapter,
the prompt length from {8, 16, 32, 64} for prefix
tuning, and the scaling factor α and rank from {8,
16} for LoRA following its origin paper. There are
many studies focusing on achieving better initializa-
tion by post pretraining for PETuning methods such
as Adapter (Pfeiffer et al., 2021) and prompt (Vu
et al., 2022; Gu et al., 2022), however, to be a fair
comparison, the extra parameters of all PETuning
methods are initialized randomly.

We set the number of epochs to 50 and adopt
the early stopping strategy with the patience of 10
worse-performing epochs on our new development

17https://github.com/huggingface/transformers
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Figure 8: Performance over data scale in 500, 5k, 50k
on SST-2, QNLI, QQP, and MNLI. The shaded regions
are the standard deviations.

set following (Mao et al., 2022). In particular, for
§2, to fully investigate the effects of early stopping
on the task RTE, we use both evaluation loss and
accuracy as the stopping metrics; for §3, due to the
variety of evaluation metrics for the tasks, we use
the evaluation loss as the common stopping metric.

C Additional Experiments and Analyses

C.1 The Same Task with Different Training
Data Sizes

To make the above conclusions in §3.2 more con-
vincing, we conduct fine-grained experiments fol-
lowing (He et al., 2021). Specifically, we separately
sample 500, 5k and 50k training instances from the
original training data as representatives of low-,
medium- and high-resource settings, in addition to
draw another 1k samples as development set for
each task. We report experimental results for WiC,
STS-B, BoolQ, SST-2, QNLI, QQP, and MNLI,
which have more than 6k training samples, and
following the settings illustrated in §3.1.

Confirming our conclusions, in Table 5, we
obtain fully consistent findings with §3.2 and
Table 3, that prefix tuning consistently falls
behind finetuning on various-resources tasks;
Adapter&LoRA&BitFit significantly outperforms
finetuning on low-resource tasks; Adapter&BitFit
keep competitive with finetuning and LoRA lags
behind; and all PETuning methods falls behind on
high-resource tasks.

In addition, we plot the mean and std. values
with different data scales on the same task in Fig-
ure 8, to confirm the std. is substantially propor-
tional to training data size.
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Model↓, Dataset→ WiC STS-B BoolQ SST-2 QNLI QQP MNLI Avg.
500

FT 56.12±2.13 83.81±1.34 62.17±0.0 87.89±1.42 77.54±6.5 74.21±3.11 58.61±6.21 71.47±1.44

Adapter 58.36↑±3.98 85.74↑±0.64 61.56±1.51 89.12↑±0.84 79.85↑±1.55 75.91↑±1.01 60.92↑±2.86 73.07↑±0.84

PT 56.25±1.07 73.98↓±3.79 57.55↓±4.43 82.01↓±2.75 70.77↓±5.16 66.37↓±1.42 36.35↓±1.51 63.32↓±1.28

LoRA 58.64↑±1.16 85.06↑±0.83 60.48±4.74 89.1↑±0.78 80.86↑±0.7 72.43±2.9 63.1↑±2.57 72.81↑±0.84

BitFit 57.92↑±2.4 84.39↑±1.98 62.16±0.04 88.38±8.19 78.38±2.74 73.13±1.63 61.47↑±2.08 72.26↑±1.23

5k
FT 66.98±1.26 90.76±0.03 73.81±1.11 92.66±0.92 87.12±0.37 83.72±0.17 78.18±0.82 81.89±0.44

Adapter 65.15±2.85 90.24±0.05 73.51±1.63 92.66±0.25 86.69±0.49 82.97±0.32 78.0±1.17 81.32±0.71

PT 66.25±1.29 89.14±0.66 62.32↓±0.14 91.7±0.92 85.83↓±1.32 80.11↓±1.52 77.78±0.42 79.02↓±0.83

LoRA 62.46↓±1.38 90.57±0.15 71.9↓±0.41 92.35±0.7 87.49±0.39 83.03±0.36 77.67±0.26 80.78↓±0.45

BitFit 67.61±0.49 90.37±0.19 75.08↑±0.56 92.35±0.56 86.47±0.28 82.9±0.25 78.87±0.1 81.95±0.15

50k
FT - - - 93.46±0.18 90.07±0.22 88.36±0.18 84.71±0.41 89.15±0.27

Adapter - - - 93.02±0.25 89.03↓±0.17 86.67↓±0.26 84.03±0.56 88.19↓±0.18

PT - - - 93.32±0.47 88.23↓±0.59 85.21↓±0.79 82.96↓±0.20 87.43↓±0.41

LoRA - - - 93.35±0.27 89.49±0.13 87.20↓±0.33 83.26↓±0.11 88.33↓±0.20

BitFit - - - 92.99±0.38 89.00↓±0.09 87.51↓±0.14 83.25↓±0.08 88.19↓±0.12

Table 5: Mean and standard deviation results for the 7 tasks by 500, 5k, and 5k samples of training data sets across
20 runs.
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Figure 9: Evaluation loss over training steps on COPA,
WiC, and SST-2.

C.2 Finetuning is More Prone to Overfit

To investigate the reasons behind the performance
discrepancy of finetuning and PETuning under dif-
ferent training resources, we plot the evaluation
loss over training steps for COPA, WiC, and SST-2,
as the representatives of low-, medium-, and high-
resource tasks, respectively in Figure 9. We ob-
serve that finetuning always converges faster than
PETuning, especially on low-resource task COPA,
where the training steps are less than 100. One
possible explanation for the aforementioned dis-
crepancy is that finetuning could converge faster
than PETuning methods, which might cause the
overfitting issue on low-resource settings, subse-
quently leading to the poorer performance.

Small Medium Large
Adapter 68.0±3.42 68.45±4.17 65.9±5.42

PT 55.35±4.71 55.35±5.07 52.1±5.24

LoRA 66.4±9.05 62.4±8.99 59.8±9.24

Table 6: Performance over 20 runs on COPA task, con-
trolled by global random seeds, weight initialization
(WI) random seeds, and data order (DO) random seeds,
respectively.

C.3 High Stability on Fewer Trainable
Parameters.

The probability density curves (Figure 5 and Fig-
ure 10) have statistically confirmed PETuning meth-
ods tend to exhibit higher stability with fewer train-
able parameters. In Table 6, we also directly list the
numerical results of Adapter, PT, and LoRA over
small, medium, and large parameter scales across
20 runs. While the results substantially support
our conclusion that Adapter and PT achieve lowest
standard deviations on the small parameter scale,
except LoRA obtains slightly lower std. on the
medium one. To gain more understanding about the
multi-run results, we visualise them in Figure 11.
Confirming our conclusion, we can observe that
PETuning methods indeed show a trend towards
clustering points and smaller boxes on small pa-
rameter scale, which means probably higher sta-
bility. However, there are also likely to generalise
outliers on small parameter scale as shown in Fig-
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and large parameter scales on CB task across 20 runs.
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ure 11, especially under our limited 20 runs, which
could lead to the increasing variance. This special
case might result in the inconsistent phenomenon
of LoRA with other PETuning methods, nonethe-
less, the results and phenomena in Table 6 and Fig-
ure 11 generally further support the conclusion that
PETuning are likely to have high stability on fewer
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Figure 13: Standard deviations of data size in {1k (solid
line), 2k (dashed line)} over training steps on BoolQ
task across 20 runs.

trainable parameters.
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