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Abstract
The climate impact of AI, and NLP research
in particular, has become a serious issue given
the enormous amount of energy that is increas-
ingly being used for training and running com-
putational models. Consequently, increasing
focus is placed on efficient NLP. However,
this important initiative lacks simple guide-
lines that would allow for systematic climate
reporting of NLP research. We argue that this
deficiency is one of the reasons why very few
publications in NLP report key figures that
would allow a more thorough examination of
environmental impact, and present a quantita-
tive survey to demonstrate this. As a remedy,
we propose a climate performance model card
with the primary purpose of being practically
usable with only limited information about ex-
periments and the underlying computer hard-
ware. We describe why this step is essential
to increase awareness about the environmental
impact of NLP research and, thereby, paving
the way for more thorough discussions.1

1 Introduction

As Artificial Intelligence (AI), and specifically Nat-
ural Language Processing (NLP), scale up to re-
quire more computational resources and thereby
more energy, there is an increasing focus on ef-
ficiency and sustainability (Strubell et al., 2019;
Schwartz et al., 2020). For example, training a
single BERT base model (Devlin et al., 2019) re-
quires as much energy as a trans-American flight
(Strubell et al., 2019). While newer models are ar-
guably more efficient (Fedus et al., 2021; Borgeaud
et al., 2022; So et al., 2022), they are also an order
of magnitude larger, raising environmental con-
cerns (Bender et al., 2021). The problem will only
worsen with time, as compute requirements double
every 10 months (Sevilla et al., 2022).

1We provide a Jupyter notebook with the code used to
conduct our survey, as well as model card templates in LATEX
and Markdown, at https://github.com/danielher
s/climate-awareness-nlp.

Figure 1: Example usage of our proposed climate per-
formance model card (§5), on the Hugging Face Hub.2

This problem has been recognized by the NLP
community, and a group of NLP researchers has re-
cently proposed a policy document3 of recommen-
dations for efficient NLP, aiming to minimize the
greenhouse gas (GHG) emissions4 resulting from
experiments done as part of the research. This pro-
posal is part of a research stream aiming towards
Green NLP and Green AI (Schwartz et al., 2020),
which refers to “AI research that yields novel re-
sults while taking into account the computational
cost, encouraging a reduction in resources spent.”

While the branding of NLP and AI research
as green has raised some awareness of the envi-
ronmental impact, the large majority of NLP re-
searchers are still not aware of their environmental
impact resulting from training and running of large
computational models. This also explains why a

2https://huggingface.co/climatebert/d
istilroberta-base-climate-f

3https://www.aclweb.org/portal/conten
t/efficient-nlp-policy-document

4GHG, CO2, and carbon are used interchangeably in this
paper. CO2eq (or CO2e), i.e., carbon dioxide equivalent trans-
lates GHG other than CO2 into CO2 equivalents based on the
global warming potential (Brander and Davis, 2012).
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research stream in a similar direction (see §2.1), in
which software tools are proposed to measure car-
bon footprint while training models (Lacoste et al.,
2019; Henderson et al., 2020; Anthony et al., 2020;
Lottick et al., 2019), have not been adopted by the
community to a large extent (see §3). However, we
claim that climate awareness is essential enough to
be promoted in mainstream NLP (rather than only
as a niche field) and that positive impact must be
an inherent part of the discussion (Rolnick et al.,
2019; Stede and Patz, 2021). Ideally environmental
impact should always be taken into consideration,
when deciding on which experiments to carry out.

We aim to simplify climate performance report-
ing in NLP while at the same time increasing aware-
ness to its intricacies. Our contributions are:

• We conduct a survey of environmental impact
statements in NLP literature published in the
past six years (§3). This survey is conducted
across five dimensions that directly influence
the environmental impact.

• We delineate the different notions of “effi-
ciency” common in the literature, proposing
a taxonomy to facilitate transparent report-
ing, and identify ten simple dimensions across
which researchers can describe the environ-
mental impact resulted by their research (§4).

• We propose a climate performance model card
(§5) with the main purpose of being practi-
cally usable with only limited information
about experiments and the underlying com-
puter hardware (see Figure 1).

2 Background

2.1 Automating Reporting

Several tools automate measurement and reporting
of energy usage and emissions in ML. Lacoste et al.
(2019) introduced a simple online calculator5 to
estimate the amount of carbon emissions produced
by training ML models. It can estimate the carbon
footprint of GPU compute by manually specifying
hardware type, hours used, cloud provider, and re-
gion. Henderson et al. (2020) presented a Python
package6 for consistent, easy, and more accurate
reporting of energy, compute, and carbon impacts

5https://mlco2.github.io/impact/
6https://github.com/Breakend/experime

nt-impact-tracker

of ML systems by estimating them and generat-
ing standardized “Carbon Impact Statements.” An-
thony et al. (2020) proposed a Python package7 that
also has predictive capabilities, and allows proac-
tive and intervention-driven reduction of carbon
emissions. Model training can be stopped, at the
user’s discretion, if the predicted environmental
cost is exceeded. Schmidt et al. (2022) actively
maintain a Python package8 that, besides estimat-
ing impact and generating reports, shows develop-
ers how they can lessen emissions by optimizing
their code or by using cloud infrastructure in geo-
graphical regions with renewable energy sources.
Bannour et al. (2021) surveyed and evaluated these
tools and others for an NLP task, finding substantial
variation in the reported measures due to different
assumptions they make. In summary, automated
tools facilitate reporting, but they do not substitute
awareness and should not be trusted blindly.

2.2 Greenwashing

While branding NLP and AI research as green in-
creases awareness of the environmental impact,
there is a risk that the current framing, which ex-
clusively addresses efficiency, will be perceived
as the solution to the problem. Of course, we at-
tribute benevolent motives to the authors of the pro-
posed policy document. Nevertheless, we would
like to avoid a situation analogous to a common
phenomenon in the financial field, where compa-
nies brand themselves as green or sustainable for
branding or financial reasons, without implement-
ing proportional measures in practice to mitigate
the negative impact on the environment (Delmas
and Burbano, 2011). This malpractice is analo-
gous to greenwashing. While this is a general
term, one aspect of greenwashing is “a claim sug-
gesting that a product is green based on a narrow
set of attributes without attention to other impor-
tant environmental issues” (TerraChoice, 2010).9

Our motivation is in line with the EU Commis-
sion’s initiative to “require companies to substanti-

7https://github.com/lfwa/carbontracker
8https://codecarbon.io
9Paper, for example, is not necessarily environmentally

preferable just because it comes from a sustainably harvested
forest. Other important environmental issues in the paper-
making process, such as greenhouse gas emissions or chlorine
use in bleaching, may be equally important. Other examples
are energy, utilities, and gasoline corporations that advertise
about the benefits of new sources of energy while some are
drilling into unexplored areas to source oil and thus destroying
natural habitats and losing biodiversity, disguising the imbued
hidden impacts (de Freitas Netto et al., 2020).
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ate claims they make about the environmental foot-
print of their products/services by using standard
methods for quantifying them.”10 While Schwartz
et al. (2020) certainly do not argue that efficiency
is sufficient for sustainability, this notion, which
is potentially implied by the green branding, is
misleading and even harmful: regardless of the
extent of reduction, resources are still consumed,
and GHGs are still emitted, among other negative
effects. The efficiency mindset aims, at best, to
prolong the duration of this situation. However,
scaling up the performance of AI to satisfy the in-
creasing demands from consumers risks ignoring
the externalities incurred. Concepts such as reci-
procity with the environment, which are central in
some indigenous worldviews (Kimmerer, 2013),
are absent from the discourse.

2.3 Carbon Offsetting

A common perception is that carbon neutrality
can be achieved by compensating for emissions
by financial contributions, a practice referred to as
carbon offsets. This approach is problematic and
controversial: the level of carbon prices required to
achieve climate goals is highly debated (Hyams and
Fawcett, 2013). The Intergovernmental Panel on
Climate Change (IPCC) and various international
organizations like the International Energy Agency
(IEA) clearly state that mitigation activities are es-
sential. Compensation activities will be necessary
for hard-to-abate-sectors, once all other technolog-
ical solutions have been implemented, and where
mitigation is not (yet) feasible.11 Moreover, eco-
nomic dynamic efficiency requires investments in
decarbonization technologies to keep the climate
targets within reach. Compensation activities, es-
pecially in the afforestation area, delay the needed
investments. This delay might exacerbate the like-
lihood of crossing climate tipping points and/or
yields to a disorderly transition to a decarbonized
economy (European Systemic Risk Board, 2016).

3 Survey of Climate Discussion in NLP

The issue of environmental impact is more general
and not limited to NLP, but relevant to the entire
field of AI: Schwartz et al. (2020) surveyed pa-

10https://ec.europa.eu/info/law/better
-regulation/have-your-say/initiatives/12
511-Environmental-performance-of-product
s-&-businesses-substantiating-claims_en

11See for example www.ipcc.ch/sr15/ and www.ie
a.org/reports/world-energy-outlook-2021.

Figure 2: Development of proportions of deep-
learning-related *ACL papers discussing public model
weights, duration of model training or optimization, en-
ergy consumption, location where computations where
performed, and emission of GHG. While climate aware-
ness is on the rise, it is still low overall. The numbers
were calculated by counting pattern matches for papers
in the ACL Anthology.

pers from ACL, NeurIPS, and CVP. They noted
whether authors claim their main contribution to
improving accuracy or some related measure, an
improvement to efficiency, both, or other. In all the
conferences they considered, a large majority of
the papers target accuracy. However, we claim that
the issue is more complex, and it is not sufficient
to consider only the “main contribution.” Every
paper should ideally have a positive impact or pro-
vide sufficient information to discuss meaningful
options to reduce and mitigate negative impacts.

3.1 Quantitative Analysis

We analyze the statistics of papers in *ACL venues
from 2016–2022 by downloading them from the
ACL Anthology.12 However, instead of focusing
on the main contribution, we look for any discus-
sions on climate-related issues. We identify five
dimensions in our study sample and create a regu-
lar expression pattern to match text for each (see
Appendix A). These dimensions are public model
weights, duration of model training or optimization,
energy consumption, the location where computa-
tions are performed, and GHG emissions. If the pat-
tern matches the text of a paper at least once,13 we
consider that paper as discussing the corresponding
category. We derive the proportions of papers by
dividing the number of papers discussing a cate-

12https://aclanthology.org/
13While more recent papers have a dedicated “broader im-

pact” section (see §5), in older papers, this discussion can
appear anywhere in the text.

2482

https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12511-Environmental-performance-of-products-&-businesses-substantiating-claims_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12511-Environmental-performance-of-products-&-businesses-substantiating-claims_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12511-Environmental-performance-of-products-&-businesses-substantiating-claims_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12511-Environmental-performance-of-products-&-businesses-substantiating-claims_en
www.ipcc.ch/sr15/
www.iea.org/reports/world-energy-outlook-2021
www.iea.org/reports/world-energy-outlook-2021
https://aclanthology.org/


Dimension public duration energy location emission
Proportion (%) 13 28 0 3 0

Table 1: Proportions along dimensions from Figure 2
in a manual annotated sample from EMNLP 2021.

gory by the number of deep learning-related pa-
pers. We only consider deep learning-related pa-
pers, as for these papers, climate-related issues are
of much higher relevance than for those using other
approaches (Strubell et al., 2019).

Figure 2 shows our findings. In general, re-
searchers discuss climate-related issues more and
more in their work. For instance, the proportion
of papers that publish their model weights has al-
most quadrupled from about 1% in 2017 to more
than 4% in 2022. We also find an increase in the
proportion of papers that provide information on
emissions or energy consumption. Nevertheless,
the proportion for these categories remains low.

3.2 Manual Annotation

To complement our automatic pattern-based search
approach, we also manually annotate a random
sample of 100 papers from EMNLP 202114 for the
same five dimensions as before. Table 1 shows
the proportions. Borderline cases are counted as
“reported” for an optimistic estimate. This leads to
the proportions of papers publishing model weights
(13%) and the duration of model training or opti-
mization (28%) being much higher than with our
automatic approach, which cannot judge border-
line cases and is thus more restrictive. Still, these
proportions are at a low level. The proportion of
papers reporting on the location, energy consumed
and GHG emitted are in line with the results from
our pattern-based search.

3.3 Qualitative Survey

We examine article contents to ensure precision and
to elaborate on existing practices. We review pa-
pers reporting on at least one dimension according
to our pattern-based search or our manual analy-
sis. Interestingly, many papers provide information
in the context of reproducibility, publishing code
but not necessarily model weights and reporting
computation time only for specific steps.

As examples for specific papers that go beyond
what is usually expected in terms of reporting, An-
derson and Gómez-Rodríguez (2021) evaluate both

14https://2021.emnlp.org/

accuracy and efficiency in dependency parsers, find-
ing that different approaches are preferable depend-
ing on whether accuracy, training time or inference
time are prioritized. Lakim et al. (2022) provide
a detailed holistic assessment of the carbon foot-
print of an Arabic language model, considering the
entire project, including data storage, researcher
travel, training and deployment.

Our findings highlight the need to raise aware-
ness of climate-related issues further and find a sim-
ple but effective way to report them transparently.
Besides awareness and facilitation, incentives to
address these issues could be a complementary ap-
proach. However, in the rest of this paper we focus
on the former “intrinsic” motivation factors, leav-
ing “extrinsic” motivation factors to future work.

4 Towards Actionable Awareness

Efficiency (alongside accuracy) has been one of the
main objectives in NLP (and computer science in
general) long before its environmental aspects have
been widely considered. In general, it refers to the
amount of resources consumed (input) in order to
achieve a given goal, such as a specific computation
or accuracy in a task (output). Different definitions
of efficiency correspond to different concepts of
input and output. It is crucial to (1) understand the
different concepts, (2) be aware of their differences
and consequently their climate impact, and (3) con-
verge towards a set of efficiency measures that will
be applied for comparable climate performance
evaluation in NLP research.

4.1 Related Work in NLP and AI

Strubell et al. (2019) quantify the financial and en-
vironmental cost of various NLP models, exposing
substantial costs from model development and not
just final model training. They recommend report-
ing training time and hyperparameter sensitivity,
and prioritizing efficient hardware and algorithms.

Schwartz et al. (2020) compare several efficiency
measures, focusing on input or resource consump-
tion: CO2eq emission, electricity usage, elapsed
real time, number of parameters, and FPO (floating-
point operations). They suggest FPO as a concrete,
reliable measure for climate-related efficiency that
does not depend on the underlying hardware, lo-
cal electricity infrastructure, or algorithmic details.
They suggest measuring efficiency as a trade-off be-
tween performance and training set size to enable
comparisons with small training budgets.
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Henderson et al. (2020) show that FPOs “are not
adequate on their own to measure energy or even
runtime efficiency.” They recommend reporting
various key figures, providing an automatic tool.

Alongside improvements in measurement meth-
ods, AI computations increasingly utilize cloud in-
frastructures, hindering transparency. Dodge et al.
(2022) provide a framework to measure carbon in-
tensity in cloud instances, finding that data center
region and time of day play significant roles.

Finally, Wu et al. (2022) highlight the role of
system hardware development in AI environmental
impact, encouraging a holistic perspective.

4.2 Adopting Principles from Finance

The Greenhouse Gas Protocol15 is a widely used
reporting framework for corporates. However,
this standard does not foresee, so far, an explicit
ICT (information and communications technology)
component. We build on the general principles
of the GHG Protocol (relevance, completeness,
consistency, transparency, and accuracy) to pro-
pose principles for improving climate-related per-
formance reporting of AI. While the Greenhouse
Gas Protocol focuses on GHG emissions, we pro-
pose a more general framework corresponding to
the different concepts of efficiency. We, therefore,
replace the term GHG emissions with the term
climate-related performance assessments.16

Relevance Ensure the climate-related perfor-
mance assessment appropriately reflects the
climate-related performance of training, evalu-
ation and deployment, and serves the decision-
making needs of users—both internal and ex-
ternal to the research group. Consider both
factors inherent to the model (e.g., number of
parameters) and model-external factors (e.g.,
energy mix).

Completeness Account for and report on all rele-
vant climate-related performance assessment
items, using standardized model cards (see §5)
to ensure accessibility to relevant information.
Disclose and justify any specific exclusions or
missing information, and explain which data
input would be required to provide it. State

15https://ghgprotocol.org/
16While the primary focus is about eventual GHG emissions

in our case as well, by addressing climate-related performance,
we shift the focus from their direct measurement to a more
holistic viewpoint.

how you will deal with the missing informa-
tion in the future to reduce information gaps.

Consistency Use consistent methodologies to
make meaningful comparisons of reported
emissions over time. Transparently document
any changes to the data, inventory boundary,
methods, or other relevant factors in the time
series. Use readily-available emission calcula-
tion tools to ease comparison with other mod-
els. If you decide not to use available tools,
explain why you deviate from available tools
and report your assumptions about the energy
mix, the conversion factors, and further as-
sumptions required to calculate model-related
emissions.

Transparency Address all relevant issues factu-
ally and coherently to allow reproducible mea-
surement of climate-related performance by
independent researchers. Disclose any rel-
evant assumptions and refer to the account-
ing and calculation methodologies and data
sources used.

Accuracy of reporting Achieve sufficient accu-
racy of the quantification of climate-related
performance to enable users to make decisions
with reasonable assurance as to the integrity of
the reported information. Ensure that you re-
port on the climate-related performance, even
if you are in doubt about the accuracy. If in
doubt, state the level of confidence.

4.3 Actions Towards Improvement
Reporting climate-related performance is not a goal
on its own. Instead, it should be a means to raise
awareness and translate it into actionable climate-
related performance improvements when training
and deploying a model. In addition, climate-aware
model performance evaluations should ensure that
downstream users of the technology can use the
model in a climate-constrained future. Researchers
should aim for climate-resilient NLP and algo-
rithms to unlock long-term positive impacts. How
to future-proof AI and NLP models should become
an essential consideration in setting up any project.

The overall process of integrating these consider-
ations would use enhanced transparency to unlock
actionable awareness. Reporting on climate-related
model performance should put researchers in a po-
sition to reflect on their setup and take immediate
action when training the next model. To support
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this reflection for the researchers, the following
proposes our climate performance model card.

5 Climate Performance Model Cards

Since 2020, NeurIPS requires all research papers
to submit broader impact statements (Castelvec-
chi et al., 2021; Gibney, 2020). NLP conferences
followed suit and introduced optional ethical and
impact statements, starting with ACL in 2021.17

Leins et al. (2020) discuss what an ethics assess-
ment for ACL should look like but focus solely on
political and societal issues. Tucker et al. (2020) an-
alyze the implications of improved data efficiency
in AI but only discuss the societal aspect of access
in research and industry, leaving environmental is-
sues unexplored. Mitchell et al. (2019) introduced
model cards to increase transparency about data
use in AI, similarly due to societal issues. We pro-
pose extending impact statements and model cards
to include information about the climate-related
performance of the development and training of
the model, improvements compared to alternative
solutions, measures undertaken to mitigate nega-
tive impact, and importantly, about the expected
climate-related performance of reusing the model
for research and deployment.18

Our proposed model card also includes any pos-
itive impact on the environment. A large direct
negative impact does not rule out net positive im-
pact due to contribution to downstream environ-
mental efforts. While net impact cannot be mea-
sured objectively, since it depends on priorities and
projections on the future use of the technology, we
can set a framework for discussing this complex
issue, providing researchers with the best practices
to inform future researchers and practitioners.

Table 2 shows our proposed sustainability model
card, structured into a minimum card and an ex-
tended card. The minimum card contains very ba-
sic information about the distribution of the model,
its purpose for the community, and roughly the
computational work that has been put into the op-
timization of the models. The extended card then
includes the energy mix to compute the CO2eq
emissions. In total, our sustainability model card
contains eleven elements:

17See, e.g., the ACL Rolling Review Responsible NLP
Research checklist: https://aclrollingreview.o
rg/responsibleNLPresearch/.

18See Appendix B for a detailed example of the filled out
model card from Figure 1.

Minimum card

Information Unit

1. Is the resulting model publicly available? Yes/No
2. How much time does the training of the final
model take?

Time

3. How much time did all experiments take (incl.
hyperparameter search)?

Time

4. What was the power of GPU and CPU? Watt
5. At which geo location were the computations
performed?

Location

Extended card

6. What was the energy mix at the geo location? gCO2eq/
kWh

7. How much CO2eq was emitted to train the
final model?

kg

8. How much CO2eq was emitted for all experi-
ments?

kg

9. What is the average CO2eq emission for the
inference of one sample?

kg

10. Which positive environmental impact can be
expected from this work?

Notes

11. Comments Notes

Table 2: Proposed climate performance model card.

1. Publicly available artefacts. In recent years,
NLP researchers often make their final model
available for the public. This trend came up
to increase transparency and reprehensibil-
ity, yet, at the same time, it avoids the ne-
cessity to train frequently used models multi-
ple times across the community (Wolf et al.,
2020). Thus, by publishing model (weights),
computational resources and thereby CO2eq
emissions can be reduced.

2. Duration—training of final model. This
field denotes the time it took to train the fi-
nal model (in minutes/hours/days/weeks). In
case, there are multiple final models, this field
asks for the training time of the model which
has been trained the longest.

3. Duration of all computations. The dura-
tion of all computations required to produce
the results of the research project is strongly
correlated with the CO2eq emissions. Thus,
we want to motivate NLP researchers to vary
model types and hyperparameters reasonably.
While determining the beginning of a project
and deciding what counts as an experiment
are in many cases difficult and subjective, we
claim that an estimate of this quantity, along
with a transparent confidence margin, is better
than leaving it unreported.
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4. Power of hardware. Besides the duration of
training, the power of the main hardware is a
driving factor for CO2eq emissions. Depend-
ing on the implementation, the majority of
energy is consumed by CPUs or GPUs. We
ask researchers to report the power in watts of
the main hardware being used to optimize the
model. For the sake of simplicity, we ask to
specify the peak power of the hardware, for
which the sum of the thermal design power
(TDP) of the individual hardware components
is a reasonable proxy. The manufacturers pro-
vide this information e.g. on their website.19

We want to underline again, that this model
card’s objective is not to have the most pre-
cise information but rather to have a rough
estimate about the power.

5. Geographical location. The energy mix (the
CO2eq emissions per watt consumed) depends
on the geographical location. Thus, it is im-
portant to report where the model was trained.

6. Energy mix at geographical location. To
compute the exact CO2eq emissions, the en-
ergy mix at the geographical location is re-
quired. Organizations such as the Interna-
tional Energy Agency (IEA)20 report these
numbers.

7. CO2eq emissions of the final model. This
field describes an estimation for the emitted
CO2eq. Given the time for the computation
(see item 3), the power, and the energy mix,
the total CO2eq emissions for the research can
be calculated by

ComputationTime (hours) ×
Power (kW) ×
EnergyMix (gCO2eq/kWh) =

gCO2eq.

Although awareness of the factors that af-
fect CO2eq emissions is important, we rec-
ommend using automated tools for the actual
calculation (see §2.1).

19See, for instance, https://www.nvidia.com/e
n-us/data-center/a100/#specifications or
https://ark.intel.com/content/www/us/en/
ark.html. Alternatively, users can run nvidia-smi on
the command line if using an NVIDIA GPU.

20See https://www.iea.org/countries.

8. Total CO2eq emissions. Similar to the previ-
ous item, this field describes the total CO2eq
emitted during the training of all models. The
calculation is equivalent to item 8.

9. CO2eq emissions for inference. Given that a
model might be deployed in the future, the ex-
pected CO2eq emissions in use of the model
can be of value. To assure comparison be-
tween models, we ask the authors to report
the average CO2eq emission for the inference
of one sample. For a dataset of n samples, it
can be calculated by

1/n× InferenceTime (hours) ×
Power (kW) ×
EnergyMix(gCO2eq/kWh) =

gCO2eq.

10. Positive environmental impact. NLP tech-
nologies begin to mature to the point where
they could have an even broader impact and
support to address major problems such as cli-
mate change. In this field, authors can state
the expected positive impact resulting from
their research. In case that the underlying
work is not likely to have a direct positive im-
pact, authors can also categorize their work
into “fundamental theories”, “building block
tools”, “applicable tools”, or “deployed appli-
cations” (Jin et al., 2021), and discuss why
their work could set the basis for future work
with a positive environmental impact.

11. Comments. The objective of this climate per-
formance model card is to collect the most
relevant information about the computational
resources, energy consumed, and CO2eq emit-
ted that were the result of the conducted re-
search. Comments can include information
about whether a number is likely over- or un-
derestimated. In addition, this field can be
used to provide the reader with indications
of possible improvements in terms of energy
consumption and CO2eq emissions.

6 Discussion

AI and NLP research are behind in incorporating
sustainability discourse in the discussion. In the
field of finance, an increasing amount of compa-
nies worldwide are soon required to state their en-
vironmental and broader sustainability-related im-
pacts and/or commitments in their annual reports,
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mostly following the recommendations laid out by
the Task Force on Climate-related Financial Disclo-
sures (TCFD; Financial Stability Board, 2017).21

Responsibility and accountability. Significant
differences exist between annual reports and re-
search papers: companies are increasingly asked
to take responsibility for their actions and are held
accountable to their commitments by stakeholders,
while researchers can shake off responsibility by
transferring it to practitioners who use technology
based on their research. Researchers are thus never
held responsible for committing to reducing neg-
ative environmental impact unless they choose to
submit their work to specific workshops or confer-
ence tracks on sustainable and efficient NLP. How-
ever, there are no best practices on what they can do
to help those who are responsible for committing to
sustainability—what information is necessary for
accurate reporting and informed decision making?

Extrapolation to indirect impact. The quantifi-
cation of indirect impact during reuse and deploy-
ment of artifacts developed in research is complex
and can only be estimated. We, therefore, expect
that this discussion in environmental impact state-
ments will be more abstract and harder to assess.
As a framework, we propose borrowing the no-
tion of scopes from corporate GHG accounting
(Patchell, 2018), where scopes 1, 2 and 3 corre-
spond, respectively, to direct emissions (not appli-
cable to NLP research); indirect emissions from
operations, e.g., due to energy consumption (very
common in NLP research); and indirect emissions
upstream or downstream the value chain. For our
case, we suggest the following scopes:

1. Emissions generated during experiments
for the paper itself, usually electricity
consumption-related.

2. Impact on other researchers and practitioners
in reducing emissions using the technology.

3. The use of the technology for reducing emis-
sions or other positive impact.

Note that these correspond, respectively, to scopes
2, 3 and 3 in the GHG Protocol mentioned above.

Multi-objective optimization. Performance
should not only be assessed in terms of output, but
also inputs required to obtain a certain outcome.
Based on this principle, performance evaluation

21For instance, in the United Kingdom a new legislation will
require firms to disclose climate-related financial information,
with rules set to come into force from April 2022.

Standard Model performance (i.e., model out-
put accuracy)

Emerging Climate-related performance (i.e.,
CO2eq emissions generated by training,
deploying and using the model)

Future Climate-related efficiency per-
formance (i.e., marginal accuracy
improvements relative to marginal
input requirements)

Table 3: Extended model performance evaluation.

should be based on both model performance
and climate performance (cf. Table 3). This can
take the form of explicitly introducing climate
performance into the objective function for
optimization (Puvis de Chavannes et al., 2021) and
in benchmarking (Ma et al., 2021).

Positive impact. NLP is relevant in several as-
pects to the UN sustainable development goals
(Vinuesa et al., 2020; Conforti et al., 2020; Swar-
nakar and Modi, 2021). Jin et al. (2021) defined a
framework for the social impacts of NLP, of which
environmental impacts are a special case. They de-
fine an impact stack consisting of four stages, from
(1) fundamental theory to (2) building block tools
and (3) applicable tools, and finally to (4) deployed
applications. Furthermore, they identify questions
related to sustainable development goals for which
NLP is relevant. They categorize Green NLP as
relevant only to the particular goal of “mitigating
problems brought by NLP,” by minimizing direct
impact as part of technology development. How-
ever, we claim that Green NLP must be viewed
more broadly. For example, Rolnick et al. (2019)
discuss how machine learning can be used to tackle
climate change, listing several fields with identi-
fied potential. For NLP, they mention the impact
on the future of cities, on crisis management, in-
dividual action (understanding personal footprints,
facilitating behavior change), informing policy for
collective decision-making, education, and finance.
Stede and Patz (2021) note that the topic of climate
change has received little attention in the NLP com-
munity and propose applying NLP to analyze the
climate change discourse, predict its evolution and
respond accordingly. Indeed, NLP is increasingly
being used to analyze sustainability reports and
environmental claims, facilitating enforcement of
reporting requirements (Luccioni et al., 2020; Bin-
gler et al., 2021; Stammbach et al., 2022).
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7 Recommendations

As pointed out by Schwartz et al. (2020), a compar-
ison between research and researchers from various
locations and with various prerequisites can be dif-
ficult. Therefore, we want to point out rules of
thumb that, in our opinion, should be followed by
the authors of papers, as well as from reviewers
who assess the quality thereof.

Do increase transparency. With our climate per-
formance model card, we aim to provide guidelines
that give concrete ideas on how to report energy
consumption and CO2eq emissions. Our model
card, on purpose, still allows for flexibility so that
authors can change it to their respective setup. In
case of high CPU usage, the authors can simplify
their calculation of energy consumption by only
looking at the CPU power; in the case of the GPU,
it can simply be based on the GPU. Our main goal
is transparency for users and increased awareness
for modelers and researchers. Hence, transparency
is to be weighted over accuracy.

Do use the model cards to enable research institu-
tions and practitioners to report on their climate per-
formance and GHG emissions. An increasing num-
ber of first-moving research labs and institutes have
started to account for their GHG emissions from
direct energy use and flying, and intend to include
their ICT emissions (e.g., ETH Zurich, 2021; UZH
Zurich, 2021). However, harmonized approaches
are still lacking. Use the model cards to road-test
how far they could support your institutions’ GHG
and climate impact reporting.

Do not use our model card for assessing research
quality. The value of research is often only clear
months or years after publication. Thus, the ra-
tio between emitted CO2eq and contribution to the
NLP community cannot be measured accurately.
Additionally, the emitted CO2eq depends on the
hardware used for the computations. Researchers
working with less energy-efficient hardware would
have a disadvantage if the emitted CO2eq were be-
ing used for assessing the quality. However, consid-
ering the energy efficiency of model performance
might indirectly reduce a Global North–South bias,
given that access to computational power is not
evenly distributed across the World. Hence, tar-
geting energy efficiency and reducing the compu-
tational power required to train and run models
might mitigate some concerns on the inequality of
research opportunities.

Do not report your voluntary financial climate

protection contributions as emission offsetting.
While emission offsetting used to be hailed as
an efficient way to reduce global greenhouse gas
emissions, this notion had to be revised with up-
dated climate science consensus, at the latest with
the IPCC’s Special Report on Global Warming of
1.5C from 2018 (Masson-Delmotte et al., 2018).
Related to this aspect, do not communicate rela-
tive (efficiency-related) improvements as absolute
climate-related performance improvements.

Do not use this model card to assess net climate-
related impacts. AI as an enabler for higher-order
effects, for example, for climate-neutral economies
and societies, is an important topic, which is, how-
ever, not in our scope. Instead, our approach aims
to increase transparency about every model’s first
order effects, be the model designed for societal
change (or any other higher-order effect) or not.

8 Conclusion

We argued that branding efficient methods in NLP
as green or sustainable is insufficient and that due
to the importance of the issue, climate awareness
must be promoted in mainstream NLP rather than
only in niche areas. We conducted a survey of
climate discussion in NLP papers and found that
climate-related issues are increasingly being dis-
cussed but are still uncommon. We proposed ac-
tionable measures to increase climate awareness
based on experience from the finance domain and
finally proposed a model card focusing on report-
ing climate performance transparently, which we
encourage NLP researchers to use in any paper.

While our discussion, survey, and recommenda-
tions are aimed towards the NLP community, much
is applicable to other AI fields. Indeed, specific rec-
ommendations have been made for machine learn-
ing (Henderson et al., 2020; Patterson et al., 2022)
and medical image analysis (Selvan et al., 2022),
for example. Concurrently, Kaack et al. (2022)
propose a system-level roadmap addressing both
GHG emissions and use of AI for climate change
mitigation holistically. Our focus on NLP enabled
us to be more specific about relevant modeling
components in our model card, as they are com-
monly used in NLP work. Furthermore, framing
our arguments within the discourse initiated in the
NLP community allowed us to address the specific
points raised in this discussion so far, and highlight
specific avenues for positive impact.
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9 Limitations

While climate awareness is necessary for including
environmental considerations in decisions made
during NLP research work, it is not sufficient for
behavior change, namely, concrete actions by re-
searchers and practitioners to reduce their negative
impact and potentially contribute positively: as evi-
dent in various other societal issues, values do not
necessarily determine behavior (Boström, 2020).
Instead, climate-responsible behavior must also be-
come “the new normal” for it to be mainstream.
Awareness is only the first step in reaching that
goal (Lockie, 2022).

Furthermore, the climate awareness model card
we propose requires less precise details than ex-
isting reporting tools (Lacoste et al., 2019; Hen-
derson et al., 2020; Anthony et al., 2020; Schmidt
et al., 2022), which could limit its usefulness for
informed decision making. However, as we claim
in the paper, quantifying uncertainty may mitigate
over-reliance on this information, which would oth-
erwise possibly simply not have been reported at
all.

Finally, if climate reporting becomes mandatory
in NLP, it can actually be used for greenwashing if
it entails financial or other incentives and if there is
no control mechanism to check for honesty of the
researchers. This is analogous to the situation in the
corporate world, and can possibly be counteracted
similarly, e.g., using ClimateBert.
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A Patterns for Quantitative Analysis

The following are the regular expression patterns
applied to identify papers according to the dimen-
sions described in §3.1.

Public model weights:

( ( ( model | w e ig h t ) ( w i l l be | i s ) ? | (
models | w e i g h t s ) ( w i l l be | a r e )
? ) ( p u b l i c | a v a i l a b l e | up l oa d |
made a v a i l a b l e | made p u b l i c |
p r o v i d e d ( a t | unde r | on ) ) ) | ( (
p u b l i s h | up l oa d ) [ a−zA−Z0 −9 ,
] { 0 , 2 0 } ( model ( s ) ? | w e ig h t ( s ) ? ) )
| ( make [ a−zA−Z0 −9 , ] { 0 , 2 0 } (
model ( s ) ? | w e ig h t ( s ) ? ) (
a v a i l a b l e | p u b l i c ) ) | ( p r o v i d e [ a
−zA−Z0 −9 , ] { 0 , 2 0 } ( model ( s ) ? |
we ig h t ( s ) ? ) ( a t | unde r | on ) )

Duration of model training or optimization:

( ( ( p r e ( −) ? ) ? t r a i n ( i n g | ed ) ? |
o p t i m i z e | o p t i m i z a t i o n | ( f i n e ( −)
? ) ? t u n ( e | ed | i n g ) ) ( [ a−zA−Z0 −9 ,

] { 0 , 2 0 } ) ( f o r | t ook | t a k e ( s ) ? )
( [ a−zA−Z0 −9 , ] { 0 , 2 0 } ) ( s e c o n d s |
minu te | hour | day | week | month ) +) |
h o u r s o f c o m p u t a t i o n

Energy consumption:

( e ne rg y | power | e l e c t r i c i t y ) (
consumpt ion | u sage ) | ( i s | o f | a t )
[1 −9]{1}[0 −9]{2 ,5} ( w a t t ( s ) ? | (
k ) ?w) | pue

Location where computations are performed:

( ( d a t a ? c e n t e r | ( a | t h e ) c l o u d | (
v i r t u a l | gpu ) machine | compute r
c l u s t e r | hpc ) ( i s ) ? ( a t | i n ) ) | (
c l o u d | a z u r e | go og l e | aws ) ( [ a−zA−
Z0 −9 , ] { 0 , 2 0 } ) r e g i o n

GHG emission:

( co2 ( e | eq ) ? | ghg | c a r bo n ) (
f o o t p r i n t | e m i s s i o n ( s ) ? | e m i t t e d
| o f f s e t ( t i n g ) ? )

The patterns were applied to the full paper text
(including abstract, main contents and appendices,
ignoring capitalization) for deep-learning-related
papers identified by matching the following pattern:

deep l e a r n i n g | n e u r a l ne twork | l s t m
| r e c u r r e n t n e u r a l ne twork | rnn |
t r a n s f o r m e r | mlp | c o n v o l u t i o n a l
n e u r a l ne twork | cnn | g p t

ClimateBert

1. Model publicly available? Yes
2. Time to train final model 8 hours
3. Time for all experiments 288 hours
4. Power of GPU and CPU 0.7 kW
5. Location for computations Germany
6. Energy mix at location 470 gCO2eq/kWh
7. CO2eq for final model 2.63 kg
8. CO2eq for all experiments 94.75 kg
9. Average CO2eq for inference per sample 0.62 mg

Table 4: Climate performance model card for
ClimateBert (Webersinke et al., 2021).

B Example Model Card

Table 4 provides an example climate performance
model card according to the guidelines proposed in
this paper. The model is ClimateBert, a language
model which was finetuned on climate-related text
(Webersinke et al., 2021). The same information is
provided on Hugging Face, illustrated in Figure 1.
Further information about each field is provided in
the following:

1. All weights of the final model are publicly
available on https://huggingface.
co/climatebert. The paper proposes a
fine-tuned language model on climate-related
text. Thus, the proposed models are specific
to a field and not task agnostic.

2. The duration for optimizing the final model
was around 8 hours. Note, that the paper pro-
poses four final models but this field should
only mention the optimization time for one
model.

3. In total, we estimate the duration for all com-
putations to be 12 days (=288 hours). This
estimation is likely pessimistic, i.e., the du-
ration for all computations was likely lower.
However, we want to point out again that this
model card values transparency over accuracy.

4. The main hardware used for training were 2
x NVIDIA RTX A5000 with each GPU tak-
ing 230 watts. We add another 120 watts for
the remaining hardware which would not be
required by our model card.

5. The models were all trained on servers in Ger-
many.

6. The energy mix is roughly 470
gCO2eq/kWh.22

22According to umweltbundesamt.de/publikati
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7. Calculating

8 hours × 0.7 kW × 470 gCO2eq/kWh

leads to 2.63kg CO2eq emissons.

8. Calculating

288 hours × 0.7 kW × 470 gCO2eq/kWh

leads to 94.75kg CO2eq emissons.

9. A pass of 100,000 samples through the pro-
posed model took 0.187 hours on the same
server (using a batch size of 512). We then
calculate

0.187

100, 000
hours × 0.7 kW × 470 gCO2eq/kWh

= 0.62mgCO2eq

as the emission for the inference of one sam-
ple.

Positive impact. The proposed language model
on its own does not directly have a positive en-
vironmental impact. However, it can be used
to train more accurate NLP models on climate-
related downstream tasks. For instance, question-
answering systems for climate-related topics or
greenwashing detectors could benefit from this pre-
trained language model. This work can therefore be
categorized as a “building block tools” following
Jin et al. (2021), as it supports the training of NLP
models in the field of climate change and, thereby,
have a positive environmental impact in the future.

Possible improvements. Block pruning is a
method which drops a large number of attention
heads in transformer models while only decreas-
ing model performance slightly (Lagunas et al.,
2021). Thus, the number of weights after block-
pruning is decreased considerably which, in turn,
decreases the CO2eq emissions. Very likely, this
method would show the same effect on the pro-
posed ClimateBert model.

C Timeline of Emissions in NLP

Figure 3 shows the computational power that was
put into the development of the major NLP mod-
els (Sevilla et al., 2022). With few exceptions, the
training compute for NLP models has steadily in-
creased over the past decade. Although progress

onen/entwicklung-der-spezifischen-kohlen
dioxid-7.

has also been made in terms of more energy effi-
cient hardware (e.g., 19.5 GFLOPS/watt in a 2013
GTX Titan to 168.3 GFLOPs/watt in a 2021 RTX
A6000), the increase in terms of required FLOPs is
substantially larger. For example, going from GPT
(in 2018) to GPT-3 175B (in 2020), the training
compute increase from 1.1E19 to 3.14E23 FLOPs—
an increase by a factor larger than 25,000.

D GHG Protocol Information
Requirements for Companies

Whilst the GHG Protocol does not provide an ICT
sector tool, it provides emission factors by fuel
source to calculate GHG emissions based on the en-
ergy consumption. The emission factors reflect the
scientific climate consensus, based on the report of
the Intergovernmental Panel on Climate Changes’
latest Assessment Report—IPCC’s AR5.23

In terms of specific information to be disclosed,
the GHG protocol guidance states several items
relevant to NLP and ML research,24 which serve to
build our model card approach. The items that can
be used for our approach are presented in Figure 4.

Furthermore, the GHG Protocols’ Appendix A
provides a guidance on accounting for indirect
emissions from purchased electricity. This would
be an important source of information for AI-
related GHG accounting.

23https://www.ipcc.ch/report/ar5/syr/.
Note that AR6 will be released in late 2022 or early 2023:
https://www.ipcc.ch/ar6-syr/.

24https://ghgprotocol.org/corporate-st
andard
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Figure 3: Development of floating point operations required to train NLP models. Note the log-scale.

• DESCRIPTION OF THE COMPANY AND INVENTORY BOUNDARY

– An outline of the organizational boundaries chosen, including the chosen consolidation approach
– An outline of the operational boundaries chosen, and if scope 3 is included, a list specifying which

types of activities are covered.

• INFORMATION ON EMISSIONS

– Total scope 1 and 2 emissions independent of any GHG trades such as sales, purchases, transfers, or
banking of allowances.

– Emissions data separately for each scope.
– Methodologies used to calculate or measure emissions, providing a reference or link to any calculation

tools used.
– Any specific exclusions of sources, facilities, and / or operations.

• INFORMATION ON EMISSIONS AND PERFORMANCE

– Emissions data from relevant scope 3 emissions activities for which reliable data can be obtained.
– Emissions data further subdivided, where this aids transparency, by business units/facilities, country,

source types, and activity types
– Relevant ratio performance indicators (e.g. emissions per kilowatt-hour generated, tonne of material

production, or sales).
– An outline of any GHG management/reduction programs or strategies.
– An outline of any external assurance provided and a copy of any verification statement, if applicable, of

the reported emissions data.
– Information on the quality of the inventory (e.g., information on the causes and magnitude of uncertain-

ties in emission estimates) and an outline of policies in place to improve inventory quality.

• INFORMATION ON OFFSETS

– Information on offsets that have been purchased or developed outside the inventory boundary, subdivided
by GHG storage/removals and emissions reduction projects. Specify if the offsets are verified/certified
and/or approved by an external GHG program.

Figure 4: Extract from the GHG Protocol Corporate Standard on which our climate performance reporting recom-
mendations are based.

2494


