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Abstract

Past works on multimodal machine translation
(MMT) elevate bilingual setup by incorpo-
rating additional aligned vision information.
However, an image-must requirement of the
multimodal dataset largely hinders MMT’s
development — namely that it demands an
aligned form of [image, source text, target text].
This limitation is generally troublesome during
the inference phase especially when the aligned
image is not provided as in the normal NMT
setup. Thus, in this work, we introduce IKD-
MMT, a novel MMT framework to support the
image-free inference phase via an inversion
knowledge distillation scheme. In particular,
a multimodal feature generator is executed
with a knowledge distillation module, which
directly generates the multimodal feature from
(only) source texts as the input. While there
have been a few prior works entertaining the
possibility to support image-free inference for
machine translation, their performances have
yet to rival the image-must translation. In our
experiments, we identify our method as the
first image-free approach to comprehensively
rival or even surpass (almost) all image-must
frameworks, and achieved the state-of-the-art
result on the often-used Multi30k benchmark1.

1 Introduction

Multimodal machine translation (MMT) is an
worthy task of elevating text-only translation by
introducing additional image modality (Specia
et al., 2016; Elliott et al., 2017; Barrault et al.,
2018). Existing works mostly focus on the fusion
and alignment of images and texts to improve
MMT (Calixto et al., 2017; Ive et al., 2019;
Yin et al., 2020), that they have managed to
concept-prove the effectiveness of the aligned

∗Both authors contributed equally to this research.
†Corresponding author.

1Our code and data are available at: https://github.
com/pengr/IKD-mmt/tree/master.
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Figure 1: Examples of Image-must MMT (a), and our
Image-free MMT (b). During testing, our IKD-MMT
does not require the image as input.

visual information. Nevertheless, the strict triplet
data form of the dataset, in both the training and
inference phases, has disabled the MMT model
to generalize further. In particular, if we consider
using an MMT model to conduct translation for
the normal bilingual text translation as in the NMT
setup, one must provide the aligned images during
inference. And unfortunately, this is not often
feasible. This general comparison between image-
free and image-must schemes is visually illustrated
in Figure 1(a). In hindsight, the quantity and
quality of attached images become a bottleneck
towards the development of MMT, as acquiring
such resources can be scarce and expensive (e.g.
Multi30K (Elliott et al., 2016)).

Indeed, there have been a few attempts to resolve
the image-must limitation. For instance, Elliott and
Kádár (2017) present a multi-task learning model
for MMT where they rely on an auxiliary visual
grounding task to obtain the visual feature. Zhang
et al. (2020) introduce an image retrieval paradigm
to find topic-related images from a small-scale
dataset. Further, Long et al. (2021) attempts to
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utilize a set of generative adversarial networks to
obtain an imaginary vision feature. We may posit
that a (nearly) common ground for such image-
free frameworks is to learn and further obtain a
generated visual feature representation without
the actual image data provided during inference.
However, none of the aforementioned works has
managed to consistently reach the performance
of the image-must counterpart. In this work,
we hypothesise that this can be caused by the
inferior representation learned, insufficient visual
distribution coverage, improper multimodal fusion
stage (Caglayan et al., 2017; Arslan et al., 2018;
Helcl et al., 2018; Calixto and Liu, 2017), and/or
lacked training stability, etc.

In this work, we intend to take a thorough
exploration towards this line. As Shown in
Figure 1(b), unlike prior works solely targeting
visual feature generation and/or relying on later
stages of fusion, our approach directly generates
a multimodal feature using only the source text
input. We enable this by proposing an inverse
knowledge distillation mechanism employing pre-
trained convolutional neural networks (CNN).
From our experiments, we find that this
architectural choice has notably enhanced the
training stability as well as the final representation
quality. To this end, we introduce the IKD-
MMT framework, an image-free framework that
systematically rivals or outperforms the image-
must frameworks. To set up the inverse knowledge
distillation flow, we incorporate dual CNNs with
inverted data feeding flow. Of the two, the teacher
network receives the pre-trained weights while the
student CNN is trained from scratch aiming to
provide a high-quality multimodal feature space
by incorporating both inter-modal and intra-modal
distillations.

Our contributions are summarized as follows:

i. IKD-MMT framework is the first method
that systematically rivals or even outperforms
the existing image-must frameworks, which fully
demonstrates the feasibility of the image-free
concept;

ii. We pioneer the exploration of knowledge-
distillation combined with the pre-trained models
in the regime of MMT, as well as the multimodal
feature generation. We posit that these techniques
have shed some light on the representation learning
and training stability of MMT.

2 Related Work

2.1 Multi-modal Machine Translation
As an intersection of multimedia and neural
machine translation (NMT), MMT has drawn great
attention in the research community. Technically,
existing methods mainly focus on how to better
integrate visual information into the framework of
NMT. 1) Calixto et al. (2017) propose a doubly-
attentive decoder to incorporate two separate
attention over the source words and visual features.
2) Ive et al. (2019) propose a translate-and-refine
approach to refine draft translations by visual
features. 3) Yao and Wan (2020) propose the
multimodal Transformer to induce the image
representations from the text under the guide
of image-aware attention. 4) Yin et al. (2020)
employs a unified multimodal graph to capture
various semantic interactions between multimodal
semantic units.

However, the quantity and quality of the
annotated images limit the development of this task,
which is scarce and expensive. In this work, we
aim to perform the MMT in an image-free manner,
which has the ability to break data constraints.

2.2 Knowledge Distillation
Knowledge distillation (KD) (Buciluco et al., 2006;
Hinton et al., 2015) aims to use a knowledge-
rich teacher network to guide the parameter
learning of the student network. In fact, KD
has been investigated in a wide range of fields.
Romero et al. (2014) transfer knowledge through
an intermediate hidden layer to extend the KD.
Yim et al. (2017) define the distilled knowledge
to be transferred in terms of flow between layers,
which is calculated by the inner product between
features from two layers. In the multimedia field,
Gupta et al. (2016) first introduce the technique
that transfers supervision between images from
different modalities. Yuan and Peng (2018)
propose the symmetric distillation networks for
the text-to-image synthesis task.

Inspired by these pioneering efforts, our IKD-
MMT framework is intents to take full advantage of
KD to generate a multimodal feature to overcome
triplet data constraints.

3 IKD-MMT Model

As illustrated in Figure 2, the proposed framework
consists of two components: an image-free MMT
backbone and a multimodal feature generator.
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Figure 2: The framework of our IKD-MMT model. The multimodal feature generator, multimodal student network
and visual teacher network are the most critical modules, which help break the dataset constraints of image-must.

3.1 Image-Free MMT Backbone
Given a source sentence X= (x1, . . . , xI), each
token xi is mapped into a word embedding vector
Exi ∈ Rdw through the textual embedding with
position encoding (Gehring et al., 2017). dw
and t = (Ex1 , . . . , ExI ) are the word embedding
dimension and the textual feature, respectively.

Then, we feed the text feature t together with the
multimodal feature m (detail in Section 3.2.1) into
the multimodal transformer encoder (Yao and Wan,
2020). In the multimodal encoder layer, we cascade
the multimodal feature m and the text feature t to
reorganize a new multimodal feature x̃ as the query
vector:

x̃= [t;mWm] ∈ R(I+P )∗d, (1)

where I is the length of source sentence, and
P is the size of multimodal feature. Here, we can
understand this modal fusion from the perspective
of nodes and graphs. If we treat each source token
as a node, each region of the multimodal feature
can also be regarded as a pseudo-token and added
to the source token graph for modal fusion. The key
and value vectors are preserved as the text feature
t, and the multimodal encoder layer is calculated
as follows:

ck =
I∑

i=1

α̃ki

(
tiW

V
)
, (2)

α̃ki = softmax

((
x̃kW

Q
) (

tiW
K
)�

√
d

)
. (3)

In this paper, we directly adopt the Transformer
decoder2 (Vaswani et al., 2017) for translation.

2For details, please refer to the original paper.

Given a target sentence Y = (y1, . . . , yJ), our
framework outputs the predicted probability of the
target word yj as follow:

p (yj |y<j ,X, m) ∝ exp
(
W hHL

j + bh
)
, (4)

where HL
j represents the top output of the decoder

at j-th decoding time step, W h and bh are learnable
multi-layer perceptrons, and exp() is a Softmax
layer.

3.2 Multimodal Feature Generation

3.2.1 Preliminaries
In this part, we introduce the frame, symbol
definitions and task goal of multimodal feature
generation in advance.

The frame is composed of a multimodal feature
generator F , a visual teacher model T and
a multimodal student model S. The detailed
architecture of each module is shown in Table 7
of the appendix. The model parameters of S are
denoted as θs. When the global text feature t is
fed into S, the hidden representation produced
by the l-th layer is denoted as ϕS

l

(
t, θsl

)
. The

F outputs a multimodal feature m, and the S
produces an inverse feature Is after the S-conv1
layer. The real image and the inverse feature are
{Is, Ir} ∈ Rm∗n∗3. Given a feature I as input, the
hidden representation produced by the l-th layer of
T is denoted as ϕT

l (I).
Our goal is to generate multimodal features from

the source text to break the image-must restriction
in testing. The visual perception of this multimodal
feature is extracted from the visual distillation
of the teacher-student model, while the textual
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semantic of that is derived from the text translation
of the input text.

3.2.2 Multimodal Feature Generator
First, we simply adopt an average pooling to
transform all word embedding vectors into global
textual features, which are proven to carry the
overall word senses in (Zhang et al., 2010).

t = 1/I

I∑

i=1

Exi . (5)

Then, the global text feature t is serially
transported into the multimodal feature generator
to compute a multimodal feature m:

m = unpool(W tt). (6)

Among them, the FC layer W t projects the
global text feature t into the image space. The
following average unpooling computes a high-
dimensional multimodal feature map from the low-
dimensional latent vector. The dimension of m ∈
RP∗2048 is the same as that of the last convolutional
activation of the teacher model. Notably, the textual
semantics of multimodal features are modelled
from the global textual context supervised by the
text translation.

3.2.3 Inversion Knowledge Distillation
The inversion knowledge distillation transfers the
visual perception from the teacher model T to the
student model S, and in-depth interacts with textual
semantics in the multimodal feature generator. To
synthesize an information-rich multimodal feature,
we formulate a novel dual distillation paradigm
consisting of inter-modal (IrM-KD) and intra-
modal (IaM-KD) knowledge distillations.

IrM-KD: The IrM-KD direct the student
model S to extract the vital visual information
from the source text, thereby bridging the inter-
modal semantics of the text and the real image.
Specifically, given the real image Ir, the teacher
model T generates a visual representation ϕT

l (Ir)
in each layer l. Meanwhile, the S produces a
inverse hidden representation ϕS

l+1

(
t, θsl

)
in next

layer l + 1. The paired representations ϕS
l

(
t, θsl

)

and ϕT
l (Ir) with identical dimension entail the

same-level latent concepts. We present the IrM-
KD loss by the discrepancy among these two
representations and an auxiliary regularization
term:

LossIrM=
∑

l

∥∥ϕT
l (Ir)-ϕS

l+1(t; θsl )
∥∥
2
+‖Ir-Is‖2, (7)

where the L2 norm ‖‖2 is used to measure the
similarity of two vectors. The regularization term
‖Ir-Is‖2 indicates the image space loss, which is
the fundamental constraint for the S to learn the
distribution of the real image.

IaM-KD: The IaM-KD constrains the student
model S to learn the visual perception of images
via the inverse feature, thus relieving the intra-
modal gap between the inverse feature with the
real image. Specifically, we fed the inverse feature
Is into the teacher model T to gain the teacher’s
cognition for it — a pseudo visual representation
ϕD
l (Is). Then, to encourage the student model

profoundly learn the distribution of images, we
narrow the divergence between the ϕD

l (Is) and its
coupled visual representation ϕT

l (Ir). So that, the
IaM-KD loss is defined as the combination of the
above divergence and the image space loss:

LossIaM=
∑

l

∥∥ϕT
l (Ir)-ϕD

l (Is)
∥∥
2
+‖Ir-Is‖2. (8)

Compare with T2I synthesis works (Reed et al.,
2016; Zhang et al., 2017; Xu et al., 2018), we are
dedicated to aidding text translation through inter-
modal and intra-modal bi-visual distillation. By
doing so, our generated multimodal feature focuses
more on the text-image alignment and fusion, but
not only the authenticity of image.

3.3 Objective function
During the training phase, we optimize the
proposed IKD-MMT model end-to-end by the text
translation loss and the inversion distillation loss:

J(θ, θs)=Jtrans(θ, θs)+LossIrM+LossIaM. (9)

Wherein, the translation loss over the training
dataset D, not only bridges the relevance of the
source and target texts, but also models the text
semantics of multimodal features:

Jtrans(θ, θs)=-
∑

D

∑

J

log p(yj |y<j , X,m). (10)

In the testing phase, the trained multimodal
feature generator is capable to generate rich
features to embed into the MMT backbone, thus
getting rid of the image-must constraints.

4 Experiment

4.1 Setup
Datasets We conduct experiments on the

Multi30K benchmark (Elliott et al., 2016). The
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Table 1: BLEU (“B”) and METEOR (“M”) scores of EN-DE and EN-FR tasks. Encouragingly, our IKD-MMT as
an image-free MMT model outperforms almost all MMT systems, and even rivals the SOTA image-must systems.
‡/† mark statistically significant variations for BLEU (p-value < 0.01/0.05) as compared to the Transformer.

Systems
EN-DE EN-FR

Test2016 Test2017 MSCOCO Test2016 Test2017
B M B M B M B M B M
Image-must MMT Systems

NMTSRC+IMG(Calixto et al., 2017) 36.5 55.0 - - - - - - - -
IMGD(Calixto and Liu, 2017) 37.3 55.1 - - - - - - - -
Fusion-conv(Caglayan et al., 2017) 37.0 57.0 29.8 51.2 25.1 46.0 53.5 70.4 51.6 68.6
Trg-mul(Caglayan et al., 2017) 37.8 57.7 30.7 52.2 26.4 47.4 54.7 71.3 52.7 69.5
VAG-NMT(Zhou et al., 2018) - - 31.6 52.2 28.3 48.0 - - 53.8 70.3
DS-SUM-L2(Caglayan, 2019) 39.4 58.7 32.6 52.9 - - 60.7 76.0 54.2 71.0
Del+obj(Ive et al., 2019) 38.0 55.6 - - - - 59.8 74.4 - -
Multimodal(Yao and Wan, 2020) 38.7 55.7 - - - - - - - -
GMNMT(Yin et al., 2020) 39.8 57.6 32.2 51.9 28.7 47.6 60.9 74.9 53.9 69.3
DCCN(Lin et al., 2020) 39.7 56.8 31.0 49.9 26.7 45.7 61.2 76.4 54.3 70.3
Gumbel-att(Liu et al., 2021) 39.2 57.8 31.4 51.2 26.9 46.0 - - - -
OVC+Lm(Wang and Xiong, 2021) - - 32.3 52.4 28.9 48.1 - - 54.1 70.5
Gated Fusion(Wu et al., 2021) 41.96 - 33.59 - 29.04 - 61.69 - 54.85 -
RMMT(Wu et al., 2021) 41.45 - 32.94 - 30.01 - 62.1 - 54.39 -

Image-free MMT Systems
Transformer(Vaswani et al., 2017) 37.6 55.3 31.7 52.1 27.9 47.8 59.0 73.6 51.9 68.3
Multitask(Elliott and Kádár, 2017) 36.8 55.8 - - - - - - - -
VMMTF(Calixto et al., 2019) 37.7 56.0 30.1 49.9 25.5 44.8 - - - -
UVR-NMT(Zhang et al., 2020) 36.94 - 28.63 - - - 57.53 - 48.46 -
ImagiT (Long et al., 2021) 38.5 55.7 32.1 52.4 28.7 48.8 59.7 74.0 52.4 68.3

IKD-MMT (Ours) 41.28‡ 58.93 33.83† 53.21 30.17 48.93 62.53† 77.20 54.84† 71.87
±0.3 ±0.20 ±0.10 ±0.26±0.14±0.08 ±0.25 ±0.18 ±0.50 ±0.34

training and validation sets contain 29,000 and
1,014, respectively. We report the results of the
Test2016, Test2017 and ambiguous MSCOCO test
sets. We directly use the preprocessed sentences3

and apply the BPE (Sennrich et al., 2016) with 10K
merge operations to segment words into sub-words,
which build a shared vocabulary of 9,712 and 9,544
tokens for EN-DE and EN-FR translation tasks.

Settings We follow all model settings of
(Wu et al., 2021), such as the Transformer-Tiny
configuration for anti-overfitting in small datasets.
4-gram case-insensitive BLEU (Papineni et al.,
2002) and METEOR (Denkowski and Lavie, 2014)
are used as evaluation metrics. All models are run
three times and report the average results.

4.2 Main Results
EN-DE Translation Task Table 1 reports the

performance of all MMT baselines on the En-
DE task. Comparing all systems, we draw the
following interesting conclusions:

First, the IKD-MMT significantly surpasses all
image-free MMT systems on five test sets. These

3https://github.com/multi30k/dataset

improvements demonstrate that a) our model can
effectively embed multimodal semantics during the
training and guide the translation via multimodal
features among the image-free testing phase, b)
benefiting from the informative richness and stable
generation of multimodal features, our method is a
more robust way to break data constraints.

Second, the image-must MMT systems generally
exceed their image-free counterparts, showing the
efficacy of additional images for translation.

Finally, encouragingly, our image-free MMT
model not only overbeats almost all image-must
MMT systems, but even rivals the SOTA image-
must MMT. We speculate that these noticeable
gains stem from the IKD-MMT’s strong ability to
fuse the text semantics and visual perception, and
generate text-related visual representation, under
the dual supervision of text translation and visual
distillation.

EN-FR Translation Task We also conduct
experiments on the EN-FR task. Our IKD-MMT
still outperforms the compared baselines in Table
1. This verifies the robustness and generality of our
model in various language scenarios.
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Table 2: Ablation results for diverse distillation variants on the EN-DE task. The base row denotes the IKD-MMT
in Table 1, and “-” means to retain the setting of the base row. Avg.B and Avg.M indicate the BLEU and METEOR
scores of the three test sets

Sim. Func. Dist. Gran. CNN Back. Dist. Loss Avg.B Avg.M
base L2 Model ResNet50 (IrM-KD+IaM-KD) loss 35.09 53.69

(A)

L1 - - - 34.60 (-0.49) 53.39 (-0.30)
L∞ - - - 34.15 (-0.94) 53.27 (-0.42)

Cosine - - - 34.64 (-0.45) 53.27 (-0.42)
KL-Div. - - - 34.62 (-0.47) 53.56 (-0.13)

(B) - Block - 34.57 (-0.52) 53.27 (-0.42)
- Layer - - 34.85 (-0.24) 53.25 (-0.44)

(C) - - VGG19 - 34.38 (-0.71) 53.24 (-0.45)
- - AlexNet - 33.98 (-1.11) 52.99 (-0.70)

(D)

- - - w/o (IrM-KD+IaM-KD) loss 27.30 (-7.79) 51.11 (-2.58)
- - - Image Space loss 32.91 (-2.18) 52.41 (-1.28)
- - - w/o IaM-KD loss 33.64 (-1.45) 52.81 (-0.88)
- - - w/o IrM-KD loss 34.03 (-1.06) 53.08 (-0.61)

Table 3: Validation ablation results for diverse distillation variants on the EN-DE task. The base row denotes the
IKD-MMT in Multi30K development sets, and “-” means to retain the setting of the base row. Dev.B and Dev.M
indicate the BLEU and METEOR scores of the development set

Sim. Func. Dist. Gran. CNN Back. Dist. Loss Dev.B Dev.M
base L2 Model ResNet50 (IrM-KD+IaM-KD) loss 42.48 59.20

(A)

L1 - - - 41.33(-1.15) 58.55(-0.65)
L∞ - - - 41.80(-0.68) 58.92(-0.28)

Cosine - - - 41.44(-1.04) 58.64(-0.56)
KL-Div. - - - 41.90 (-0.58) 58.89(-0.31)

(B) - Block - 41.83(-0.65) 59.01(-0.19)
- Layer - - 41.67(-0.81) 58.69(-0.51)

(C) - - VGG19 - 41.69(-0.79) 58.80(-0.40)
- - AlexNet - 41.20(-1.28) 58.45(-0.75)

(D)

- - - w/o (IrM-KD+IaM-KD) loss 36.02(-6.46) 55.67(-3.53)
- - - Image Space loss 40.45(-2.03) 57.96(-1.24)
- - - w/o IaM-KD loss 41.14(-1.34) 58.39(-0.81)
- - - w/o IrM-KD loss 41.46(-1.02) 58.66(-0.54)

4.3 Ablation Studies

Table 2 illustrates ablation experiments on the
EN-DE task to explore the impact of different
collocations of distillation modules.

Similarity Function First, we explore the effect
of using varied similarity functions to measure the
divergence between hidden representations in our
distillation module. As shown in row (A), the L2

norm is the best option. Later, the performance
order is KL Divergence (Kullback and Leibler,
1951) > L1 norm > Cosine similarity > L∞.

Distillation Granularity Second, in row (B),
we analyze what distillation granularity would
be the golden standard of our model for optimal
translation performance. Specifically, the “Layer",
“Block" and “Model" represents that we employ

representations of each layer, each block, the
last convolutional layer and the image in teacher-
student models to compute the distillation loss.
Based on the evaluation results, we conclude
that the “Model” is optimal, and the “Block” is
consistent with the “Layer” in the Meteor score,
but slightly inferior in the BLEU score. The such
phenomenon reflect that the initial and terminal
representations in our knowledge distillation are
sufficient to teach the student model to generate
information-rich features. This case breaks the
stereotype that KD must transmit all knowledge.

CNN Backbone Third, in row (C), we devise
three variants with diverse CNN backbones
to investigate their impact on the translation.
The ResNet50 wins this round since the deep
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residual network can derive the strongest visual
representation. The VGG19 performs worse
with the absence of residual connection and
plenty of training samples for model convergence.
Undoubtedly, the lightweight AlexNet incurs the
worst translation degradation. It implies that the
feature extraction capability of a small model may
be difficult to undertake the heavy task of multi-
supervised learning.

Distillation Loss Finally, we discuss the
translation performance of different distillation
loss strategies in row (D). Unsurprisingly, w/o
(IrM-KD+IaM-KD) loss suffers the severest
performance degradation. Removing visual
distillation leads to the absence of visual perception
in multimodal features, which evolves into a
perturbed feature obtained by passing the global
text feature into the Fc&Avg Unpool. Afterwards,
w/o IrM-KD loss outperforms w/o IaM-KD loss,
indicating that the capability of the IaM-KD to
establish the text-image relevance that is critical
for multimodal feature synthesis is stronger than
the IrM-KD. We assume this event is related to
that the IaM-KD covers the propagation path of
the IrM-KD. Compared with Image Space loss,
the improvement of our method reveals that the
intermediate hidden state of the teacher model
plays a vital role in teaching the student model to
comprehend the text-image correlations, as also
verified in preceding KD work (Romero et al.,
2014; Yim et al., 2017). Overall, each distillation
loss considerably improves translation.

Ablation Studies on Development set Table
3 attaches all the validation ablation results to
corroborate that each distillation hyperparameter
also contributes its decent gains on the model
convergence rather than just the model general-
ization. Drawing from the tabular results, all
hyperparameters can be tuned freely on the dev
set. We further notice that the performances on
the dev set align quite well with the testing set, in
terms of tendency.

5 Analysis

In this section, we will investigate our IKD-MMT
model from multiple perspectives.

5.1 Does IKD-MMT really generate
multimodal features?

To explore the multimodal features generated by
our distillation strategy, we test their informative

Table 4: Image retrieval tasks on the Multi30K dataset.

R@1 R@5 R@10 R@15
Train 0 0.02 0.04 0.05
Valid 0.1 0.69 0.89 1.38

Test2016 0.1 0.7 1.0 1.5
Test2017 0.1 0.5 1.1 1.5

MSCOCO 0.22 0.65 2.39 2.82

(a) a little girl is walking barefoot on the sand. (b) young woman climbing rock face.

Figure 3: The cluster analysis of the learned multimodal
feature, where the two colored boxes represent some
representative images in the two cluster cases. The
arrow points to the original image that is belonged to
the current multimodal feature (i.e. cluster center).

richness from three aspects:
Image Retrieval The image retrieval task

aims to analyzes the relationship between our
generated multimodal feature and the visual feature.
Specifically, we generate the multimodal feature
from each source sentence. Further, we find the K
closest visual features for each multimodal feature
based on cosine similarity. Then, we measure the
R@K score, which calculates the recall rate of
the visual feature of current sample in these top
K nearest neighborhoods. The results in Table 4
display that no matter any K, or whichever data
set, the R@K scores are extremely low. These
retrieval scores confirm that our model is not trying
to generate the visual feature of the current image.

Cluster Visualization In Figure 3, we visualize
the related pictures which retrieved by the
multimodal feature at the cluster map. Here, points
of different colors fall into different clusters, and
the distance between points is specified by the
cosine similarity between multimodal features and
visual features. In the cluster case (a), the other
images exist the points-of-parity with the original
image, namely objects, backgrounds, and actions
(girl, sand, walking). Likewise, in the cluster
case (b), the other images satisfy the identical
thematic content (person, rock, climbing) as the
original image. Certainly, these related pictures
also conform to the original text’s description of the
scene. So the multimodal features are confirmed to
have learned commonalities between images.

Attention Weights In Figure 4, we envision the
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(b) a little girl is walking barefoot on the sand .(a) a ballerina in blue twirls .
head1 head2 head3 head4 head1 head2 head3 head4

Figure 4: Visualization of attention weights for fusion
of multimodal features and text features. The weight
values decreasing as the color becomes lighter.

attention weights4 for the fusion of multimodal
features and text features. These weights display
which text words the different regions of the
multimodal feature focus on. Combining the two
examples, several insights are excavated as follows:
1) Part of the multimodal feature with the size
of sentence length can be regarded as "pseudo-
words", and a word alignment is formed with the
text feature. 2) The rest of the multimodal features
pay the attention to words equally. We conjecture
that these regions as non-object parts thus tend to
contribute a consistent impact on text translation. 3)
The attention weight of the former three attention
heads are flat and presents linearization at the
bottom part, while one of 4th attention head is
fluctuating and presents dispersion at the bottom
part. This means that the first three attention
heads capture the entire sentence semantics with
the "global attention" form. The 4th attention
head, acts like the "local attention", and emphasizes
understanding the keywords of the sentence. These
findings demonstrate that the multimodal features
have embedded the textual semantics.

To summarize, the above experiments can fully
prove that our IKD-MMT reliably generates an
information-rich multimodal feature.

5.2 Can multimodal features be directly used
for translation?

Our IKD-MMT model synthesizes a multimodal
feature equipped with textual and image knowledge
through a multimodal generator. A natural question
to ask is, can multimodal features be fed into the
encoder alone, rather than being cascaded with
textual features for translation?

To this end, we compare the model removing

4They are computed from the 4 attention heads in the first
multimodal transformer encoder layer.

Table 5: Results of IKD-MMT without text features.

Test2016 Test2017 MSCOCO
B M B M B M

IKD-MMT 41.2858.9333.8353.2130.1748.93
w/o Text Feat. 22.0639.4419.3536.6716.0032.54

Table 6: Results of two degraded text and original text5.

Model D DC DE
Transformer 52.5 50.28 (↓2.22) 33.81 (↓ 18.61)
Multimodal 53.18 51.30 (↓1.88) 35.04 (↓ 18.14)
IKD-MMT 53.21 51.30 (↓1.91) 34.59 (↓ 18.62)

text features with the original benchmark in Table
5. We notice that w/o Text Feat. appears a cliff-
like performance drop, which is explainable. In
the multimodal encoding layer, the dot product
of the query and key vectors is used to mark the
importance of each token corresponding to other
tokens in the sentence, i.e. the attention score. If
we treat the multi-modal feature as the query, its
fixed P regions can be regarded as a set of pseudo
tokens. Considering this token set carries limited
semantics and destroys the word alignment, it is
difficult to obtain an available attention score alone.
In addition, most studies convey that text semantics
is more important than visual perception in the
MMT task (Grönroos et al., 2018; Lala et al., 2018).

5.3 Can multimodal features recover the
missing text?

In Table 6, we adopt two degradation strategies (Ive
et al., 2019; Caglayan et al., 2019) for the source
sentence, and feed into Transformer, Multimodal
and our IKD-MMT, to probe whether multimodal
features can recover the missing text. Test2017
Meteor scores are used for evaluation.

Color Deprivation We mask the source tokens
that refer to colors as a special token [U], which
involves 3.19% and 3.16% of the words in the
training set and test set, respectively. As shown
in the column DC , after color deprivation, the text-
only Transformer fails to align the source and target
tokens, then leads to the worst performance descent.
Our IKD-MMT and Image-must Multimodal
hardly synthesize color information to compensate
for the deterioration of color missing.

Entity Masking We tag all visually depictable
entities (Plummer et al., 2015) with a special token

5Here, we use the result of the reproduced models.
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Source text:                  a ballerina in blue twirls .                                            a little girl is walking barefoot on the sand .
Target text:                  eine ballerina in blau wirbelt herum .                          ein kleines mädchen geht barfuß im sand .
-------------------------------------------------------------------------------------------------------------------------------------------------------
Transformer:               eine ballerina in blau dreht sich .                                 ein kleines mädchen läuft barfuß auf dem sand .
NMTSRC+IMG:                eine ballerina in blauer kleidung wirbelt herum .        ein kleines mädchen läuft barfuß auf dem sand . 
Multitask:                     eine ballerina in blauer kleidung wirbelt herum .        ein kleines mädchen läuft barfuß auf dem sand . 
URA-NMT:                  eine ballerina in blau dreht sich .                                  ein kleines mädchen läuft barfuß im sand .
Multimodal:                 eine ballerina in blau dreht sich .                                  ein kleines mädchen läuft barfuß auf dem sand .
IKD-MMT(ours):        eine ballerina in blau wirbelt herum .                           ein kleines mädchen geht barfuß im sand .

(a) (b)

(b)

(a)
Figure 5: Translation cases of different models. The red and blue highlight error and correct translations respectively.

[U], which affects 29.49% and 31.12% of the words
in the training set and test set, respectively. In
the DE column, we observe that the IKD-MMT
and the text-only Transformer degrade equally in
performance, which is because IKD-MMT unable
to distill the visual perception of multimodal
features from the entity-missed text.

Beyond these two masking experiments, we
revisit such token recovery problems to pose a more
common-sense insight: As per the faithfulness-first
principle (Koehn, 2009) in translation, once the
source sentence misses keyword information, what
we need to do is translate this degraded faithfully.
Re-translate back to the original target text from
the degraded source text is false.

5.4 Case Study

Figure 5 depicts the 1-best translation of the two
test cases generated by various systems. Other
systems mistranslate and over-translate text in case
(a) and distort the semantics due to mistakenly
translating "geht" (walking) to "läuft" (running) in
case(b). Our IKD-MMT relies on rich multimodal
semantics to keep the translation fidelity.

6 Conclusion

In this work, we propose the IKD-MMT framework
to address the image-must issue for multimodal
machine translation (MMT) via the knowledge
distillation paradigm. Under this image-free MMT
system, there are three key contributions: 1) An
information-rich multimodal feature is generated
by the dual constraints of visual distillation and
text translation to support the image-free testing
stage; 2) The knowledge distillation module is
flexible, and pioneers to employ of the pre-trained
model to guide translation; 3) Both quantitative
and qualitative results validate the feasibility of
the proposed approach IKD-MMT, where it can
be deemed the first framework that rivals or even
surpass most (if not all) image-must frameworks.
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Limitations

From a representation learning perspective, this
work is dedicated to introduce the visual perception
pipeline and the comprehension of text-image
correlations from texts, and may be limited to
more complex visual descriptive text (if there exists
numerous visual descriptive entities). Further,
since the Multi30K is the only and most commonly
used MMT benchmark, most of the experiments
are centered around it. We addtionally made a
“bold” attempt to move IKD-MMT onto much
larger scaled NMT datasets for testing only —
thanks to the image-free nature of our approach
— and unfortuantely the inference results did not
look decent enough. While the IKD-MMT’s image-
free inference pass can be fully facilitated in this
scenario, we attribute the inferior results to the
much simpler data distribution involved in the
Multi30K. Indeed, we hope a richer or real-world
MMT dataset could fully bridge this image-free
performance gap between MMT and NMT. That,
however, may have gone beyond the scope of this
paper.
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A Appendix

Table 7: Architecture of each module in multimodal feature generation. The multimodal student model has inverted
data flow with visual teacher model. These architectures can be easily replaced with any CNN variant (e.g. VGG19
(Simonyan and Zisserman, 2014), AlexNet (Krizhevsky et al., 2012)) with reference to ResNet50 (He et al., 2016).

Visual Teacher Model Multimodal Student Model
layer name output size 49-layer layer name output size 48-layer

T-conv1 112x112 7x7, 64, stride 2 S-conv1 224x224 8x8, 3, stride 2

T-conv2_x 56x56

3x3 max pool, stride 2

S-conv2_x 112x112

2x2 max unpool, stride 2⎡
⎣
1x1, 64
3x3, 64
1x1, 256

⎤
⎦ x3

⎡
⎣
1x1, 256
3x3, 64
1x1, 64

⎤
⎦ x3

T-conv3_x 28x28

⎡
⎣
1x1, 128
3x3, 128
1x1, 512

⎤
⎦ x4 S-conv3_x 56x56

⎡
⎣
1x1, 512
3x3, 128
1x1, 128

⎤
⎦ x4

T-conv4_x 14x14

⎡
⎣
1x1, 256
3x3, 256
1x1, 1024

⎤
⎦ x6 S-conv4_x 28x28

⎡
⎣
1x1, 512
3x3, 256
1x1, 256

⎤
⎦ x6

T-conv5_x 7x7

⎡
⎣
1x1, 512
3x3, 512
1x1, 2048

⎤
⎦ x3

S-conv5_x 14x14
⎡
⎣
1x1, 1024
3x3, 512
1x1, 512

⎤
⎦ x3

N/A 1x1 average pool
Multimodal Feature Generator N/A 7x7 2048-d fc, average unpool
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