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Abstract

Curriculum Learning (CL) is a technique of
training models via ranking examples in a typi-
cally increasing difficulty trend with the aim of
accelerating convergence and improving gen-
eralisability. Current approaches for Natural
Language Understanding (NLU) tasks use CL
to improve in-distribution data performance of-
ten via heuristic-oriented or task-agnostic dif-
ficulties. In this work, instead, we employ CL
for NLU by taking advantage of training dy-
namics as difficulty metrics, i.e. statistics that
measure the behavior of the model at hand on
specific task-data instances during training and
propose modifications of existing CL sched-
ulers based on these statistics. Differently from
existing works, we focus on evaluating mod-
els on in-distribution (ID), out-of-distribution
(OOD) as well as zero-shot (ZS) cross-lingual
transfer datasets. We show across several NLU
tasks that CL with training dynamics can re-
sult in better performance mostly on zero-shot
cross-lingual transfer and OOD settings with
improvements up by 8.5% in certain cases.
Overall, experiments indicate that training dy-
namics can lead to better performing models
with smoother training compared to other dif-
ficulty metrics while being 20% faster on av-
erage. In addition, through analysis we shed
light on the correlations of task-specific versus
task-agnostic metrics1.

1 Introduction

Transformer-based language models (Vaswani
et al., 2017; Devlin et al., 2019, LMs) have re-
cently achieved great success in a variety of NLP
tasks (Wang et al., 2018, 2019a). However, gen-
eralisation to out-of-distribution (OOD) data and
zero-shot cross-lingual transfer still remain a chal-
lenge (Linzen, 2020; Hu et al., 2020). Among exist-
ing techniques, improving OOD performance has

1Code is available at https://github.com/
huawei-noah/noah-research/tree/master/
NLP/TD4CL

been addressed by training with adversarial data (Yi
et al., 2021), while better transfer across languages
has been achieved by selecting appropriate lan-
guages to transfer from (Lin et al., 2019; Turc et al.,
2021), employing meta-learning (Nooralahzadeh
et al., 2020) or data alignment (Fang et al., 2020).

Contrastive to such approaches that take advan-
tage of additional training data is Curriculum Learn-
ing (Bengio et al., 2009, CL), a technique that aims
to train models using a specific ordering of the
original training examples. This ordering typically
follows an increasing difficulty trend where easy
examples are fed to the model first, moving to-
wards harder instances. The intuition behind CL
stems from human learning, as humans focus on
simpler concepts before learning more complex
ones, a procedure that is called shaping (Krueger
and Dayan, 2009). Although curricula have been
primarily used for Computer Vision (Hacohen and
Weinshall, 2019; Wu et al., 2021) and Machine
Translation (Zhang et al., 2019a; Platanios et al.,
2019), there are only a handful of approaches that
incorporate CL into Natural Language Understand-
ing tasks (Sachan and Xing, 2016; Tay et al., 2019;
Lalor and Yu, 2020; Xu et al., 2020a).

Typically, CL requires a measure of difficulty
for each example in the training set. Existing
methods using CL in NLU tasks rely on heuris-
tics such as sentence length, word rarity, depth of
the dependency tree (Platanios et al., 2019; Tay
et al., 2019), metrics based on item-response the-
ory (Lalor and Yu, 2020) or task-agnostic model
metrics such as perplexity (Zhou et al., 2020). Such
metrics have been employed to either improve
in-distribution performance on NLU or Machine
Translation. However, their effect is still under-
explored on other settings.

In this study instead, we propose to adopt train-
ing dynamics (Swayamdipta et al., 2020, TD) as
difficulty measures for CL and fine-tune models
with curricula on downstream tasks. TD were re-
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cently proposed as a set of statistics collected dur-
ing the course of a model’s training to automatically
evaluate dataset quality, by identifying annotation
artifacts. These statistics, offer a 3-dimensional
view of a model’s uncertainty towards each training
example classifying them into distinct areas–easy,
ambiguous and hard examples for a model to learn.

We test a series of easy-to-hard curricula using
TD, namely TD-CL, with existing schedulers as
well as novel modifications of those and experiment
with other task-specific and task-agnostic metrics.
We show performances and training times on three
settings: in-distribution (ID), out-of-distribution
(OOD) and zero-shot (ZS) transfer to languages
different than English. To the best of our knowl-
edge, no prior work on NLU considers the impact
of CL on all these settings. To consolidate our
findings, we evaluate models on different classifica-
tion tasks, including Natural Language Inference,
Paraphrase Identification, Commonsense Causal
Reasoning and Document Classification.

Our findings suggest that TD-CL provides better
zero-shot cross-lingual transfer up to 1.2% over
prior work and can gain an average speedup of
20%, up to 51% in certain cases. In ID settings CL
has minimal to no impact, while in OOD settings
models trained with TD-CL can boost performance
up to 8.5% on a different domain. Finally, TD pro-
vide more stable training compared to another task-
specific metric (Cross-Review). On the other hand,
heuristics can also offer improvements especially
when testing on a completely different domain.

2 Related Work

Curriculum Learning was initially mentioned in the
work of Elman (1993) who demonstrated the impor-
tance of feeding neural networks with small/easy
inputs at the early stages of training. The con-
cept was later formalised by Bengio et al. (2009)
where training in an easy-to-hard ordering was
shown to result in faster convergence and improved
performance. In general, Curriculum Learning re-
quires a difficulty metric (also known as the scoring
function) used to rank training instances, and a
scheduler (known as the pacing function) that de-
cides when and how new examples–of different
difficulty–should be introduced to the model.
Example Difficulty was initially expressed via
model loss, in self-paced learning (Kumar et al.,
2010; Jiang et al., 2015), increasing the contribu-
tion of harder training instances over time. This

setting posed a challenge due to the fast-changing
pace of the loss during training, thus later ap-
proaches used human-intuitive difficulty metrics,
such as sentence length or the existence of rare
words (Platanios et al., 2019) to pre-compute diffi-
culties of training instances. However, as such met-
rics do not express difficulty of the model, model-
based metrics have been proposed over the years,
such as measuring the loss difference between two
checkpoints (Xu et al., 2020b) or model translation
variability (Wang et al., 2019b; Wan et al., 2020).
In our curricula we use training dynamics to mea-
sure example difficulty, i.e. metrics that consider
difficulty from the perspective of a model towards
a certain task. Example difficulty can be also esti-
mated either in a static (offline) or dynamic (online)
manner, where in the latter training instances are
evaluated and re-ordered at certain times during
training, while in the former the difficulty of each
example remains the same throughout. In our ex-
periments we adopt the first setting and consider
static example difficulties.

Transfer Teacher CL is a particular family of such
approaches that use an external model (namely the
teacher) to measure the difficulty of training exam-
ples. Notable works incorporate a simpler model
as the teacher (Zhang et al., 2018) or a larger-sized
model (Hacohen and Weinshall, 2019), as well as
using similar-sized learners trained on different
subsets of the training data. These methods have
considered as example difficulty, either the teacher
model perplexity (Zhou et al., 2020), the norm of a
teacher model word embeddings (Liu et al., 2020),
the teacher’s performance on a certain task (Xu
et al., 2020a) or simply regard difficulty as a la-
tent variable in a teacher model (Lalor and Yu,
2020). In the same vein, we also incorporate Trans-
fer Teacher CL via teacher and student models of
the same size and type. However, differently, we
take into account the behavior of the teacher during
the course of its training to measure example diffi-
culty instead of considering its performance at the
end of training or analysing internal embeddings.

Moving on to Schedulers, these can be divided
into discrete and continuous. Discrete schedulers,
often referred to as bucketing, group training in-
stances that share similar difficulties into distinct
sets. Different configurations include accumulat-
ing buckets over time (Cirik et al., 2016), sam-
pling a subset of data from each bucket (Xu et al.,
2020a; Kocmi and Bojar, 2017) or more sophisti-
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cated sampling strategies (Zhang et al., 2018). In
cases where the number of buckets is not obtained
in a straightforward manner, methods either heuris-
tically split examples (Zhang et al., 2018), adopt
uniform splits (Xu et al., 2020a) or employ sched-
ulers that are based on a continuous function. A
characteristic approach is that of Platanios et al.
(2019) where at each training step a monotonically
increasing function chooses the amount of training
data the model has access to, sorted by increasing
difficulty. As we will describe later on, we experi-
ment with two established schedulers and propose
modifications of those based on training dynamics.

Other tasks where CL has been employed in-
clude Question Answering (Sachan and Xing,
2016), Reading comprehension (Tay et al., 2019)
and other general NLU classification tasks (Lalor
and Yu, 2020; Xu et al., 2020a). Others have devel-
oped modified curricula in order to train models for
code-switching (Choudhury et al., 2017), anaphora
resolution (Stojanovski and Fraser, 2019), relation
extraction (Huang and Du, 2019), dialogue (Saito,
2018; Shen and Feng, 2020) and self-supervised
Neural Machine Translation (Ruiter et al., 2020),
while more advanced approaches combine it with
Reinforcement Learning in a collaborative teacher-
student transfer curriculum (Kumar et al., 2019).

3 Methodology

Let D = {(xi, yi)}Ni=1 be a set of training data in-
stances. A curriculum is comprised of two main
elements: the difficulty metric, responsible for asso-
ciating a training example to a score that represents
a notion of difficulty and the scheduler that deter-
mines the type and number of available instances
at each training step t. We experiment with three
difficulty metrics derived from training dynamics
and four schedulers: two are new contributions and
the remaining are referenced from previous work.

3.1 Difficulty Metrics

As aforementioned, we use training dynam-
ics (Swayamdipta et al., 2020), i.e. statistics origi-
nally introduced to analyse dataset quality, as diffi-
culty metrics. The suitability of such statistics to
serve as difficulty measures for CL is encapsulated
in three core aspects. Firstly, training dynamics
are straightforward. They can be easily obtained
by training a single model on the target dataset
and keeping statistics about its predictions on the
training set. Secondly, training dynamics correlate

well with model uncertainty and follow a similar
trend to human (dis)agreement in terms of data an-
notation, essentially combining the view of both
worlds. Finally, training dynamics manifest a clear
pattern of separating instances into distinct areas–
easy, ambiguous and hard examples for a model
to learn–something that aligns well with the ideas
behind Curriculum Learning.

The difficulty of an example (xi, yi) can be
determined by a function f , where an example
i is considered more difficult than example j if
f(xi, yi) > f(xj , yj). We list three difficulty met-
rics that use statistics during the course of a model’s
training, as follows:

CONFIDENCE (CONF) of an example xi is the av-
erage probability assigned to the gold label yi by a
model with parameters θ across a number of epochs
E. This is a continuous metric with higher values
corresponding to easier examples.

fCONF(xi, yi) = µi =
1

E

E∑

e=1

pθ(e)(yi|xi) (1)

CORRECTNESS (CORR) is the number of times
a model classifies example xi correctly across its
training. It takes values between 0 and E. Higher
correctness indicates easier examples for a model
to learn.

fCORR(xi, yi) =
E∑

e=1

o
(e)
i ,

o
(e)
i =

{
1 if argmax pθ(e)(xi) = yi

0, otherwise
(2)

VARIABILITY (VAR) of an example xi is the stan-
dard deviation of the probabilities assigned to the
gold label yi across E epochs. It is a continuous
metric with higher values indicating greater uncer-
tainty for a training example.

fVAR(xi, yi) =

√∑E
e=1 (pθ(e) (yi|xi)− µi)

2

E
(3)

Confidence and correctness are the primary met-
rics that we use in our curricula since low and high
values correspond to hard and easy examples re-
spectively. On the other hand, variability is used as
an auxiliary metric since only high scores clearly
represent uncertain examples while low scores of-
fer no important information on their own.
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3.2 Schedulers

We consider both discrete and continuous sched-
ulers. Each scheduler is paired with the metric that
is most suited, i.e. the discrete correctness met-
ric combined with annealing and the continuous
confidence metric is combined with competence.
The ANNEALING (CORRANNEAL) scheduler pro-
posed by Xu et al. (2020a), assumes that training
data are split into buckets {d1 ⊂ D, . . . , dK ⊂ D}
with possibly different sizes |di|. In particular, we
group examples into the same bucket if they have
the same correctness score (see Equation (2)). In
total, this results in E+1 buckets, which are sorted
in order of increasing difficulty. Training starts
with the easiest bucket. We then move on to the
next bucket by also randomly selecting 1/(E + 1)
examples from each previous bucket. Following
prior work, we train on each bucket for one epoch.
The COMPETENCE (CONFCOMP) scheduler was
originally proposed by Platanios et al. (2019). Here,
we sort examples based on the confidence metric
(see Equation (1)), and use a monotonically increas-
ing function to obtain the percentage of available
training data at each step. The model can use only
the top K most confident examples as instructed
by this function. A mini-batch is then sampled
uniformly from the available examples.

In addition to those schedulers, we introduce
the following modifications that take advantage
of the variability metric. CORRECTNESS +
VARIABILITY ANNEALING (CORR+VARANNEAL)
is a modification of the Annealing scheduler and
CONFIDENCE + VARIABILITY COMPETENCE
(CONF+VARCOMP) is a modification of the Com-
petence scheduler. In both variations, instead of
sampling uniformly across available examples, we
give higher probability to instances with high vari-
ability scores (Equation (3)), essentially using two
metrics instead of one. We assume that since the
model is more uncertain about such examples fur-
ther training on them can be beneficial. For all
curricula, after the model has finished the curricu-
lum stage, we resume training as normal, i.e. by
random sampling of training instances.

3.3 Transfer Teacher Curriculum Learning

In order to train a model (student) with training
dynamics provided by another model (teacher), the
latter should be first fine-tuned on a target dataset.
In other words, the proposed metrics are used in a
transfer teacher CL setting (Matiisen et al., 2019).

 Training 
Data

Student
Model

Teacher
Model

Stage 1: Collecting Training Dynamics

Training
Dynamics

Stage 2: Transfer Teacher Curriculum fine-tuning

confidence  
correctness 
variabilityScheduler Difficulty

Metrics

ft

Figure 1: Transfer Teacher Curriculum Learning used
in our study. A teacher model determines the difficulty
of training examples by collecting training dynamics
during fine-tuning (Stage 1). The collected dynamics
are converted into difficulty metrics and are given to a
student model via a scheduler (Stage 2).

The two-step procedure that we follow in this
study is depicted in Figure 1. Initially a model
(the teacher) is fine-tuned on a target dataset and
training dynamics are collected during the course
of training. The collected dynamics are then con-
verted into difficulty metrics, following Equations
(1)-(3). In the second stage, the difficulty metrics
and the original training data are fed into a sched-
uler that re-orders the examples according to their
difficulty (in our case from easy-to-hard) and feeds
them into another model (the student) that is the
same in size and type as the teacher.

4 Experimental Setup

4.1 Datasets

In this work we focus on four NLU classifications
tasks: Natural Language Inference, where given
a premise and a hypothesis the task is to identify
if the hypothesis entails/contradicts/or is neutral
based on the premise; Paraphrase Identification,
where the task is to find if two sentences are para-
phrases of one another; Commonsense Causal Rea-
soning, where given a premise, a question and a
set of choices the task is to find the correct answer
to the question based on the premise, and Docu-
ment Classification where each document should
be assigned the correct category.

We aim for a comparison across 3 settings: in-
distribution (ID), out-of-distribution (OOD) and
zero-shot (ZS), hence, we select datasets that con-
tain all those settings, if possible. We use a small
subset from the GLUE benchmark (Wang et al.,
2018) covering the NLI task (RTE, QNLI and
MNLI) and four cross-lingual datasets: XNLI (Con-
neau et al., 2018), PAWS-X (Yang et al., 2019)
for paraphrase detection, XCOPA (Ponti et al.,
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TRAIN SET ZS ID OOD # LANGS # TRAIN # VAL. # ZS TEST # ID TEST # OOD TEST

PAWS PAWS-X PAWS TwitterPPDB 7 49,401 2,000 2,000 8,000 9,324
MNLI XNLI MNLI-m NLI Diagnostics 15 392,702 2,490 5,010 9,815 1,104
SIQA XCOPA SIQA CSQA 12 33,410 100 500 2,224 1,221
MLDoc MLDoc - - 8 10,000 1,000 4,000 - -
QNLI - QNLI Adversarial SQuAD 1 99,505 5,238 - 5,463 7,857
RTE - RTE HANS 1 2,365 125 - 277 30,000

Table 1: Datasets statistics. ZS, ID and OOD correspond to zero-shot Cross-lingual transfer, in-distribution and
out-of-distribution settings, respectively. ZS Validation and Test statistics are per language.

2020) for Commonsense reasoning and ML-
Doc (Schwenk and Li, 2018) for document classifi-
cation that combined cover 25 languages. QQP and
MRPC from GLUE were not included since PAWS
is a paraphrase dataset with a cross-lingual ver-
sion (PAWS-X). The choice of the OOD datasets
followed prior work: TwitterPPDB (as in Desai
and Durrett (2020)) for Paraphrase detection, NLI
Diagnostics, Adversarial SQuAD and HANS for
NLI (as in Swayamdipta et al. (2020)). HANS was
selected for RTE because both are binary classi-
fication datasets and there is no need to convert
the “neutral” label to “non-contradiction” for eval-
uation. CSQA was chosen as OOD for common-
sense reasoning since it targets knowledge related
to factual and physical commonsense, in contrast to
SIQA or CosmosQA that focus on commonsense
required during social/everyday situations. Finally,
for MLDoc we could not find a dataset having the
same classification categories to serve as OOD. The
corresponding statistics are shown in Table 1 and
more details can be found in Appendix A.

4.2 Evaluation Settings

We use the pre-trained versions of base
RoBERTa (Liu et al., 2019) and XLM-R (Conneau
et al., 2020). For all datasets, we report accuracy
as the main evaluation metric across three random
seeds, on the following settings.
In-Distribution (ID) and Out-Of-Distribution
(OOD): We first fine-tune a monolingual (English)
model on a target dataset and evaluate on their ID
test set, e.g. train RoBERTa on MNLI, and evaluate
on MNLI-M validation set. We also evaluate it on
an OOD dataset, e.g. NLI Diagnostics.
Zero-Shot (ZS): Constitutes the zero-shot cross-
lingual transfer setting. In particular, we train a
multilingual model on the same dataset, e.g. XLM-
RoBERTa on (English only) MNLI and evaluate
it on a zero-shot cross-lingual set, e.g. XNLI test
set (Hu et al., 2020).

In all experiments, we select the best check-

point based on the English validation set per-
formance. When reporting significance tests we
use the Approximate Randomization test with all
seeds (Noreen, 1989). More details about experi-
mental settings can be found in Appendix C.3.

4.3 Model Comparisons

We primarily compare all curricula that use train-
ing dynamics against each other and against a base-
line (Random) that does not employ any curricu-
lum and is using standard random order training.
We also consider as another baseline the teacher-
transfer curriculum proposed by Xu et al. (2020a),
namely Cross-Review (indicated as CRANNEAL in
the next sections). This curriculum uses the an-
nealing scheduler, but does not employ training
dynamics as difficulty scores. Instead, the method
splits the training set into subsets and a model is
trained on each subset containing 1/N of the train-
ing set. The resulting models are then used to eval-
uate all examples belonging in different subsets.
The difficulty score of an example is considered the
number of its correct classifications across teachers.
We split each training set into 10 subsets for all
datasets except MLDoc where we split into 5 and
RTE where we split into 3, following the original
paper. The difference between the cross-review and
the correctness metrics is that Cross-Review uses
N fully trained teacher models on subsets of data,
while the latter uses E epochs of a single model
trained on the entire training set.

Finally, when comparing CRANNEAL with our
training-dynamics based curricula, via discrete and
continuous schedulers, we ensure that all of them
are trained for equal amount of time, in order to
have a one-to-one comparison. To enforce this,
after the end of the curriculum phase, training con-
tinues as normal for the remaining steps (if any) by
randomly sampling examples, otherwise training
stops early.
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TRAIN PAWS SIQA

TEST PAWS TWITTER Time ↓ SIQA CSQA Time ↓
(ID) (OOD) (ID) (OOD)

RANDOM 93.77 0.30 72.18 5.45 68.36 0.39 44.61 0.96
CRANNEAL 93.72 0.14 72.83 6.65 1.00 68.45 0.69 44.85 0.72 1.00
CORRANNEAL 93.93 0.13 71.97 2.69 0.56 (0.35) 69.20 0.48 45.81 1.40 1.28 (1.11)
CONFCOMP 93.90 0.11 75.18 6.71 1.28 (0.72) 67.25 1.80 43.93 1.59 1.13 (0.57)
CORR+VARANNEAL 93.82 0.02 72.62 1.17 0.77 (0.29) 67.54 0.43 44.31 0.88 0.71 (0.26)
CONF+VARCOMP 94.02 0.13 81.33 2.10 1.20 (0.69) 68.54 0.04 45.84 0.67 1.48 (0.71)

TRAIN MNLI RTE QNLI

TEST MNLI-M NLI DIAG. Time ↓ RTE HANS Time ↓ QNLI ADV. SQUAD Time ↓
(ID) (OOD) (ID) (OOD) (ID) (OOD)

RANDOM 87.31 0.22 61.47 0.81 75.57 1.19 59.98 2.66 92.60 0.18 81.07 0.57
CRANNEAL 87.71 0.16 61.56 0.15 1.00 74.01 2.90 57.26 3.18 1.00 92.45 0.27 81.94 0.58 1.00
CORRANNEAL 87.53 0.23 61.75 0.59 0.76 (0.47) 76.17 1.06 55.15 2.90 0.76 (0.57) 92.57 0.14 81.69 0.82 1.30 (1.11)
CONFCOMP 87.36 0.42 61.08 0.72 1.33 (0.50) 75.69 1.62 55.05 1.25 1.11 (0.78) 92.68 0.21 80.58 0.51 1.08 (0.89)
CORR+VARANNEAL 87.64 0.03 62.05 0.41 1.50 (0.81) 75.45 2.23 58.12 5.76 1.00 (0.66) 92.84 0.27 82.13 0.90 1.30 (1.00)
CONF+VARCOMP 87.74 0.27 61.56 0.15 1.49 (0.60) 76.05 1.23 60.69 2.15 1.01 (0.78) 92.63 0.13 81.82 0.34 1.27 (1.07)

Table 2: Accuracy results of RoBERTa on in-distribution (ID) and out-of-distribution (OOD) data. Time corresponds
to the ratio S*TD/SCRanneal , where the numerator is the number steps a curriculum with TD needs to reach the reported
performance and the denominator is the number of steps the CRANNEAL baseline requires to reach its performance.
Results are reported over 3 random seeds and in parentheses we include the minimum time required across seeds.

TRAIN PAWS MNLI SIQA MLDOC

TEST PAWS-X (ZS) Time ↓ XNLI (ZS) Time ↓ XCOPA (ZS) Time ↓ MLDOC (ZS) Time ↓
PRIOR WORK 84.90∗ - 75.00∗ - 60.72 - 77.66 -
RANDOM 84.49 0.08 73.93 0.18 60.62 0.54 86.74 0.46
CRANNEAL 84.35 0.46 1.00 74.57 0.40 1.00 60.44 0.39 1.00 86.59 0.29 1.00
CORRANNEAL 84.70 0.15 1.04 (0.85) 73.92 0.11 1.11 (1.09) 60.95 0.40 2.13 (0.77) 86.47 0.64 1.09 (1.02)
CONFCOMP 84.51 0.45 1.44 (1.11) 74.32 0.41 1.10 (0.53) 61.09 0.28 1.33 (0.8) 86.30 0.70 1.37 (1.18)
CORR+VARANNEAL 84.52 0.27 0.75 (0.61) 74.66 0.06 0.79 (0.49) 61.68 0.51 2.73 (1.75) 86.14 0.23 0.99 (0.56)
CONF+VARCOMP 84.03 0.65 1.50 (1.10) 74.43 0.18 1.17 (0.93) 61.04 0.31 1.32 (0.58) 85.78 0.74 1.20 (0.94)

Table 3: Zero-shot performance between curricula as the average accuracy across languages (mean and standard
deviation over 3 random seeds) with XLM-R. We also report prior work results for reference as follows: PAWS-X
(Chi et al., 2022), XNLI (Chi et al., 2022), XCOPA (Ponti et al., 2020), MLDoc (Keung et al., 2020) (mBERT).
∗Note that Chi et al. (2022) tune on the target languages validation sets.

5 Experiments

5.1 Performance & Training Time

Results on Tables 2 and 3 show performance
and training time for various datasets. The re-
ported numbers (Time) are calculated as the ratio
S*TD/SCRanneal , i.e. the number of steps the Train-
ing Dynamics curriculum needs to reach best per-
formance (S*TD) divided by the number of steps
the Cross-Review method needs to reach its best
performance (SCRanneal). We focus comparison be-
tween curricula to show the trade-back between
performance and time (a lower score indicates a
larger speedup). In parentheses the minimum time
obtained across 3 random seeds is reported.

Table 2 shows accuracies for RoBERTa mod-
els when tested on ID/OOD data. We observe
that CL has minimal improvements in ID and in

particular, through statistical testing we find that
the increases over the Random baseline or Cross-
Review are not significant for any of the datasets,
except for MNLI-M vs Random CONF+VARCOMP

2.
Nevertheless, when tested on OOD performance
improvement is larger. CONF+VARCOMP achieves
the best performance on TwitterPPDB (+9.15,
sign. p < 0.01), CommonSenseQA (+1.23) and
HANS (+0.71) while CORR+VARANNEAL performs
best for NLI Diagnostics (+0.58) and Adversar-
ial SQuAD (+1.06, p < 0.01) over random. We
speculate that CONF+VARCOMP is better on OOD
thanks to its slow pacing and the more accurate
difficulties of confidence. However, this comes at
the cost of speedup by requiring either the same or

2After the time of the experiments, the SIQA test set was
removed from public access. Thus, we also include dev set
results in Appendix D for reproduction purposes.
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TRAIN PAWS MNLI SIQA

TEST PAWS PAWS-X TWITTER MNLI-M XNLI NLI DIAG. SIQA XCOPA CSQA

(ID) (ZS) (OOD) (ID) (ZS) (OOD) (ID) (ZS) (OOD)

CRANNEAL 93.72 0.14 84.35 0.46 72.83 6.65 87.71 0.16 74.57 0.40 61.56 0.04 68.45 0.69 60.44 0.39 44.85 0.72
CORRANNEAL 93.93 0.13 84.70 0.15 71.97 2.69 87.53 0.23 73.92 0.11 61.75 0.59 69.20 0.48 60.95 0.40 45.81 1.40
CORR+VARANNEAL 93.82 0.02 84.52 0.27 72.62 1.17 87.64 0.03 74.66 0.06 62.05 0.41 67.54 0.43 61.68 0.51 44.31 0.88
CONF+VARCOMP 94.02 0.13 84.03 0.65 81.33 2.10 87.74 0.27 74.43 0.18 61.56 0.15 68.54 0.04 61.04 0.31 45.84 0.67

LENGTH 93.87 0.31 84.56 0.09 74.93 5.66 87.22 0.15 73.47 0.29 61.20 0.19 66.55 1.45 60.76 0.40 42.72 0.72
RARITY 94.03 0.22 84.16 0.24 79.90 2.70 87.38 0.10 73.42 0.25 61.71 0.56 66.29 0.56 61.26 0.43 42.67 0.64
PPL 93.98 0.23 84.09 0.30 83.02 1.23 87.27 0.10 73.42 0.18 61.53 0.67 68.27 0.74 59.42 1.18 44.69 0.78

Table 4: Task-specific (above the line) vs Task-agnostic metrics (below the line) on ID, ZS and OOD data.
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Figure 2: Spearman rank correlation between difficulty metrics using RoBERTa-base. Observations are similar for
XLM-RoBERTa-base.

a few more steps than CRANNEAL.
Investigating the cross-lingual transfer results

on Table 3, initially we observe that CL with
XLM-R seems to have a larger impact in terms
of performance. On XNLI there is a +0.73 points
increase over Random (p < 0.01). The differ-
ence with CR is not significant but TD achieved
a 20% speedup on average. On XCOPA we ob-
serve +1.06 points increase, requiring however
more training time with the CORR+VARANNEAL cur-
riculum, over the random baseline. It is worth
noting that for XCOPA, the competence-based cur-
ricula are able to also offer better performance with
less additional training time. As for the remain-
ing datasets, CL is unable to achieve any perfor-
mance improvement on MLDoc while on PAWS-X
CORRANNEAL has an improvement of +0.2 points
from Random and +0.35 from CRANNEAL, both sta-
tistically significant (p < 0.01), with the cost of no
speedup. As another drawback, Cross-Review is
generally more resource demanding since it needs
N fully-trained teacher models instead of 1.

5.2 Comparing Difficulties

We now present a comparison between task-
agnostic (TA) and task-specific (TS) difficulty met-

rics. We re-implement 3 additional difficulty met-
rics proposed in prior work for Neural Machine
Translation. The first two, introduced in Platan-
ios et al. (2019), correspond to sentence length
(LENGTH) computed as the number of words in
each sentence and word rarity (RARITY) computed
as the negated logarithmic sum of the frequency
of each word in a sentence. Frequencies are com-
puted over the training set. Finally, we experiment
with Perplexity (PPL) as the difficulty of a sen-
tence (Zhou et al., 2020). We calculate sentence
perplexity as the average perplexities of its sub-
words by masking one subword at a time and using
the remaining context to predict it. Since we test
on a task with two-sentence input, we sum the PPL

of the two sentences and consider the entire input
for LENGTH and RARITY.

Table 4 shows the results of the comparison be-
tween metrics on the PAWS and MNLI datasets.
Interestingly, we observe that TA metrics perform
on par with TS on ID data, worse on ZS data and
can perform quite well for OOD data. In partic-
ular, RARITY is the third best on Twitter and the
second best on NLI Diagnostics. This can be ex-
plained by the very different language used on Twit-
ter vs Wikipedia in the training corpus, as well as

2601



the human-created nature of the NLI Diagnostics
data. PPL is the best performing system in Twit-
ter and third best on CSQA. We find statistically
significant improvement (p < 0.01) compared
with CONF+VARCOMP on the Twitter OOD test set.
Masked word prediction of unknown words could
be an informative signal for a very new domain.
For the case of CSQA, length and rarity perform
much worse than other metrics, possibly because
the total length of the question and answer is quite
small (approximately 15 tokens on average).

Furthermore, we analyse the relation of differ-
ent difficulty metrics by calculating the Spearman
rank correlation between all possible combinations.
As shown in Figure 2, we observe very high cor-
relation between confidence and correctness, as
expected, but also a good correlation with Cross-
Review, explaining their close performance. On the
contrary, variability is negatively correlated with
those metrics as higher values indicate more un-
certainty from the model towards an example. As
such, a combination of these opposing metrics can
offer benefits than combining two already corre-
lated metrics. Compared with task-agnostic met-
rics, interestingly, we see almost no (or negative)
correlation with either LENGTH, RARITY or PPL,
indicating that examples that the model deems dif-
ficult when fine-tuned on a task are very different
than those before fine-tuning or based on heuristics.
RARITY and LENGTH highly correlate as longer
sentences are more likely to contain rare words.
Finally, PPL is reverse analogous to them, proba-
bly because longer sentences have more context
and it is thus easier for the model to predict the
masked token. Overall, PPL has a slight positive
relation with variability since both measure model
uncertainty and high PPL of words might make the
model to further fluctuate between its predictions.

5.3 Learning Curves

In order to examine the behavior of the curricula
during the course of training, we further plot the
average language performance on the validation set
as a function of the number of training steps when
using XLM-R models for the improved datasets
(XNLI and XCOPA). In Figure 3 we draw the
best performing curriculum (CONF+VARCOMP), the
CRANNEAL and the Random baseline.

A first finding is that for CRANNEAL we observe a
performance drop around 20K steps in XNLI. Fur-
ther investigation revealed that the drop happens

Figure 3: Average validation set accuracy across lan-
guages as a function of learning steps (in thousands)
with XLM-R models. Results are reported over 3 ran-
dom seeds.

when the curriculum starts accessing the examples
of the last bucket–which is the hardest one. This
drop possibly indicates that buckets created by CR
do not contain incrementally challenging examples
that can help the model prepare for the hardest
instances adequately, in contrast with training dy-
namics that result in smooth training. In addition,
we observe that after a point in training (≈60K)
random training stabilises while CONF+VARCOMP

continues to improve (70K-120K), despite having
an initially lower performance than other sched-
ulers. Regarding XCOPA, the CONF+VARCOMP

curriculum is superior than random training and
CRANNEAL by consistently improving performance
from quite early in training (from step 8K onward).

5.4 Training with limited budget

Since training a teacher model can add overhead
to the general training process (training a teacher
model plus a similar-sized student), we further con-
duct a minimal experiment on PAWS, where we
collect training dynamics for a teacher XLM-R
model for different number of epochs (stopping
training early) and then train a student XLM-R
model for longer, 10 epochs. Results are reported
in Table 5 for our best overall curriculum for this
dataset CORR+VARANNEAL as the average of the
validation set languages performance.

We observe that it is not necessary to collect
training dynamics for a long period of training (e.g.
10 epochs) as even with much less training, for in-
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Teacher
Epochs

CRANNEAL CORRANNEAL Time ↓

3

85.28 0.18

85.20 0.17 0.3
4 85.46 0.25 0.4
5 84.94 0.30 0.5
10 85.34 0.19 1.0

Table 5: Validation set performance (average across lan-
guages) on PAWS-X with XLM-R models. Student is
trained for 10 epochs, while training dynamics are col-
lected from the teacher for different number of epochs.

stance 3 epochs, we can still get close performance
to prior work much faster. Compared to Cross-
Review, that essentially requires full training of N
teacher models plus the student model, training dy-
namics offer a much more efficient solution. Com-
paring training time with the PPL baseline, training
dynamics are even faster as collecting sentence per-
plexities for the entire PAWS training set requires 1
hour and 30 minutes vs 36 minutes that are needed
for 3 epochs of fine-tuning XLM-R. Ultimately,
even having less accurate dynamics (by training the
teacher for less epochs) we can achieve overall less
training time for the curriculum while still main-
taining good performance. Longer teacher training
might be proven beneficial for future training of dif-
ferent student versions, for instance a smaller-sized
model than the teacher.

6 Conclusion

We presented a set of experiments using training
dynamics (Swayamdipta et al., 2020) as difficulty
metrics for CL on several NLU tasks. Differently
from existing works, we focus our evaluation on in-
distribution, out-of-distribution and zero-shot cross-
lingual transfer data by testing existing discrete and
continuous schedulers as well as modifications of
those in a transfer-teacher curriculum setting.

Our findings offer evidence that simply reorder-
ing the training examples in a meaningful way has
mostly an impact on zero-shot cross-lingual trans-
fer and OOD data, with no improvement on ID.
Our proposed Continuous scheduler with confi-
dence and variability sampling provided a boost
up to 8.5% on a challenging OOD dataset over
prior work. Comparing our proposed application
of training dynamics to other transfer-teacher cur-
riculum methods that are using more than 1 teacher
model, we observed greater speedups, improved
performance and more stable training. In particular,
we found that task-agnostic metrics do not perform

better than task-specific ones on ID and ZS data
but can offer good performance on OOD settings.

Overall, our experiments suggest there is no cur-
riculum outperforming others by a large margin
which is consistent with findings in Zhang et al.
(2018) and that task-agnostic metrics should not
be rejected when transferring to challenging new
domains. However we show that training dynamics
are potentially better difficulty metrics for CL in
both monolingual and multilingual models even
with a limited budget.

Although in this study we focused on using CL
on a single language only (English), a reasonable
extension is considering training data from other
languages as well and investigate instance difficul-
ties based on language or following efforts towards
continual learning (Parisi et al., 2019). Finally, us-
ing TD in a dynamic rather than a static curriculum
is another interesting direction that can potentially
offer further training speedups as well as ways to
improve model pre-training (Nagatsuka et al., 2021;
Li et al., 2021).

Limitations

The presented work has certain limitations that we
acknowledge in this section. Firstly, the experi-
ments are limited to base-sized models to enable
us to conduct more experiments across multiple
seeds. Validating that the same conclusions hold
for large models is a promising direction. The
work is also focused on an offline curriculum ap-
proach, where difficulty metrics are obtained via
the teacher model, before the student model train-
ing. This can indeed add an additional overhead to
the overall process of collecting training dynamics.
This limitation is partially addressed in Section 5.4,
to reduce overhead. Nevertheless, converting this
approach into a dynamic one can be beneficial. Fi-
nally, following the original training dynamics set-
ting, the methods were mainly applied on classi-
fication datasets, since it is straightforward to use
accuracy as a difficulty metric.
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A Datasets

In this study, we use the following datasets:
GLUE (Wang et al., 2018) is a benchmark for Nat-
ural language Understanding tasks. We use a subset
of the included datasets: MNLI, RTE and QNLI
that identify textual entailment (3 categories in the
first one and 2 for the rest). Since the test set is
hidden and results can be obtained only via submis-
sion to the benchmark, we sub-sample a 5% portion
from each training set and use it as our validation
set. Then, final results are reported on the officially
provided validation set. For the MNLI dataset, as
ID test set we use the MNLI-matched validation set.
As out-of-distribution test sets we use HANS (Mc-
Coy et al., 2019) for RTE, an evaluation set that
tests if existing language models fail when using
heuristics. We use Adversarial SQuAD (Jia and
Liang, 2017) for QNLI, following Swayamdipta
et al. (2020). Adversarial sentences that have high
lexical overlap with the question, but do not answer
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it, have been inserted into the SQuAD (Rajpurkar
et al., 2016) validation set. The original dataset
follows the SQuAD format. We thus automatically
convert it to a sentence-level one with binary labels,
similarly to QNLI. Finally, we use NLI Diagnos-
tics (Wang et al., 2018) as OOD test set for MNLI, a
set of human-annotated examples that reveal model
behavior on particular semantic phenomena.

PAWS-X (Yang et al., 2019) is the cross-lingual
version of the English Paraphrase Adversaries from
Word Scrambling dataset (Zhang et al., 2019b)
containing paraphrase identification pairs from
Wikipedia. It consists of human translated pairs
in 6 topologically distinct languages. The training
set contains only English examples taken from the
original PAWS dataset. As ID test set we use the
test set of the original PAWS dataset. As OOD
we use the TwitterPPDB dataset (Lan et al., 2017)
following Desai and Durrett (2020).

XNLI is the cross-lingual NLI dataset (Conneau
et al., 2018), an evaluation set created by extend-
ing the development and test sets of the MultiNLI
dataset (Williams et al., 2018) and translating it into
14 languages. Training data constitutes the original
MultiNLI English training set.

XCOPA is the Cross-lingual Choice of Plausible
Alternatives (Ponti et al., 2020), a typologically
diverse multilingual dataset for causal common
sense reasoning in 11 languages. The dataset con-
sists of development and test examples for each
language, which are translations from the English
COPA (Roemmele et al., 2011) validation and test
sets. Following Ponti et al. (2020) we use the So-
cial IQA dataset (Sap et al., 2019) as training data
(containing 3 possible choices), and the English
COPA development set as validation data (con-
taining 2 possible choices). For ID we report re-
sults on the SIQA test set (and validation set in
Appendix D). For OOD, we consider the Common-
SenseQA (CSQA) dataset (Talmor et al., 2019) that
contains 5 possible choices.

MLDoc is a document classification dataset with 4
target categories: corporate/industrial, economics,
government/social, and markets (Schwenk and Li,
2018). The dataset is an improved version of the
Reuters benchmark (Klementiev et al., 2012) con-
sisting of 7 languages and comes with 4 different
sets of English training data (1k, 2k, 5k, 10k). Here,
we use the 10k following prior work (Keung et al.,
2020).

RoBERTabase XLM-Rbase

MNLI 7.5 h 11.5 h
PAWS 1.0 h 1.8 h
SIQA 1.0 h 1.3 h
MLDoc - 1.0 h
QNLI 1.0 h -
RTE 3 m -

Table 6: Training time required for a full model training.

B Analysing Data Maps

To better understand the reason for the reported CL
benefits we plot data maps that result from training
an XLM-R model on each dataset in Figure 4, with
confidence in the y-axis, variability in the x-axis
and correctness in the legend. As observed, the
easiest overall datasets, i.e. PAWS-X (4b), MLDoc
(4g) and QNLI (4h) result in quite crisp maps with
very few hard-to-learn examples, while in XNLI
(4d) and SIQA (4f) the data maps are very dense
and the number of difficult examples is high. This
can potentially explain why CL with XLM-R mod-
els was more beneficial on those datasets in terms
of performance, confirming that CL can be used to
better prepare a model for harder instances.

C Training Details

C.1 Hyper-parameter Settings
We use base models, XLM-R and RoBERTa with
470M and 340M parameters respectively, from the
HuggingFace library (Wolf et al., 2020). We fix
sentence length to 128 for all datasets except ML-
Doc where we use 256. We did minimal learning
rate tuning on each dataset’s English validation
set, searching among [7e-6, 1e-5, 2e-5, 3e-5] and
choosing the best performing one, depicted in ta-
ble 7. We clip gradients to 1.0 after each update,
use the AdamW optimizer (Loshchilov and Hutter,
2017) without any warmup. All reported experi-
ments use the same 3 random seeds and all models
were trained on a single Nvidia V100 16GB GPU.
In terms of training time, Table 6 shows the train-
ing time required for each dataset with the above
parameters.

C.2 Multiple Choice QA
We treat SIQA-XCOPA as a sentence-pair classifi-
cation task and feed the model a (premise-question,
choice) tuple converting each cause into “What
was the cause?" and each effect into “What was
the effect?" question which is concatenated to the
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(a) PAWS XLM-R (b) PAWS RoBERTa (c) MNLI XLM-R (d) MNLI RoBERTa

(e) SIQA XLM-R (f) SIQA RoBERTa

(g) MLDoc XLM-R (h) QNLI RoBERTa (i) RTE RoBERTa

Figure 4: Data map for the training set of each dataset. We plot maximum 25K examples for clarity.

Learning rate Batch size Epochs

MNLI 7e-6 32 10
SIQA 7e-6 8 10
PAWS-X 1e-5 32 10
MLDoc 3e-5 32 5
RTE 2e-5 16 5
QNLI 2e-5 32 5

Table 7: Hyper-parameter settings for the used datasets

premise. Similar to prior work (Ponti et al., 2020)
we use a feed forward linear layer on top of the
input’s first special token (<s> in the case of
RoBERTa and XLM-R) to produce a score for each
of the possible choices. In the case of CSQA that
does not have a premise, we simply feed the net-
work the question-choice pair.

C.3 Curriculum Parameters

In order to collect training dynamics we first fine-
tune either a RoBERTa or an XLM-R model on
the English training set of each dataset. TD for
each example are collected over the number of
epochs that were employed for each dataset. The
COMPETENCE and COMPETENCE VARIABILITY

schedulers require to set in advance the number of

steps, i.e. total duration of the curriculum phase.
We employ the same parameters as in Platanios
et al. (2019) and set this value to 90% of steps that
the baseline model requires to achieve its best per-
formance on the development set. The initial com-
petence is set to 0.01 for all datasets. We evaluate
each model at the end of each epoch and at regular
intervals (Dodge et al., 2020), every 500 updates
for MNLI (corresponding to 24 times per epoch)
and 10 times per epoch for the rest of the datasets.
Performance is reported over three random seeds.

D Additional Results

In Table 8 we report test and validation set per-
formance on the SIQA dataset. We provide the
per-language performance results for the multilin-
gual datasets in Tables 9-12. Finally, we report
per-category performance for the NLI Diagnostics
dataset in Table 13.
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SIQA DEV SET SIQA TEST SET

RANDOM 69.70 0.40 68.36 0.39
CRANNEAL 68.76 0.24 68.45 0.69
CORRANNEAL 69.28 1.10 69.20 0.48
CONFCOMP 68.73 2.07 67.25 1.80
CORR+VARANNEAL 69.24 0.84 67.54 0.43
CONF+VARCOMP 69.21 0.88 68.54 0.40
LENGTH 68.51 0.59 66.55 1.45
RARITY 68.82 0.36 66.29 0.56
PPL 69.79 0.74 68.27 0.74

Table 8: SIQA development and test set results for different curricula. Results are averaged across 3 seeds.

en fr es de zh ja ko AVG

RANDOM 94.58 89.03 88.80 87.48 80.08 76.43 75.03 84.49
CRANNEAL 94.57 88.82 88.5 87.03 80.38 76.20 74.97 84.35
CORRANNEAL 94.73 89.15 88.73 87.70 81.02 76.43 75.13 84.70
CORRCONF 94.47 88.62 88.73 87.13 80.90 76.18 75.52 84.51
CONF+VARANNEAL 94.53 88.68 88.45 87.33 80.65 76.15 75.83 84.52
CONF+VARCOMP 94.60 88.4 88.32 87.05 80.23 75.30 74.30 84.03

LENGTH 94.48 88.65 88.98 87.15 80.53 76.07 76.03 84.56
RARITY 94.38 88.58 88.47 86.87 80.20 75.77 74.87 84.16
PPL 94.58 88.75 88.40 87.40 79.50 75.92 74.07 84.09

Table 9: Per language performance on the PAWS-X test set. Results are averaged across 3 seeds.

en fr es de el bg ru tr ar vi th zh hi sw ur AVG

RANDOM 84.60 77.51 78.36 76.47 75.62 77.35 75.36 72.24 72.01 74.3 71.64 73.35 69.62 64.86 65.75 73.93
CRANNEAL 84.92 77.96 79.16 77.21 76.31 77.71 75.66 73.19 72.75 75.00 72.44 74.15 70.30 65.15 66.61 74.57
CORRANNEAL 84.62 77.74 78.45 76.74 75.44 77.28 75.13 72.36 71.60 74.03 72.20 73.41 69.88 64.32 65.58 73.92
CORRCONF 84.37 77.65 78.64 76.57 75.93 78.07 75.83 73.18 72.02 74.78 71.98 73.51 70.28 65.93 66.11 74.32
CONF+VARANNEAL 84.85 78.02 79.17 77.29 76.11 78.05 75.90 72.95 72.51 75.06 72.94 74.38 70.50 65.33 66.86 74.66
CONF+VARCOMP 85.07 78.00 78.62 77.03 76.44 77.60 76.11 73.17 72.22 74.74 72.32 73.52 69.95 65.16 66.56 74.43

LENGTH 84.26 77.84 78.13 75.93 74.91 77.31 74.54 71.78 71.11 74.11 71.47 72.73 69.29 64.07 64.54 73.47
RARITY 84.38 77.37 78.07 75.99 75.00 77.17 74.46 71.75 71.12 74.40 71.47 72.60 68.86 64.46 64.20 73.42
PPL 83.84 76.89 78.00 76.00 74.69 76.85 75.01 71.94 71.74 73.63 71.26 72.80 69.03 64.22 65.35 73.42

Table 10: Per language performance on the XNLI test set. Results are averaged across 3 seeds.
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en et ht id it qu sw ta th tr vi zh AVG

RANDOM 69.67 56.47 49.67 66.93 63.47 49.93 54.47 64.00 59.60 60.20 66.87 66.20 60.62
CRANNEAL 68.80 58.93 51.27 65.93 63.73 50.40 53.13 60.40 60.07 60.33 65.33 67.00 60.44
CORRANNEAL 67.67 58.80 50.47 67.47 63.20 50.13 56.00 63.93 60.60 60.87 65.33 66.93 60.95
CORRCOMP 67.47 58.00 53.07 66.20 63.40 52.20 56.33 63.20 61.20 61.87 64.07 66.13 61.09
CONF+VARANNEAL 69.33 61.27 50.47 68.07 64.47 49.80 54.87 64.40 62.20 60.93 66.53 67.87 61.68
CONF+VARCOMP 66.93 58.60 52.00 66.40 63.67 52.07 56.93 61.00 62.07 59.47 66.00 67.33 61.04

LENGTH 67.33 57.73 50.20 64.67 64.07 52.60 55.00 62.07 63.93 59.53 65.20 66.80 60.76
RARITY 68.73 59.27 51.27 67.33 62.67 49.60 55.73 63.33 62.60 61.27 65.80 67.47 61.26
PPL 65.47 56.53 49.87 63.53 63.07 50.87 54.80 61.13 59.53 60.27 62.87 65.07 59.42

Table 11: Per language performance on the XCOPA test set. Results are averaged across 3 seeds.

en fr de es it ja ru zh AVG

RANDOM 97.70 92.41 93.31 87.45 80.34 80.72 71.71 90.32 86.74
CRANNEAL 97.57 92.12 93.23 87.68 80.40 80.41 71.76 89.57 86.59
CORRANNEAL 97.57 92.20 92.93 86.86 80.57 80.02 71.84 89.76 86.47
CORRCONF 97.11 91.37 93.50 87.33 79.74 80.34 72.08 88.90 86.30
CONF+VARANNEAL 97.52 92.05 93.03 86.42 80.61 79.59 70.74 89.17 86.14
CONF+VARCONF 97.09 89.99 93.50 87.38 79.86 79.88 70.88 87.62 85.78

Table 12: Per language performance on the MLDoc test set. Results are averaged across 3 seeds.

Logic LS PAS Know ALL

RANDOM 55.31 1.53 63.42 0.56 66.98 0.19 53.40 1.09 61.47 0.81
CRANNEAL 55.59 0.34 64.23 0.84 67.45 0.19 52.70 0.33 61.56 0.04
CORRANNEAL 55.13 0.56 63.96 0.84 66.98 0.51 54.81 0.60 61.75 0.59
CONFCOMP 54.49 1.35 63.33 0.92 66.90 0.40 53.05 1.01 61.08 0.72
CORR+VARANNEAL 56.59 1.03 64.23 1.22 67.69 0.39 52.35 2.61 62.05 0.41
CONF+VARCOMP 55.68 0.93 63.24 0.44 67.53 0.44 52.70 0.44 61.56 0.15

LENGTH 55.22 0.39 64.50 0.89 66.82 0.68 51.29 0.33 61.20 0.19
RARITY 55.77 0.22 64.68 0.89 66.82 0.40 52.00 0.33 61.71 0.56
PPL 56.50 1.11 64.23 0.67 67.53 0.40 50.70 0.76 61.53 0.67

Table 13: NLI Diagnostics results. Results are averaged across 3 seeds.
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