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Abstract

Given an input sequence (or prefix), mod-
ern language models often assign high prob-
abilities to output sequences that are repeti-
tive, incoherent, or irrelevant to the prefix;
as such, model-generated text also contains
such artifacts. To address these issues we
present RANKGEN, a 1.2B parameter encoder
model for English that scores model genera-
tions given a prefix. RANKGEN can be flexi-
bly incorporated as a scoring function in beam
search and used to decode from any pretrained
language model. We train RANKGEN using
large-scale contrastive learning to map a prefix
close to the ground-truth sequence that follows
it and far away from two types of negatives:
(1) random sequences from the same docu-
ment as the prefix, and (2) sequences gener-
ated from a large language model conditioned
on the prefix. Experiments across four differ-
ent language models (345M-11B parameters)
and two domains show that RANKGEN signif-
icantly outperforms decoding algorithms like
nucleus, top-k, and typical sampling on both
automatic metrics (85.0 vs 77.3 MAUVE) as
well as human evaluations with English writ-
ers (74.5% human preference over nucleus
sampling). Analysis reveals that RANKGEN
outputs are more relevant to the prefix and im-
prove continuity and coherence compared to
baselines. We release our model checkpoints,
code, and human preference data with explana-
tions to facilitate future research.1

1 Introduction

Despite exciting recent progress in large-scale lan-
guage modeling (Radford et al., 2019; Brown et al.,
2020), text generated from these language mod-
els (LMs) continues to be riddled with artifacts.
Modern LMs suffer from the “likelihood trap” (See
et al., 2019; Zhang et al., 2021), in which high

1All resources are available at https://github.
com/martiansideofthemoon/rankgen.
*Work done as a student researcher at Google Research.

likelihood (low perplexity) sequences produced by
greedy decoding or beam search tend to be dull
and repetitive. While truncated sampling methods
such as top-k (Fan et al., 2018), nucleus (Holtzman
et al., 2020), and typical sampling (Meister et al.,
2022) alleviate these issues, they can also produce
text with inconsistencies, hallucinations, factual
errors, or commonsense issues (Massarelli et al.,
2020; Dou et al., 2022; Krishna et al., 2021).

Part of the problem is that LMs are trained using
“teacher forcing”, where they are always given the
ground-truth prefix2 and asked to predict the next
token. At test-time, however, the prefix can contain
model-generated text, allowing errors to propagate
during decoding (Bengio et al., 2015). This issue,
combined with the observation that LMs overly rely
on local context (Khandelwal et al., 2018; Sun et al.,
2021), contributes to the generation of sequences
that break coherence or consistency within a larger
discourse-level context (Wang et al., 2022).

To address this issue we present RANKGEN,
a 1.2 billion parameter English encoder model
that maps both human-written prefixes and model-
generated continuations of those prefixes (gener-
ations) to a shared vector space. RANKGEN effi-
ciently measures the compatibility between a given
prefix and generations from any external LM by
ranking the generations via their dot product with
the prefix (Figure 2). We train RANKGEN using
large-scale contrastive learning, encouraging pre-
fixes to be closer to their gold continuation and far
away from incorrect negatives. Since our objec-
tive considers two sequences rather than just single
token prediction, it encourages RANKGEN to con-
sider longer-distance relationships between the pre-
fix and continuation rather than just local context.

We devise two different strategies (shown in Fig-
ure 1) for selecting challenging negative samples,

2A prefix is a sequence of tokens fed as input to an LM,
which then generates continuations conditioned on the prefix.
A prefix is also called a prompt in prior work (Fan et al., 2018).
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This financial set-back, while it had injured, for the time, 
Arthur Breen's reputation for being "up and dressed," had 
not, to any appreciable extent, curtailed his expenditures or 
narrowed the area of his social domain.

+ Mrs. Breen's dinners and entertainments had been as 
frequent and as exclusive, and Miss Corinne had continued to 
run the gamut of the gayest and best patronized functions …

–

– He was still the patron of the night clubs; still he dined 
frequently with Garry O'Neil and Stephen O'Neil; still he 
appeared occasionally as a guest in the house where Garry 
O'Neil and Stephen O'Neil dined…

The drooping lips straightened and a shrewd, searching 
glance shot from Arthur Breen's eyes. There was a brain 
behind this sleepy face--as many of his competitors knew …

Figure 1: A datapoint from the novel “Peter” (Smith, 1911) used to train RANKGEN with contrastive learning. The
prefix vector is pushed towards the gold continuation and away from the vectors of several incorrect continuation
with errors (shown in red). These negative samples are either human-written INBOOK sequences taken from
random locations in the same document (fluent and sometimes topically-similar, but irrelevant and incoherent), or
GENERATIVE samples from a pretrained LM (relevant, but potentially containing hallucination or repetition).

and empirically show that current large LMs cannot
distinguish gold continuations from the negatives
via perplexity (Section 2.1). In the first strategy,
INBOOK, we select random sequences that occur
within the same document as the prefix. While
these human-written negatives are fluent and might
contain topic or entity overlap, they are irrelevant as
continuations to the prefix. In the second strategy,
GENERATIVE, we generate continuations by con-
ditioning a large pretrained LM on a given prefix.
Compared to INBOOK negatives, these negatives
are much more relevant to the prefix, but they suffer
from issues like hallucination and repetition.

While RANKGEN can be easily used to rerank
full-length samples from any external LM, we
demonstrate further improvements in generation
quality when it is integrated as a scoring function
into beam search. On automatic and human evalua-
tions across four large pretrained models (345M to
11B parameters) and two datasets, we observe that
RANKGEN significantly and consistently outper-
forms sampling-based methods (nucleus, typical,
top-k) as well as perplexity-based reranking (85.0
vs 77.3 MAUVE, 74.5% human preference over
nucleus sampling3). Qualitative analysis from our
human annotators (English writers) suggests that
most of the improvements stem from increased rel-
evance and continuity between the generated text
and the prefix. Finally, we explore applications of

3See Table 3, 4 for all results. MAUVE (Pillutla et al.,
2021) is a recently introduced automatic metric for open-ended
generation which has high correlation with human judgements.

our RANKGEN retriever outside of text generation
and report state-of-the-art results on two complex
literary retrieval benchmarks: RELiC (Thai et al.,
2022) and ChapterBreak (Sun et al., 2022). We
open source code, data and model checkpoints.1

2 RANKGEN: a generation ranker

RANKGEN is a deep encoder network that projects
prefixes and generations to a shared vector space.
Given a prefix vector and a generation vector, we
compute a score for the generation via the dot prod-
uct between the two vectors. To ensure that these
scores are meaningful, we train RANKGEN us-
ing large-scale contrastive learning (Radford et al.,
2021), pushing the prefix vector close to the gold
completion and away from the vectors of nega-
tive samples (Figure 1). We use two types of
negative samples for learning the metric space:
(1) sequences at random locations in the same
document (INBOOK), and (2) model generations
(GENERATIVE). This section empirically justifies
our negative sample choice (Section 2.1) before pre-
senting a precise model formulation (Section 2.2).

2.1 LMs do not choose gold over negatives
We explicitly choose our negatives to focus on a
weakness of modern LMs which we empirically
verify below: LMs often assign high probability to
implausible or irrelevant continuations of a prefix.

INBOOK negatives: Our first type of negative
samples are sequences from random locations in
the same document as the prefix, whose lengths
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INBOOK neg type → Random Hard

PG19 Wiki PG19 Wiki

Random 50.0 50.0 50.0 50.0
Unigram Overlap 79.4 69.1 55.9 51.6
GPT2-medium 70.4 61.9 53.1 50.1
GPT2-XL (2019) 72.9 63.3 54.6 50.6
T5-base (f.t. PG19) 73.0 64.0 54.0 50.5
T5-XXL (f.t. PG19) 79.6 68.6 58.5 53.1
T5-XXL-C4 (2021) 76.4 66.2 57.4 52.2
GPT3 170B* (2020) 77.3 67.0 63.2 63.2

RANKGEN (ours)
PG-XL-INBOOK 99.1 92.7 77.4 72.0
PG-XL-GENERATIVE 80.2 68.3 52.5 53.5
PG-XL-both 99.1 92.3 78.0 71.4
all-XL-both 98.7 97.3 61.3† 77.2†

Humans 94.5 91.0 82.0 90.5

Table 1: How often do models prefer the gold contin-
uation to a prefix over an INBOOK negative (text from
a different location in same document)? Overall, large
LMs (via perplexity) perform poorly compared to both
RANKGEN and humans. *GPT3 scores use 1000 data-
points; †hard sets adversarially built with this model.

match those of the ground-truth continuations. As
these negatives are written by humans, they are
always fluent and coherent, and often topically
similar to the prefix (with overlapping entities).
However, they are irrelevant as continuations to
the prefix, breaking discourse-level continuity and
coherence (Hobbs, 1979; Grosz et al., 1995).

LMs struggle to distinguish gold continuations
from INBOOK negatives: Given a prefix of 256
tokens from Wikipedia or a PG19 book (Rae et al.,
2019), we measure how often LMs assign higher
probability (lower perplexity) to the gold 128-token
continuation over a single INBOOK negative.4 We
break all prefixes and continuations at sentence
boundaries to make the task less reliant on local
syntactic patterns. Table 1 shows that even large
LMs perform far below human estimates on this
task (63.3% for GPT2-XL vs 91.0% human on
Wiki),5 and repeating this experiment with “hard”
negatives selected from a trained RANKGEN model
drops LM performance even further (50.6% for
GPT2-XL vs. 90.5% human on Wiki).6 We hy-
pothesize that LMs perform poorly because (1) they
overly focus on local context instead of long-range
dependencies from the prefix (Khandelwal et al.,

4We experiment with multiple INBOOK negatives in ap-
pendix §C.2. This task is similar to suffix identification tasks
like ROCStories (2016); see §C.5 for experiments on them.

5Human study done on Upwork; details in Appendix B.
6See Appendix C.1 for more details on “hard negatives”.

Discriminator PG19 Wikipedia Average

Random 50.0 50.0 50.0
Unigram Overlap 40.2 44.4 42.3
GPT2-medium (2019) 14.7 23.3 19.0
GPT2-XL (2019) 21.5 31.5 26.5
T5-XXL (f.t. PG19) 32.4 33.7 33.1
T5-XXL-C4 (2021) 19.0 39.1 29.1

RANKGEN (ours)
PG-XL-GENERATIVE 94.7 89.2 91.9
PG-XL-INBOOK 69.8 59.7 64.8
PG-XL-both 92.0 74.9 83.5
all-XL-both 86.2 81.3 83.7

Table 2: How often do different models prefer the
gold continuation to a prefix over a GENERATIVE neg-
ative (model-generated continuation)? LM perplexity
strongly prefers GENERATIVE over gold continuations,
while RANKGEN accurately prefers the gold. Nega-
tives were generated from all four LM models in table
using nucleus sampling (2020) with p = 0.9 and then
pooled (Appendix C.3 breaks down scores by LM).

2018; Sun et al., 2021); and (2) LMs assign high
likelihood to words with high frequency in their
training data (Holtzman et al., 2021) which may
occur in INBOOK but not in the gold continuation.
We analyze the latter further in Appendix C.6 using
alternative scoring functions like PMI.

LMs also struggle to distinguish gold continu-
ations from GENERATIVE negatives: Our sec-
ond type of negative samples are continuations to
a prefix that are generated by a pretrained LM.
Machine-generated text is known to differ signif-
icantly from human text, containing repetitions,
hallucinations, and artifacts (Zellers et al., 2019b;
Maynez et al., 2020; Holtzman et al., 2020). We use
these negatives to encourage RANKGEN to prefer
generations closer to the human distribution, sim-
ilar in spirit to GAN discriminators (Goodfellow
et al., 2014). GENERATIVE negatives have also
been used in previous energy-based LMs (Deng
et al., 2020), although not at this scale; see Sec-
tion 5 for more related work. In Table 2, we show
that LM perplexity is poor at identifying human text
over GENERATIVE negatives (GPT2-XL gets just
26.5% accuracy, well below 50% random chance).
This relates to prior work showing LMs have high
confidence in machine-generated text (Gehrmann
et al., 2019), especially their own (Appendix C.3).

2.2 Training RANKGEN

Having motivated our negative sampling strategies,
we now describe RANKGEN’s training process. We
train RANKGEN using large-scale contrastive learn-
ing with in-batch negative sampling, which is a
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Generator 
(GPT-2 

medium)

Ranker
(RankGen)

Prefix: The winter had been dark 
and tedious. For some reason or 
other I had not been able to read 
much, and I began to think there 
were signs of the coming end. 
Suddenly, with hardly any warning, 
spring burst upon us. Day after day 
we had clear, warm sunshine 
which deepened every contrast of 
colour, and at intervals we were 
blessed with refreshing rains. I 
spent most of my time out of doors 
on the edge of a favourite wood.

+

s1: I could see far beyond the 
great peaks and hills of this 
region. 

….

10.6

6.1

….

10.7

Step 1: Given a prefix, generate N 
samples (s1...sN) of length L from a 
generator using any decoding algorithm.

Step 2: Score each sample 
based on its compatibility 
with prefix using RankGen.

Step 3: Take the top-B samples 
(beam size B) and concatenate them 
to the prefix to continue generation.

s2: We spent more time at 
home and spent less time at 
work. 

sN: During my wandering I 
discovered that the night was 
the season for secret 
experiments.
 

Figure 2: The RANKGEN setup during inference. RANKGEN can be flexibly plugged into any generative model
(like GPT2) using any decoding algorithm (like nucleus sampling) during inference in a beam-search like setup.
The examples shown here are actual generations from GPT2-md (with nucleus p=0.9) and scores from RANKGEN.

popular metric learning technique (Sohn, 2016) pre-
viously used for dense retrieval (DPR, Karpukhin
et al., 2020), image classification (SimCLR, Chen
et al., 2020), and multimodal representation learn-
ing (CLIP, Radford et al., 2021).

A single RANKGEN training instance consists
of a triple (pi, ci, gi), where pi is a prefix, ci is the
ground-truth continuation of that prefix, and gi is
a continuation generated by an LM. We prepend a
special token (pre) to each prefix, and suf (suf-
fix) to each continuation and generation. We then
pass each element of the triple through a shared
Transformer encoder (Vaswani et al., 2017), pro-
jecting them to fixed-size vectors (pi, ci, gi) using
the representation of the special token. To train this
model, we use a contrastive objective that pushes
the prefix vector pi close to the gold continuation
vector ci, but away from both the generation vector
gi as well as all other continuation vectors cj in the
same minibatch (“in-batch negative sampling”),

Z(pi) =
∑

cj∈B
exppi · cj +

∑

gj∈B
exppi · gj

P (ci|pi) = exp(pi · ci) / Z(pi)

loss = −
∑

(pi,ci)∈B
logP (ci|pi)

where B is a minibatch. All minibatch elements are
sampled from the same document, which provides
the INBOOK negatives. Note that the minibatch
size |B| is an important hyperparameter since it
determines the number of negative samples; we set
|B| = 1536 for our XL variant.7

7See §A.1 for training details and sizes of model variants.

Dataset construction: We consider all possible
256-word prefixes pi in our document, ensuring
that prefixes begin and end at sentence bound-
aries. We then select continuations ci of variable
length (10-128 words long) for each prefix pi so
that RANKGEN can re-rank candidates of different
lengths at test-time. To produce GENERATIVE neg-
atives, we first use 50% of our (pi, ci) training data
pairs to fine-tune T5-XXL (Raffel et al., 2020) for
causal language modeling (one per domain). For
the remaining half of the dataset, we use this LM
to generate a single continuation gi to the prefix
pi of variable length (10-128 words) using nucleus
sampling (Holtzman et al., 2020) with p = 0.9.

2.3 Using RANKGEN at inference

After model training, the dot product between the
prefix and continuation vectors denotes their com-
patibility score. We experiment with two strategies
for using these scores during generation: (1) over-
generation and reranking, in which we use any
pretrained LM and decoding algorithm to gener-
ate multiple samples (20 in our experiments) and
then re-rank them; and (2) beam search (Figure 2),
in which we generate N samples of length L via
nucleus or ancestral sampling, compute the top
B highest-scoring samples via RANKGEN, and
concatenate them to the prefix to continue genera-
tion. There are three hyperparameters for our beam
search: (i) the rerank length L, or the number of
tokens generated before each re-ranking; (ii) the
beam size B; and (iii) the number of samples gen-
erated per beam N . Setting N=20, B=1, L=128
(max generation length) is equivalent to the first
strategy of over-generation and re-ranking. Details
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of our implementation and hyperparameter search
are in Appendix A.2, A.3. Overall all tested hy-
perparameters improve over baselines, but N=10,
B=2, L=20 performs best but all tested hyperpa-
rameter choices improve over baselines (Figure 3).

3 Experiments

3.1 Model configurations

RANKGEN variants: We study four configura-
tions of RANKGEN, each with 1.2B parameters
(XL size) and trained with minibatch size 1536.
Three variants are trained on the PG19 dataset (Rae
et al., 2019), which consists of long-form books,
using (1) only INBOOK negatives, (2) only GEN-
ERATIVE negatives, and (3) both types of negatives.
Since PG-19 contains mainly historical literature,
we also experiment with different data sources by
training RANKGEN on the union of four domains
(“all”) — PG19, Wikipedia, C4-NewsLike and C4-
WebTextLike (Raffel et al., 2020). This last model
is trained using both types of negatives. More ab-
lations varying the model size and minibatch size
(number of negatives) are provided in Appendix E.

Pretrained language models: Does RANKGEN

improve generation quality regardless of the size
and pretraining dataset of the LM? To check this we
evaluate four different pretrained LMs whose sizes
vary considerably from that of RANKGEN (1.2B
parameters). We experiment with two variants
of GPT-2 (Radford et al., 2019): GPT2-medium
(345M) and GPT2-XL (1.5B parameters). We also
evaluate a pretrained T5-XXL-v1.1 (Raffel et al.,
2020) model (11B parameters) that we fine-tune
to perform language modeling on the training set
of PG19 (Rae et al., 2019). Finally, to experiment
with a large LM trained on out-of-domain data for
RANKGEN-PG19, we evaluate the T5-XXL model
from Lester et al. (2021) (11B parameters) that was
fine-tuned for language modeling on the C4 corpus.

3.2 Open-ended text generation

Following prior work on text generation (Welleck
et al., 2019; Holtzman et al., 2020; Su et al., 2022),
we primarily focus on open-ended text generation,
which has wide applications for tasks such as gen-
erating stories (Fan et al., 2018), poetry (Zhang
and Lapata, 2014), and dialog (Miller et al., 2017)
and few-shot NLP (Brown et al., 2020). We con-
sider two domains in our study: (1) prefixes from
Wikipedia, and (2) literary text from PG19 (Rae

et al., 2019). Since it is difficult to conduct hu-
man evaluations of long sequences of machine-
generated text (Karpinska et al., 2021), our main
experiments consider a 256-token prefix and 128-
token generations. We analyze generation quality
given varying prefix lengths in Section 4.3.

Decoding algorithms: For each LM considered
we decode outputs using greedy decoding, ances-
tral sampling, nucleus sampling (Holtzman et al.,
2020), top-k sampling (Fan et al., 2018), and
typical sampling (Meister et al., 2022). Since
RANKGEN is fundamentally a re-ranker of mul-
tiple samples, we also compare to two other re-
rankers using LM perplexity and unigram overlap,
respectively. In all re-ranking settings, we gener-
ate 20 samples and then re-rank them with each
method. For RANKGEN, we also use beam search
(§2.3) that re-ranks partially generated hypotheses.

Automatic & human evaluation metrics: We
use MAUVE (Pillutla et al., 2021) as our primary
metric for automatic evaluation. MAUVE com-
putes the similarity of the distribution of human-
written text and machine-generated text, and has
high correlation with human judgments.8 Since au-
tomatic metrics are insufficient for text generation
evaluation (Celikyilmaz et al., 2020), we also con-
duct a human evaluation by hiring English teachers
and writers from Upwork;9 see Appendix B for
more details. For each of GPT2-medium and T5-
XXL-C4 we choose 50 Wikipedia and 50 PG19
prefixes, and show three annotators a pair of con-
tinuations from different decoding strategies in a
random order (blind A/B testing). Annotators are
asked to choose the better continuation and provide
a 1-3 sentence explanation for their choice. This
gives us 600 annotations, analyzed in §3.4, 4.1.

3.3 Results from automatic evaluations
Table 3 contains MAUVE scores for all decoding
configurations and datasets. Overall, we see that:

RANKGEN re-ranking and beam search sig-
nificantly improves MAUVE: Re-ranking full-
length samples with RANKGEN yields an average
MAUVE score of 83.4 across all configurations,
significantly outperforming other decoding strate-
gies like greedy decoding (15.4), ancestral sam-
pling (74.8), and nucleus / top-k / typical sampling
(77.1-77.4). Adding beam search further boosts

8Details about our MAUVE setup in Appendix D.1. More
evaluations with metrics like REP (2020) in Appendix D.3.

9https://www.upwork.com
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Generator Language Model / Prefix Dataset

T5-XXL-C4 GPT2-md GPT2-XL T5-XXL-PG19 Average
Decoding method PG19 wiki PG19 wiki PG19 wiki PG19 wiki

Greedy decoding 6.6 15.2 3.8 11.2 6.4 18.3 23.4 38.5 15.4
Ancestral sampling 67.7 71.6 75.5 73.2 77.4 75.0 90.2 67.7 74.8
Nucleus, p = 0.9 (2020) 69.7 77.9 73.0 74.6 74.4 75.0 92.6 81.8 77.3
Top-k, k = 40 (2018) 68.3 77.3 74.8 73.4 76.0 75.2 92.2 81.8 77.4
Typical, p = 0.9 (2022) 69.5 77.4 73.2 73.5 73.6 76.4 92.7 81.1 77.1

Re-ranking 20 full-length ancestral samples

RANKGEN PG19-XL-both 79.9 83.3 78.8 78.5 78.2 79.6 92.2 79.2 81.2
RANKGEN all-XL-both 71.0 85.8 79.0 84.9 79.0 86.4 92.1 82.9 82.6

Re-ranking 20 full-length nucleus samples

Unigram overlap 65.6 80.7 74.8 78.7 73.9 79.4 93.6 90.6 79.7
LM perplexity 62.6 55.1 55.5 63.1 58.3 61.6 88.4 77.1 65.2
RANKGEN PG19-XL-GENERATIVE 78.3 82.4 76.2 73.8 76.2 73.0 95.0 87.1 80.2
RANKGEN PG19-XL-INBOOK 70.7 83.4 76.7 81.7 76.0 83.6 93.3 85.9 81.4
RANKGEN PG19-XL-both 80.7 86.4 76.3 79.4 75.2 81.3 94.3 87.3 82.6
RANKGEN all-XL-both 73.0 88.1 74.8 83.9 75.9 85.7 93.6 91.8 83.4
+ beam search (B=2, L=20, N=10) 74.0 89.4 76.2 88.9 77.0 89.4 92.2 93.0 85.0

Table 3: A comparison between RANKGEN variants and baseline decoding algorithms using MAUVE (Pillutla
et al., 2021), an automatic text generation metric with high human correlation. RANKGEN significantly outper-
forms baselines like nucleus & typical sampling, as well as other re-ranking strategies using LM perplexity and
unigram overlap. Incorporating RANKGEN into beam search (last row) results in the best average MAUVE score.
All RANKGEN rows follow the format, "<training_data>-<size>-<negatives>", for example "PG19-XL-INBOOK".

performance to 85.0.10 Surprisingly, re-ranking 20
full-length ancestral samples with RANKGEN per-
forms better than standard nucleus sampling (77.3
vs 82.6). However, re-ranking 20 ancestral samples
is slightly worse than re-ranking 20 nucleus sam-
ples (82.6 vs 83.4) due to worse inherent quality
of ancestral vs nucleus (74.8 vs 77.3). Re-ranking
generations by unigram overlap to the prefix is a
surprisingly good baseline (79.7), while re-ranking
by LM perplexity reduces MAUVE to 65.2, since
it emulates likelihood-based methods like greedy
decoding. Finally, RANKGEN performs best on
in-domain data, with the PG19-XL-both variant ob-
taining better scores than the model trained on four
domains (80.7 vs 73.0 on T5-XXL-C4, PG19).

INBOOK negatives help more than GENER-
ATIVE, but using both maximizes MAUVE:
In Table 3 (bottom), we perform ablations by
removing the INBOOK and GENERATIVE for
RANKGEN PG19 variants. All three variants out-
perform nucleus sampling (77.3), but keeping both
objectives performs best (82.6). A model trained
with only INBOOK is more effective (81.4) than
one trained with only GENERATIVE (80.2).

10Hyperparameter grid search details in Appendix A.3.

3.4 Human evaluation with A/B tests
Despite the high human correlation of MAUVE,
human evaluation remains critical for open-ended
generation (Celikyilmaz et al., 2020; Gehrmann
et al., 2022). Since human evaluation is expen-
sive, we focus on comparing our best performing
RANKGEN variant (RANKGEN-XL-all with beam
search) to nucleus sampling, one of the most pop-
ular decoding algorithms in use today. We con-
duct blind A/B testing comparing the two meth-
ods, hiring English teachers and writers on Up-
work (§3.2). Table 4 shows that humans signif-
icantly prefer outputs from RANKGEN over nu-
cleus sampling (74.5% preference by majority vote,
p < 0.001). RANKGEN preference is higher with
more inter-annotator agreement (Table 5) for out-
puts from the smaller GPT2-medium. Finally, hu-
mans show slightly higher RANKGEN preference
for Wikipedia generations compared to PG19.

4 Analysis

4.1 Types of generation improvements
To get more insight into the human preference judg-
ments made in Section 3.4, we asked our annotators
to provide a 1-3 sentence free-form explanation
for each of their choices.11 We manually catego-
rized each of 600 explanations into nine broad cat-

11All 600 human explanations are provided in submission.
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PG19 Wikipedia Overall

GPT2-md 80.0 (72.0) 82.0 (78.3) 81.0 (75.1)
T5-XXL-C4 68.0 (63.3) 68.0 (65.3) 68.0 (64.3)
Overall 74.0 (67.8) 75.0 (71.9) 74.5 (69.8)

Table 4: Percentage of instances for which English writ-
ers prefer RANKGEN outputs over nucleus samples in
a blind A/B test. Scores shown are majority vote, with
mean accuracy in subscript. Humans significantly pre-
fer RANKGEN (p < 10−3); agreement stats in Table 5.

PG19 Wikipedia Overall

GPT2-md 0.31, 48% 0.49, 60% 0.40, 54%
T5-XXL-C4 0.27, 46% 0.30, 48% 0.29, 47%
Overall 0.29, 47% 0.40, 54% 0.35, 51%

Table 5: Inter-annotator agreement for the human eval-
uation in Table 4 using Fleiss κ (1971), and % of pairs
with unanimous agreement among 3 annotators. Over-
all we see moderate agreement, higher for Wiki, GPT2.

egories loosely based on the SCARECROW schema
designed by Dou et al. (2022). In Table 6 we see
that 81% of the explanations preferring RANKGEN

mentioned some aspect of the relationship between
the prefix and the generated text, including rele-
vance, continuity, and stylistic similarity. 8.0%
of the explanations said that RANKGEN outputs
displayed fewer commonsense errors, while 4.7%
said that they were less repetitive. We show some
generations and human explanations in Table 7 and
several more full-length generations in Appendix F.

4.2 How fast is decoding with RANKGEN?

Our algorithm requires over-generation followed
by RANKGEN re-ranking. How much extra de-
coding time does this add? In Figure 3, we
show the trade-off between MAUVE score and
decoding time across different hyperparameters.12

While decoding a single nucleus sample takes just
0.8 seconds, generating 20 samples followed by
re-ranking with RANKGEN requires 2.5 seconds.
The best-performing hyperparameters use multi-
ple re-ranking steps, taking 5.9 seconds.13 In Ap-
pendix A.3.2, we see that over-generation is the
bottleneck, since re-ranking takes only a fraction
of the time (1-10%) compared to generation. De-
veloping methods that avoid over-generation (e.g.,
via distillation) is an exciting future work direction.

12Timing depends on library / hardware. We analyze Hug-
gingFace on RTX3090, T5X on TPU-v3 in appendix A.2.

13See Appendix A.3.2 for more speed tradeoff plots.

Reasons relating the prefix with the generation (81%)

More topically relevant to the prefix 37.7%
Better continuity / flow / chronology 31.6%
Does not contradict prefix 6.8%
Stylistically closer to prefix 4.7%

Reasons related only to the generated text (19%)

Better commonsense understanding 8.0%
Less repetitive 4.7%
More grammatical 3.1%
Less contradictions 1.7%
More coherent / other 1.7%

Table 6: Distribution of reasons given by our hu-
man evaluators (English writers/teachers) for prefer-
ring RANKGEN outputs over nucleus samples. Rele-
vance / continuity to prefix was a common explanation.

2 4 6 8 10 12 14
time per generation (seconds)

0.725
0.750
0.775
0.800
0.825
0.850
0.875

M
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e

HuggingFace GPT2-md on Wikipedia

no reranking
5 hypotheses
10 hypotheses
20 hypotheses

Figure 3: Performance/time trade-off across hyperpa-
rameters (grid search details in §A.3). RANKGEN re-
ranking significantly improves MAUVE, but need an
order of magnitude more time due to overgeneration.

4.3 Generation with different length prefixes

Our RANKGEN model is trained with a fixed prefix
length of 256 tokens, and all of the evaluations in
Section 3 also assume a prefix length of 256 tokens.
However, many text generation applications take
shorter prefixes as input, like short writing prompts
in story generation (Fan et al., 2018). How well
does RANKGEN generalize to shorter and longer
prefixes? Figure 4 compares nucleus sampling to
RANKGEN across varying prefix lengths. We ob-
serve that RANKGEN consistently outperforms nu-
cleus sampling in terms of MAUVE, and beam
search with RANKGEN always provides further
gains, suggesting robustness to the prefix length.

4.4 RANKGEN as a retriever

While we designed RANKGEN for text genera-
tion, we find that it is also an effective zero-shot
retriever. RANKGEN follows a dual encoder ar-
chitecture similar to those of several recent dense
retrievers like DPR (Karpukhin et al., 2020) and
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PG19, Half a Life-time Ago, by Elizabeth
Gaskell: ... If thou doesn’t choose to marry
me on those terms–why! I can snap my
fingers at thee, never fear. I’m not so far
gone in love as that. But I will not have
thee, if thou say’st in such a hectoring way
that Willie must go out of the house–and the
house his own too–before thou’lt set foot in
it. ... “Thou hast may-be spoken a word too
much,” said Michael, pale with rage.

Text 1 (Nucleus): “How on earth could it
be? He must be part of the marriage, my
love. But he can’t go away–he can’t go
away with me. And if he does go away,
he’ll have to pay ...
Text 2 (RANKGEN): “Take heed how
thou handlest thy words in the future.”
“I haven’t spoken a word too much,” she
murmured, coolly. “I meant–I meant the
last word!” “Swear it, thou hastna sworn
a word yet...

Text 2. Text 1 has a completely
different style, way more modern.
First sentence in Text 2 fits the tone
of enraged Michael.
Text 2. The writing style is more
similar, Text 1 sounds too mod-
ern. Plus, the atmosphere of the
fragment is more consistent. The
characters seem to be having an ar-
gument, so "My love" in doesn’t
make sense.

Wiki, American Indian Movement: ...
named three lower-level AIM members in-
volved in her death: Arlo Looking Cloud,
John Graham, and Theda Nelson Clarke.
This was the first time that an AIM leader
active at the time of the Aquash murder had
publicly accused AIM of having been in-
volved. Looking Cloud and Graham were
convicted of murder in 2004 and 2010, by
... By then Clark was being cared for in a
nursing home and was not indicted.

Text 1 (Nucleus): Clarke was the second
AIM leader to be charged. On July 19,
2009, her defense attorney, Michael Kranz
had filed a motion ... His request for a new
trial failed in December 2009. In 2009,
the ...
Text 2 (RANKGEN): Clarke has also de-
nied any involvement in Aquash’s murder.
In the early months of 2001 the FBI began
an effort to break through AIM’s defenses,
to try to identify and bring charges against
all three AIM members...

Text 2 - The last sentence of the
prefix paragraph ("By then Clark
was being cared for in a nursing
home and was not indicted") flows
well with Text 2, implying that
Clarke was absolved of guilt.
Text 2. Text 2 further goes into
Clark’s involvement in the case
and Aquash’s murder while Text
1 contradicts part of the prefix.

Table 7: Representative model outputs using RANKGEN vs nucleus sampling (Holtzman et al., 2020), along with
human explanations (from English teachers/writers) for preferring RANKGEN. For every row the color coding
grounds the annotator explanation in the prefix and generation. See Appendix F for more full-length generations.
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Figure 4: MAUVE score variation with change in pre-
fix length for GPT2-medium on Wikipedia. Across pre-
fix lengths re-ranking with RANKGEN-XL-all boosts
performance, and using it in beam search does best.

REALM (Guu et al., 2020). We test RANKGEN

on RELiC (Thai et al., 2022), a complex literary
retrieval task. Given a literary analysis excerpt, sys-
tems must retrieve a quote from a book which is
most relevant to the excerpt. RELiC requires a deep
understanding of literary phenomena (like irony,
metaphors, co-reference, style), and current retriev-
ers struggle on it. We test models in a zero-shot
setting, without finetuning on RELiC training data.
In Table 8 we find RANKGEN significantly out-
performs other retrievers, achieving a new state
of the art on RELiC.14 PG-XL-INBOOK performs

14https://relic.cs.umass.edu/
leaderboard.html

Model Recall@k (↑)

1 3 5 10 50

BM25 (1995) 1.3 2.9 4.1 6.7 14.5
SIM (2019) 1.3 2.8 3.8 5.6 13.4
DPR (2020) 1.3 3.0 4.3 6.6 15.4
c-REALM (2021) 1.6 3.5 4.8 7.1 15.9
ColBERT (2020) 2.9 6.0 7.8 11.0 21.4

RANKGEN (ours)
PG-XL-GEN 0.7 1.9 2.7 4.1 9.1
PG-XL-INBOOK 6.0 12.2 15.4 20.7 37.3
PG-base-both 3.8 8.2 10.8 15.4 31.6
PG-XL-both 4.5 8.4 11.0 15.1 27.9
all-XL-both 4.9 9.2 11.9 16.5 31.5

full supervision (↑) 9.4 18.3 24.0 32.4 51.3

Table 8: Performance on RELiC (2022) compared to
other retrievers. We achieve state-of-the-art on the zero-
shot setting, nearing the supervised upperbound (↑).

best (6.0 vs 2.9 recall@1 against the next-best Col-
BERT), approaching a fully supervised upperbound
(9.4). While our XL model has many more pa-
rameters than baselines, even PG-base-both outper-
forms all baselines (3.8 vs 2.9), which has a similar
number of parameters as our baselines. Dropping
INBOOK leads to poor performance (0.7), further
confirming its efficacy. Besides RELiC, we investi-
gate retrieval over PG19 books in appendix §C.2,
and suffix identification in §C.5, achieving state-of-
the-art on ChapterBreak (Sun et al., 2022).
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5 Related Work

Our work on RANKGEN draws inspiration from
previous research on self-supervised learning,
energy-based models, and modeling non-local de-
pendencies. For instance, our INBOOK nega-
tive sampling is related to popular self-supervised
representation learning methods that leverage
discourse information across multiple sentences,
which is useful for learning sentence embed-
dings (Kiros et al., 2015; Hill et al., 2016; Jernite
et al., 2017). Our formulation is most similar to
QuickThought (Logeswaran and Lee, 2018), which
uses in-batch negative sampling on a contiguous
set of sentences. More recently, the next sentence
prediction task has been used for pretraining large
LMs (Devlin et al., 2019; Lan et al., 2020; Aroca-
Ouellette and Rudzicz, 2020). Unlike these works,
we focus specifically on text generation rather than
self-supervised pretraining for natural language un-
derstanding tasks.

RANKGEN is also closely related to ef-
forts in energy-based methods (LeCun et al.,
2006) for generative modeling (Grover et al.,
2019; Parshakova et al., 2019), speech recogni-
tion (Wang and Ou, 2018), open-ended text gen-
eration (Bakhtin et al., 2019; Deng et al., 2020),
machine translation (Shen et al., 2004; Lee et al.,
2021; Bhattacharyya et al., 2021), constrained gen-
eration (Qin et al., 2022; Mireshghallah et al.,
2022), and models for specific attributes like
style (Dathathri et al., 2020; Yang and Klein,
2021), length (Li et al., 2017), or repetition & rele-
vance (Holtzman et al., 2018). Unlike prior work,
we use human-written text from the same docu-
ment as negative samples (INBOOK) in addition to
machine-generated text. RANKGEN is also trained
at a much larger scale than prior energy-based mod-
els for text (1.2B parameters, contrastive learning
with 3K negatives on 4 domains).

Finally, RANKGEN is related to efforts in
modeling non-local dependencies in generation,
which include methods that predict multiple to-
kens (Oord et al., 2018; Qi et al., 2020), rely on re-
trieval (Khandelwal et al., 2020), use bidirectional
LMs (Serdyuk et al., 2018), employ contrastive
learning (Su et al., 2022; An et al., 2022), use
BERT for sentence-level language modeling (Ip-
polito et al., 2020), and designing sequence-level
losses (Wiseman and Rush, 2016; Edunov et al.,
2018; Welleck et al., 2020; Liu et al., 2022) for re-
ducing exposure bias (Bengio et al., 2015; Ranzato

et al., 2016). While the RANKGEN approach is sig-
nificantly different from these prior works, it can
be intuitively viewed as a “k-word sequence-level”
language modeling approach, which is discrimina-
tive rather than generative.

6 Conclusion and Future Work

We present RANKGEN, a large encoder which
scores continuations given a prefix and can
be plugged into any text generation system.
RANKGEN significantly outperforms popular de-
coding methods on both automatic and human eval-
uations. We note several exciting future directions
for RANKGEN, including:

• training (or adapting) a multilingual variant of
RANKGEN, as our current models are trained
on English text only

• training larger RANKGEN models (T5-XXL
size or bigger), with longer prefix / suffix
lengths, to see if generation quality continues
to improve with scale

• exploring the utility of RANKGEN in other
generation tasks like dialog generation, sum-
marization, or long-form question answering

• RANKGEN re-ranking of significantly larger
hypothesis sets generated using search algo-
rithms like that in Xu et al. (2022)

• more directly incorporating RANKGEN into
generative modeling to eliminate the need
for over-generation, either via gradient-
based sampling (Qin et al., 2022), distilling
RANKGEN knowledge into LMs via unlikeli-
hood training (Welleck et al., 2020) or reward
modeling with RL (Ouyang et al., 2022)

• using RANKGEN as a retriever in knowledge
retrieval augmented generation (Nakano et al.,
2021; Komeili et al., 2022)

• further exploring the capability of
RANKGEN as a retriever, either zero-
shot or by fine-tuning on retrieval benchmarks
like BEIR (Thakur et al., 2021)

• utilizing of RANKGEN as a text generation
evaluation metric like CARP (Matiana et al.,
2021) or CLIPScore (Hessel et al., 2021)

• using RankGen on other domains with sequen-
tial data, like code completion, protein synthe-
sis, or generating mathematical proofs.
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Limitations

An important limitation of RANKGEN compared
to other decoding methods is the need for over-
generation, which we discuss in Section 4.2. While
RANKGEN itself is efficient, generating multiple
samples increases decoding time by an order of
magnitude. RANKGEN is a re-ranking method, so
it relies on other decoding methods to produce the
candidate output set. Biases in the output candi-
date set from existing decoding algorithms may
be present in RANKGEN outputs. Besides this,
RANKGEN may be vulnerable to adversarial exam-
ples (Szegedy et al., 2013) — gibberish text which
gets high RANKGEN score, obtained by white-box
attacks (Ebrahimi et al., 2018; Wallace et al., 2019).

This study is limited to open-ended text gener-
ation, which has a large space of possible outputs.
RANKGEN or our findings may not be directly ap-
plicable to other generation tasks which have a
more constrained output space like summarization,
long-form QA or machine translation.
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Ethical Considerations

Current text generation technology produces fluent
outputs but suffer from several issues like factual
inaccuracies, lack of faithfulness to the input pre-
fix, commonsense issues etc., which makes their
real-world deployment difficult. RANKGEN is an
effort at rectifying some of these issues, with a
focus on faithfulness to input prompts. However,
RANKGEN outputs continue to be factually inac-
curate at times, as noted by some of our human
annotators. This should be strongly considered be-
fore any direct deployment of this system. To tackle

this issue, using RANKGEN for retrieval augmented
generation (Nakano et al., 2021) is a promising di-
rection for future work. We have also open-sourced
all 600 human annotations, which have detailed ex-
planations highlighting the strengths / weaknesses
of RANKGEN compared to nucleus sampling.

Our final XL-sized models were trained using
a Google Cloud TPUv3 Pod slice with 128 chips
for a total of 2 days per model. Several similarly-
sized models were trained during the development
of this project, roughly one XL-size model every
week from October 2021 to February 2022. Due to
expensive training costs, we have open-sourced our
model checkpoints for the community to use and
build upon. Note that “TPUs are highly efficient
chips which have been specifically designed for
machine learning applications” as mentioned in the
Google 2020 environment report.15 These accelera-
tors run on Google Cloud, which is “carbon neutral
today, but aiming higher: our goal is to run on
carbon-free energy, 24/7, at all of our data centers
by 2030.” (https://cloud.google.com/
sustainability). More details on model size
and training are provided in Appendix A.1.
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Appendices accompanying “RANKGEN:
Improving Text Generation with Large
Ranking Models”

A More RANKGEN details

A.1 RANKGEN training details

We fine-tune the encoder of the T5 v1.1 models
from Raffel et al. (2020) using large minibatches
(see Table 9 for sizes) on a Cloud TPU v3 Pod
slice with 128 chips. Our models are implemented
in JAX (Bradbury et al., 2018) using the T5X li-
brary (Roberts et al., 2022). Each model was fine-
tuned for 100k steps, using a constant learning rate
of 0.002 using the Adafactor optimizer (Shazeer
and Stern, 2018).

Model Batch Size Parameters

RANKGEN-base 4096 110.2M
RANKGEN-large 4096 342.3M
RANKGEN-XL 1536 1.2B

Table 9: Minibatch size and number of trainable pa-
rameters across different RANKGEN variants. See Ap-
pendix E for ablation studies justifying scale.

A.2 Implementation and timing details

In Figure 5 we provided a simplified Python
implementation (without minibatching) of our
RANKGEN beam search algorithm. We imple-
ment this algorithm in two libraries — the first
uses PyTorch with the popular HuggingFace Trans-
formers library (Wolf et al., 2020), which we test
on a RTX 3090 GPU with 25GB memory. The
second uses JAX (Bradbury et al., 2018) with the
T5X library (Roberts et al., 2022), and is tested
on a single Cloud TPU v3 board with 32GB mem-
ory.16 While measuring decoding time for vari-
ous hyperparameters (Appendix A.3.2), we focus
on throughput (Dehghani et al., 2022), measuring
wall-clock time after minibatching to the extent the
hardware permits. We ensure consistent experimen-
tal settings across hyperparameters, using the same
machine and making sure no other computationally
expensive process is running on it.

16https://cloud.google.com/tpu/docs/
system-architecture-tpu-vm#single_tpu_
board

A.3 RANKGEN hyperparameter grid search
Our hyperparameter grid search is conducted on
Wikipedia data with the smallest model consid-
ered (GPT2-medium), using MAUVE as our hill-
climbing criteria. Our RANKGEN algorithm has
three main hyperparameters — rerank length L,
beam size B and number of samples per beam N .
The rerank length denotes the number of new to-
kens which are generated before a re-ranking step
takes place. Number of samples denotes the num-
ber of generated sequences for each beam. The
number of samples retained across different re-
ranking cycles is the beam size (see Figure 5 for
exact implementation). Our RANKGEN grid search
is conducted over the following configurations —
rerank length L: 5, 10, 20, 50, max_length tokens
number of samples (beam size B * number of
samples in every beam N ):
1 sample — (1 * 1);
5 samples — (1 * 5);
10 samples — (1 * 10); (2 * 5);
20 samples — (1 * 20); (2 * 10); (4 * 5);
40 samples — (1 * 40); (2 * 20);

Additionally, we measure the extent to which
full-length reranking works (L = max length, B =
1) by simply increasing the number of samples N
over-generated and then for re-ranking.

A.3.1 MAUVE score tradeoffs
In Figure 6 we study the MAUVE performance
tradeoffs for different hyperparameter configura-
tions for the GPT2-medium model evaluated on
Wikipedia data. Overall, we observe —

• Across all hyperparameter configurations,
RANKGEN significantly improves MAUVE
score over a no re-ranking baseline.

• MAUVE scores improve for shorter rerank
lengths, justifying the benefit of beam search
over re-ranking of complete generations.

• For cases of full re-ranking (re-rank length
= max length), increasing number of sam-
ples improves the MAUVE score (since
RANKGEN has more generations to choose
from), but improvements saturates after 60
samples (for both model sizes), with the
largest gain from 1 to 10 samples.

• We find that rerank length = 20 with 20 sam-
ples (beam size 2, samples per beam 10) per-
forms best across all configurations.
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A.3.2 Speed tradeoffs
In Figure 7 we study the average time taken (in sec-
onds) for a single generation on Wikipedia. Overall,
in both our implementations we observe that —

• Decoding a single sample is an order of mag-
nitude faster than decoding multiple samples
(“over-generation”), which is needed before
any re-ranking with RANKGEN is possible.

• Reducing the rerank length increases decod-
ing time, since more generate / re-rank cycles
are needed. These cycles cannot be paral-
lelized since the generate and re-rank steps
are dependent on each other.

• Overall, we see observe that decoding time is
roughlyO(BN/L), where B is beam size, N
is the number of samples per beam and L is
rerank length. This is especially true for the
T5X implementation.

We dig a little deeper into these numbers: is
the extra compute time due to over-generation
(generation of 10 or 20 samples instead of one)
or RANKGEN re-ranking? In Table 10, we mea-
sure the time taken to generate and score an in-
dividual instance. We see that re-ranking with
RANKGEN takes only a fraction of the time (1-
10%) compared to generation, which means that
over-generation is the bottleneck. Also see Sec-
tion 4.2 in the main body of the paper for a perfor-
mance / time tradeoff scatter plot.

HuggingFace (GPT2) T5X / seqio (T5)
medium XL base XXL

secs / gen 7.7e-1 2.9e0 8.1e-3 7.4e-2

RANKGEN calls in same time as one generation
base 108.5 408.5 8.4 77.0
large 42.8 161.1 4.3 38.9
XL 16.4 61.7 1.7 15.7

Table 10: Number of RANKGEN calls in the same time
as one LM generation. Across libraries and LM sizes,
RANKGEN needs only a fraction of time vs generation.

B Human Evaluation Details

We hired freelancers from Upwork17 as well as
two volunteers to perform our human evalua-
tion. In total, our human evaluation had eight
annotators. Following recent recommendations

17https://www.upwork.com

from Karpinska et al. (2021), we ensured that
each annotator (except one) was either an English
teacher or an English writer. To avoid bias, we
ensured that none of the annotators were computer
science researchers, making them unaware of text
generation research / RANKGEN.

Setup: Annotators were shown a 200-250 word
prefix, and were asked to choose one of two
80-100 word continuations. Annotators were not
told which model generated each continuation,
and we shuffled the continuations in a random
order to avoid position biases (“blind A/B testing”).
The job posting and instructions shown to the
annotators are provided in Table 23. We used
Amazon Mechanical Turk Sanbox18 to collect our
annotations, using the interface shown in Figure 10.
Note that we used the MTurk Sandbox interface
only — no MTurk workers are recruited in our
human study due to poor annotation quality for
open-ended text generation (Karpinska et al., 2021;
Clark et al., 2021).

Screening: To ensure high annotation quality, we
first asked annotators to complete a small screening
test of 20 pairs with INBOOK distractors, keeping
80% accuracy as our passing criteria (estimated
human performance on this set is 90-95%). We
paid annotators 10$ for the screening test. Around
half the interviewed Upworkers passed the test.

Main Task (comparing generations): In
our main task comparing generations from
RANKGEN with nucleus sampling, we asked
annotators to choose the better continuation as well
as provide a 1-3 sentence free-form explanation for
their choice. We paid annotators 1$ for each pair,
and provided a 10$ bonus at the end of a 100 pairs.
Each annotator was provided with 100 instances
(50 each from Wikipedia and PG19) either
generated by the T5-XXL-C4 model (Lester et al.,
2021) or GPT2-medium (Radford et al., 2019),
with beam search outputs from RANKGEN-XL-
all. Three annotators rate each model, giving us
a total of 600 human annotations with explanations.

Main Task (INBOOK human estimate): Our sec-
ond main task involved choosing the gold human-
written continuation vs random INBOOK negatives.
We paid annotators 0.5$ for this task, and did not

18https://requestersandbox.mturk.com/
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ask them to explain their choices. This main task
was similar in nature to our screening task.

C Suffix Identification

C.1 Gold vs INBOOK - Hard examples

In Section 2.1 and Appendix C.2 we make use of
“hard negatives”. To select these harder negative
from the document, we use a trained RANKGEN

model (XL sized, trained on all four domains).
Specifically, we use RANKGEN to score the com-
patibility of every 128-word token sequence in the
document to the prefix, and take the highest scor-
ing 10 sequences that are not the gold continua-
tion (“Hard” negative). All negatives sequences
start and end at sentence boundaries so that LMs
cannot rely on local syntactic patterns. For our
two-way classification experiments in Section 2.1,
we consider a random sequence among these 10
hard negatives. Since RANKGEN-all-XL-both was
used to find these hard negatives, results on this
RANKGEN variant are not very meaningful (since
they are adversarial to this variant by construction).

C.2 Gold vs INBOOK - more negatives

In Section 2.1, we used a single INBOOK to test
models. How do models fare when they need to
choose the gold continuation over multiple IN-
BOOK negatives? In Table 11 we perform ex-
periments on a 11-way classification task (10 IN-
BOOK negatives). Overall, we find that most LMs
do barely above chance, whereas RANKGEN sig-
nificantly outperforms large LMs (even GPT3).

INBOOK neg type → Random Hard

PG Wiki PG Wiki

Random 9.1 9.1 9.1 9.1
Unigram Overlap 42.3 18.5 8.6 5.0
GPT2-medium 25.5 12.0 7.8 4.8
GPT2-XL (2019) 29.1 12.6 8.3 5.0
T5-base (f.t. PG19) 28.8 14.3 7.8 5.1
T5-XXL (f.t. PG19) 38.8 17.5 9.8 6.0
T5-XXL-C4 (2021) 34.3 14.6 9.2 5.5
GPT3 170B* (2020) 32.0 14.0 14.0 8.0

RANKGEN (ours)
PG19-XL-INBOOK 94.4 69.8 49.1 36.5
PG19-XL-GENERATE 45.0 28.5 11.7 11.8
PG19-XL-both 94.4 69.0 49.5 35.7
all-XL-both 92.6 84.6 39.5† 52.1†

Table 11: A version of Table 1 with 10 distractors (11-
way classification). Like Table 1, large LMs perform
poorly and close to chance on hard sets. *GPT3 scores
computed using 100 datapoints. †The hard sets were
adversarially constructed using this RANKGEN variant.

Gold vs all INBOOK negatives (“retrieval”):
What if instead of 10 negatives, we used all possi-
ble INBOOK negatives in the book? This task could
be framed as a retrieval problem akin to RELiC
(Section 4.4): given a prefix, find the correct contin-
uation from all possible continuations in the same
book. Since PG19 books can be quite long, re-
trievers needs to search among 2538 candidates on
average in the PG19 validation set. We present re-
sults on this retrieval task in Table 12. Overall, we
find that RANKGEN is quite successful at this task,
getting a recall@1 of 48.2% with a model trained
on just PG19 data and INBOOK negatives. Training
on just PG19, increase model size, increasing mini-
batch size and using just INBOOK negatives helps
improve retrieval performance. In initial experi-
ments, we extensively used performance on this
task to hill-climb and justify our design choices.
Note that we do not test LMs on this retrieval task,
since it is computationally expensive to do a for-
ward pass for each of the 2538 candidates for each
of the 100K datapoints.

Retrieval over PG19 books

Model Batch
Size Size R@1 R@3 R@5 R@10

(RANKGEN models trained on PG19)
base 4096 34.9 52.6 60.6 70.5
large 4096 45.2 62.8 69.9 78.1
XL 1536 48.1 65.4 72.1 79.7
XL-inbook 1536 48.2 65.5 72.1 79.7
XL-gen 1536 4.4 10.4 14.4 20.5

(RANKGEN models trained on all 4 domains)
base 4096 28.4 44.4 52.1 62.4
large 4096 39.6 56.8 64.0 72.9
XL 256 24.3 38.7 45.7 55.4
XL 512 31.7 47.5 54.6 64.1
XL 768 34.6 51.0 58.5 67.5
XL 1536 41.5 58.8 65.7 74.3

Table 12: RANKGEN retrieval performance on PG19
validation books. On average, retrieval takes place over
2538 candidates. RANKGEN gets high performance
on this task, and scaling model size, scaling minibatch
size, training on just PG19 and using just INBOOK neg-
atives improves recall@1 (R@1).

C.3 Gold vs GENERATIVE - breakdown by
generative model

See Table 13 for a breakdown by the model used
to create the GENERATIVE negatives.
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Discriminator GPT2-md GPT2-XL T5-XXL-PG19 T5-XXL-C4 Average
PG19 wiki PG19 wiki PG19 wiki PG19 wiki

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Unigram Overlap 38.4 43.6 36.7 39.8 48.5 56.8 37.2 37.4 42.3

GPT2-medium (2019) 2.1 4.9 3.0 6.6 36.1 59.1 17.2 22.7 19.0
GPT2-XL (2019) 12.7 23.3 1.7 4.6 45.1 68.7 26.5 29.3 26.5
T5-XXL (f.t. PG19) 46.2 54.6 23.5 29.7 28.5 26.3 31.5 24.1 33.1
T5-XXL-C4 (2021) 24.7 52.2 10.9 26.1 31.9 65.2 8.5 13.0 29.1

RANKGEN (ours)
PG-XL-GENERATIVE 96.9 91.4 95.7 88.8 91.8 92.3 94.3 84.4 91.9
PG-XL-INBOOK 78.4 66.3 69.7 60.3 65.9 60.1 65.2 52.2 64.8
PG-XL-both 97.4 81.3 93.7 74.0 87.4 79.4 89.7 65.0 83.5
all-XL-both 94.3 84.5 88.8 78.0 80.3 95.3 81.3 67.3 83.7

Table 13: A version of Table 2 breaking down performance by domain (Project Gutenberg PG19, Wikipedia) and
model used to generate GENERATIVE negatives using nucleus sampling (Holtzman et al., 2020) with p = 0.9.
Language model perplexity prefers GENERATIVE sequences over human text (as previously noted by Gehrmann
et al., 2019), especially when the GENERATIVE negative is generated by the same language model.

C.4 Details of Suffix Identification Datasets

ChapterBreak (Sun et al., 2022) is a 6-way
classification task in which models are provided
as input a long segment from a narrative that
ends in a chapter boundary. Models must then
identify the correct ground-truth chapter beginning
from a set of negatives sampled from the same
narrative — a task requiring global narrative
understanding. ChapterBreak has two settings:
(1) PG19 — the validation set of the Project
Gutenberg language modeling benchmark (Rae
et al., 2019); (2) AO3 — a ChapterBreak split
adapted from fan-fiction posted to Archive of Our
Own (AO3).19 Although Sun et al. (2022) provide
prefixes up to 8192 tokens, we study ChapterBreak
in the setting using just 256 tokens of prefix to
ensure compatibility with the input lengths of
RANKGEN. The ChapterBreak dataset is not
divided into validation / test splits, so we simply
use the single available split.

HellaSwag (Zellers et al., 2019a) is a 4-way
classification task focusing on commonsense
natural language inference. For each question,
a prefix from a video caption is provided as
input and a model must choose the correct
continuation for this prefix. Only one out of the
four choices is correct – the actual next caption
of the video. HellaSwag is scraped from the
video captions in ActivityNet (Krishna et al.,
2017) and how-to paragraph instructions on
WikiHow. We study the setting where each of
the 4 endings are complete sentences, which is

19https://archive.org/download/AO3_
story_dump_continuing

constructed by prepending ctx_b to the given
endings). We use the validation set of the Hel-
laSwag corpus since the test set answers are hidden.

StoryCloze (Mostafazadeh et al., 2016; Sharma
et al., 2018) is a 2-way classification task designed
to test commonsense reasoning. Systems are pro-
vided with the first four sentences of a five-sentence
commonsense story, and must choose the correct
ending to the story. We used the test set for the
Spring 2016 split and the validation set for the Win-
ter 2018 split (due to the hidden test set).

C.5 RANKGEN for suffix identification
RANKGEN is trained on a suffix identification ob-
jective: given a prefix, choose the gold continuation
over INBOOK and GENERATIVE negatives. How
well does RANKGEN learn this task? How does
RANKGEN fare on existing suffix identification
benchmarks?

Performance on INBOOK / GENERATIVE: In
Section 2.1 we motivated the RANKGEN design by
showing the inability of LM perplexity to prefer
the gold continuations over negatives. How does
RANKGEN fare on these negatives? In Table 1 and
Table 2 we evaluate the performance at distinguish-
ing gold continuations from negatives, and com-
pare RANKGEN to large LMs. Since RANKGEN is
directly optimized on this objective, it significantly
outperforms large LMs (99.1% vs 78.2% with GPT-
3 for INBOOK). RANKGEN variants trained on
just INBOOK or just GENERATIVE perform best
at their respective tasks, but we observe some gen-
eralization (INBOOK model gets 69.8% on GEN-
ERATIVE PG19 negatives, GENERATIVE model
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ChapterBreak StoryCloze HSw
PG19 AO3 2016 2018

prefix length 240.3 241.6 35.4 35.3 39.5
suffix length 152.9 156.1 7.4 7.4 26.0

Random 16.7 16.7 50.0 50.0 25.0
Token overlap 37.3 28.7 39.9 40.9 27.4
GPT2-md 20.3 21.5 66.7 66.9 36.8
GPT2-XL 21.6 23.2 71.5 72.6 48.2
T5-base-PG 23.2 23.4 59.0 61.9 33.1
T5-XXL-PG 28.6 25.3 69.3 73.5 62.3
T5-XXL-C4 24.1 24.3 76.0 77.8 63.6
GPT3 (170B) 26.0 23.8 83.2 - 78.9
PaLM (540B) - - 84.6 - 83.4

RANKGEN (1.2B, ours)
PG-XL-GEN 33.6 21.8 57.9 57.9 35.0
PG-XL-INBK 64.3 39.5 73.4 72.6 39.3
PG-XL-both 63.5 36.9 71.1 72.6 40.7
all-XL-both 59.3 32.8 75.4 75.8 46.3

Table 14: Zero-shot suffix identification results on ex-
isting datasets. RANKGEN significantly outperforms
all LMs on ChapterBreak which has long prefix/suffix
lengths. RANKGEN performs similar to similar-sized
GPT2-XL on StoryCloze and HellaSwag, with shorter
inputs and more local dependencies.

gets 80.2% on INBOOK negatives, both higher
than all LMs). Strong performance on GENERA-
TIVE could have several applications like fake news
detection (Zellers et al., 2019b; Gehrmann et al.,
2019), and is an interesting future work direction.

Performance on existing suffix identification
benchmarks: We test RANKGEN on three ex-
isting suffix identification datasets — Chapter-
Break (Sun et al., 2022), ROCStories cloze
test (Mostafazadeh et al., 2016) and Hel-
laSwag (Zellers et al., 2019a); dataset details are
provided in Appendix C.4. To measure their in-
trinsic capability, models are evaluated zero-shot,
without finetuning on training sets.20

In Table 14 we find that RANKGEN significantly
outperforms all LMs on ChapterBreak (64.3 vs
28.6). RANKGEN performs comparably to similar-
sized GPT2-XL (1.5B parameters) on other tasks,
beating it on StoryCloze (75.8 vs 72.6), but slightly
worse on HellaSwag (46.3 vs 48.2). Much larger
LMs like GPT3 170B (Brown et al., 2020) and
PaLM 540B (Chowdhery et al., 2022) perform
best on StoryCloze and HellaSwag. Scaling also
benefits RANKGEN (30.4 vs 40.7 on HellaSwag
for base vs XL), and we believe further scaling

20Zellers et al. (2019a) also describe zero-shot HellaSwag
experiments, testing models on unseen WikiHow / ActivityNet
categories; however they still finetune models on HellaSwag
data for seen categories, while we do no such finetuning.

Scorer CB-PG SC-2016 HS PG19 Wiki

Random 16.7 50.0 25.0 9.1 9.1
CLL 16.2 63.0 32.2 15.9 8.5
avg CLL 20.3 66.7 36.8 25.5 12.0
avg ULL 20.8 66.0 37.0 25.2 11.8
PMI 38.2 68.3 32.9 62.3 26.3

RANKGEN (1.2B, ours)
PG-INBK 64.3 73.4 39.3 94.4 69.8
all-BOTH 59.3 75.4 46.3 92.6 84.6

Table 15: GPT2-medium suffix identification per-
formance with different scoring functions (Sec-
tion C.6). Datasets used are ChapterBreak-PG19 (CB-
PG), StoryCloze-2016 (SC-2016), HellaSwag (HS) and
PG19 / Wikipedia INBOOK negatives with 10 random
distractors, as computed in Table 11.

RANKGEN is a promising direction for future work.
We also find INBOOK negatives are more benefi-
cial than GENERATIVE negatives (64.3 vs 33.6 on
ChapterBreak PG19). We hypothesize that the dif-
ferent trends on different datasets can be attributed
to input length. As seen in Table 14, ChapterBreak
has much longer inputs (240 prefix, 153 suffix to-
kens) than other datasets (35 prefix, 7 suffix tokens
for ROCStories). The focus on local context in
LMs (Khandelwal et al., 2018; Sharan et al., 2018;
Sun et al., 2021) helps with short-range tasks but
also likely contributes to their underperformance
on complex long-range tasks like ChapterBreak.

C.6 Choice of Scoring Function

It is argued in Holtzman et al. (2021) that average
log likelihood is a sub-optimal scoring function
when LMs are used to score sequences. In this
section, we compare several scoring functions on
GPT2-medium. Let p be a prefix and c be a contin-
uation. We consider: (1) conditional log likelihood
(CLL), or logP (c|p); (2) average conditional log
likelihood (avg CLL), or 1

|c| logP (c|p); (3) aver-
age unconditional log likelihood (avg ULL), or

1
|c|+|p| logP (p ⊕ c); and (4) pointwise mutual in-

formation (PMI), or log P (c|p)
P (c) . We compare these

scoring functions on several datasets in Table 15.
Overall, we find that PMI is a strong scoring func-
tion, outperforming all other functions on four out
of five datasets. Length normalized scoring func-
tions (avg CLL/ULL) are better than CLL across all
datasets, consistent with findings in prior work (Wu
et al., 2016; Koehn and Knowles, 2017; Brown
et al., 2020). All scoring functions lag behind
RANKGEN in all five datasets.

Throughout this paper we use “avg CLL” to re-
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port suffix identification scores. Length normal-
ized conditional log likelihood is the most closely
aligned to how text is generated (sampling from the
next-token distribution), and is the objective lan-
guage models are directly optimized on. However,
given the strong performance of PMI compared to
“avg CLL” on four out of five datasets, an interest-
ing future direction is studying the benefit of PMI
or domain-conditioned PMI (Holtzman et al., 2021)
in generating text.

D More Evaluation Details & Results

D.1 MAUVE setup
We extensively use the MAUVE metric from Pil-
lutla et al. (2021) for automatic evaluation of our
model. MAUVE is shown to have high correlation
with human judgements of the quality of generated
text. We closely follow the best practices listed in
the official MAUVE repository,21 which we found
critical in preliminary experiments. Specifically,

1. We ensure that each run has the exact same
hyperparameters — using the default hyper-
parameters in the official MAUVE library.

2. We use 7713 generations per run, which is
the size of our Wikipedia validation set. This
follows the suggestion in the official codebase
README of having at least 5000 generations
for comparing models. While our PG19 val-
idation set is much bigger, we truncate it to
7713 generations since MAUVE scores tend
to reduce with more generations.

3. Since MAUVE scores are higher for shorter
generations, we ensure that all tested meth-
ods have roughly equal generation lengths, be-
tween 70-80 words / 120-130 tokens. We also
truncate human text / generations to ensure
that each instance ends at a sentence bound-
ary. In initial experiments we observed that
truncating consistently for human text and ma-
chine text leads to lower MAUVE variation.

4. Due to variation in MAUVE score from run
to run, we average the MAUVE score for nu-
cleus / top-k / typical sampling over five runs.
For the T5-XXL-C4 model on Wikipedia with
nucleus sampling, the MAUVE scores were
[0.803, 0.778, 0.759, 0.785, 0.768], giving a
standard deviation of 0.015.

21https://github.com/krishnap25/mauve#
best-practices-for-mauve

D.2 MAUVE Divergence Curves
The MAUVE metric is the area under a divergence
curve, a curve which attempts to analyze the type
of errors the model is making. Given P is the
distribution of human text and Q is the distribution
of machine-generated text, Pillutla et al. (2021)
describe two types of errors made by models —

Type I: KL(Q|P ) — False positives, or cases
where models generate text which is unlikely to
be written by humans, like semantic repetitions
common in neural text generators (Holtzman et al.,
2020; Zhang et al., 2021).

Type II: KL(P |Q) — False negatives, or cases
where models cannot generate text which is likely
to be written by humans, sometimes seen with trun-
cation strategies (See et al., 2019).

In Figure 8 and Figure 9 we plot the divergence
curves comparing greedy decoding, nucleus sam-
pling, and full sample re-ranking with perplex-
ity and RANKGEN. We observe that re-ranking
with RANKGEN increases the area under the curve,
whereas re-ranking with model perplexity reduces
the area. Re-ranking with RANKGEN reduces both
Type I (bigger intercept on y = 1) and Type II er-
rors (bigger intercept on x = 1). Re-ranking with
perplexity leads to higher Type I errors, or more
repetition (as also observed in Appendix D.3).

D.3 Token Overlap metrics
In addition to the MAUVE scores calculated in Sec-
tion 3, we measure token overlap statistics compar-
ing different decoding methods. First, we measure
the rep metric from Welleck et al. (2020), which
is an approximate measurement of the amount
of repetition in generated text. We measure the
percentage of generated tokens which are exactly
copied from the immediate local prefix of 20 to-
kens. In Table 16 we find that re-ranking with
RANKGEN slightly reduces rep compared to nu-
cleus sampling (18.9 vs 19.5). We get even lower
repetition on the RANKGEN trained on just gen-
erative negatives (17.8), while RANKGEN trained
on just inbook negatives gets 20.0 — thus gen-
erative negatives are better at reducing repetition.
Re-ranking with perplexity increases rep to 23.9,
whereas greedy decoding has the highest repetition
of 59.5. This is consistent with recent findings of
repetition in greedy decoded outputs (Holtzman
et al., 2020; Zhang et al., 2021). Human text is the
least repetitive, with a rep score of 15.4.
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Next, we measure the fraction of unigrams in
the generation which are also present in the prefix.
Higher scores could either imply more faithfulness
to the prefix (less hallucination), or lower amounts
of abstraction. We present two versions of this met-
ric — (1) considering all tokens (Table 17); (2) con-
sidering only only lemmatized nouns and numbers
(Table 18). Overall, we find that re-ranking sam-
ples with RANKGEN slightly increases this over-
lap score (19.5 vs 21.7), but re-ranking by token
overlap (38.4) or perplexity (25.0) leads to a much
higher score. Given the lower MAUVE scores for
these two approaches (Table 3), we suspect that
token overlap / perplexity re-ranking leads to lower
amounts of abstraction / repetitiveness. Human
written text has the lowest overlap, perhaps indicat-
ing more abstractive text.

E Ablation Studies

We conduct several ablation studies studying the
importance of three aspects — (1) model size; (2)
minibatch size, or number of negative samples dur-
ing contrastive learning; (3) the type of negative
samples (inbook, generative or both). Overall, we
see clear benefits of increasing model size and in-
creasing minibatch size for suffix identification (Ta-
ble 19, Table 20) and human-text identification
(Table 22). We see a similar, but less prominent
trend on MAUVE scores after re-ranking genera-
tions (Table 21). For some settings we find that the
RANKGEN-large variant produces slightly better
generations than RANKGEN-XL. We hypothesize
this is due to the much larger minibatch used to
train RANKGEN-large models (4096) compared to
RANKGEN-XL (1536) due to memory constraints.

F More Model Generations

More model generations with human explanations
are provided in Table 24 to Table 29. See our
Github repository1 for all 600 annotations for the
200 generation pairs.
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1def rankgen_search(prefix, scorer, generator,
2 rerank_length, beam_size, samples_per_beam):
3 all_beams = [""]
4 for _ in range(0, MAX_LENGTH, rerank_length):
5 # concatenate input prefix with current beams
6 all_inputs = [prefix + " " + beam for beam in all_beams]
7 # for each beam, generate next rerank_length tokens.
8 # samples_per_beam hypotheses are generated per beam,
9 # making a total of (num_beams * samples_per_beam) hypotheses

10 hypotheses = generator(all_inputs,
11 num_new_tokens=rerank_length,
12 num_samples=samples_per_beam)
13 # measure RankGen score between prefix and each hypothesis
14 scores = scorer(prefix, hypotheses)
15 # take top-K scores where K=beam size
16 top_indices = np.argsort(-1 * scores)[:beam_size]
17 all_beams = [outputs[x] for x in top_indices]
18 return all_beams

Figure 5: A simplified Python implementation showing our RANKGEN beam search algorithm (without minibatch-
ing). For every rerank_length tokens, a generator suggests hypotheses and the RANKGEN scorer ranks them.
The top beam_size hypotheses are retained for the next stage of generation and re-ranking.
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Figure 7: Time taken (in seconds) for a single generation across different hyperparameter settings in both our
implementations (HuggingFace / T5X). We see roughly linear increase in decoding time with number of samples,
and linear increase with number of re-ranking steps (1 / rerank_length).
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Figure 8: Divergence curves (Pillutla et al., 2021) after full sample re-ranking on Wikipedia inputs using
RANKGEN-XL trained on all four domains. The area under this curve is the MAUVE score. Overall, we see
that RANKGEN makes fewer Type I (bigger intercept with y = 1 line) and Type II style errors (bigger intercept
with x = 1 line). PPL re-ranking increases the amount of repetition in generated text (Table 16), leading to more
Type I errors (smaller intercept with y = 1 line).
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Figure 9: Divergence curves (Pillutla et al., 2021) after full sample re-ranking on PG19 inputs using RANKGEN-
XL trained on PG19. The area under this curve is the MAUVE score. Overall, we see that RANKGEN makes fewer
Type I (bigger intercept with y = 1 line) and Type II style errors (bigger intercept with x = 1). PPL re-ranking
increases the amount of repetition in generated text (Table 16), leading to more Type I errors (smaller intercept
with y = 1).

Generator Language Model

GPT2-md GPT2-XL T5-XXL-PG19 T5-XXL-C4 Average
Decoding method PG19 wiki PG19 wiki PG19 wiki PG19 wiki

Human Text 15.8 15.0 15.8 15.0 15.8 15.0 15.8 15.0 15.4
Greedy decoding 71.4 56.6 66.8 51.6 55.6 52.7 67.6 53.7 59.5
Nucleus, p = 0.9 (2020) 21.8 18.8 22.4 19.5 17.7 17.4 20.3 18.4 19.5
Top-k, k = 40 (2018) 19.4 17.0 19.9 19.7 17.9 17.9 20.4 18.6 18.9
Typical, p = 0.9 (2022) 21.6 18.6 22.2 19.5 17.6 17.4 20.3 18.5 19.5

Re-ranking 20 nucleus samples
Unigram overlap 22.2 19.9 22.9 20.6 19.0 18.7 21.5 19.8 20.6
LM perplexity 26.9 23.2 27.9 24.3 20.4 21.5 24.6 22.5 23.9
RANKGEN PG-XL-gen 20.0 17.2 20.5 17.9 16.3 15.8 18.3 16.6 17.8
RANKGEN PG-XL-inbook 22.1 19.5 22.7 20.0 18.2 17.8 20.7 18.6 20.0
RANKGEN PG-XL-both 20.9 18.4 21.6 19.2 17.4 16.9 19.7 18.2 19.0
RANKGEN all-XL-both 20.5 18.6 21.1 19.4 17.3 16.6 19.5 18.2 18.9

Table 16: Fraction of generated tokens which are copied from the previous 20 tokens, roughly measuring the
amount of repetition in text (the rep metric from Welleck et al., 2020). Overall we find that ranking samples with
RANKGEN reduces repetition, whereas ranking with perplexity increases repetition. Greedy decoded outputs are
the most repetitive, whereas human-written text is the least repetitive.
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Generator Language Model

GPT2-md GPT2-XL T5-XXL-PG19 T5-XXL-C4 Average
Decoding method PG19 wiki PG19 wiki PG19 wiki PG19 wiki

Human Text 14.0 20.7 14.0 20.7 14.0 20.7 14.0 20.7 17.4
Greedy decoding 16.1 25.5 15.9 25.0 15.8 21.0 20.0 27.3 20.8
Nucleus, p = 0.9 (2020) 16.7 22.8 17.3 23.7 14.0 19.0 17.8 24.8 19.5
Top-k, k = 40 (2018) 15.6 21.0 15.8 15.9 15.1 20.2 19.3 25.7 18.6
Typical, p = 0.9 (2022) 16.6 22.5 17.2 23.8 14.1 18.8 18.0 25.0 19.5

Re-ranking 20 nucleus samples
Unigram overlap 33.6 43.5 34.4 45.7 28.9 34.1 39.9 47.0 38.4
LM perplexity 19.9 29.4 20.2 30.2 16.9 22.7 27.3 33.1 25.0
RANKGEN PG-XL-gen 18.8 25.5 19.3 26.5 14.6 20.0 20.9 26.6 21.5
RANKGEN PG-XL-inbook 18.8 25.1 19.4 26.4 15.9 21.0 19.7 26.5 21.6
RANKGEN PG-XL-both 19.4 25.2 19.7 26.5 15.7 21.3 21.2 26.7 22.0
RANKGEN all-XL-both 19.1 24.8 19.5 26.1 15.7 21.3 20.4 26.3 21.7

Table 17: Percentage of unigrams in generation also present in the prefix. Overall, we see that re-ranking nucleus
samples with RANKGEN increases this overlap, but not as much as re-ranking with LM perplexity. Human text
has the lowest overlap, which we hypothesize is due to higher amounts of abstraction.

Generator Language Model

GPT2-md GPT2-XL T5-XXL-PG19 T5-XXL-C4 Average
Decoding method PG19 wiki PG19 wiki PG19 wiki PG19 wiki

Human Text 19.6 27.3 19.6 27.3 19.6 27.3 19.6 27.3 23.4
Greedy decoding 23.8 31.1 23.0 30.5 21.8 26.2 26.5 33.2 27.0
Nucleus, p = 0.9 (2020) 23.8 29.7 24.2 30.3 19.3 24.4 24.6 31.6 26.0
Top-k, k = 40 (2018) 22.0 27.6 22.2 28.7 21.0 26.4 27.1 33.2 26.0
Typical, p = 0.9 (2022) 23.7 29.2 24.2 30.3 19.4 24.5 24.8 32.0 26.0

Re-ranking 20 nucleus samples
Unigram overlap 42.0 51.0 42.4 52.9 35.1 41.0 47.4 54.7 45.8
LM perplexity 27.8 35.1 27.1 35.4 23.0 28.9 35.2 39.2 31.4
RANKGEN PG-XL-gen 26.3 32.6 26.5 33.4 20.4 26.5 28.6 34.2 28.6
RANKGEN PG-XL-inbook 26.5 32.7 26.9 34.1 21.8 27.7 27.4 34.2 28.9
RANKGEN PG-XL-both 27.0 32.8 27.5 33.9 21.8 28.0 29.2 34.5 29.3
RANKGEN all-XL-both 27.0 32.6 27.3 33.7 21.7 28.0 28.4 34.0 29.1

Table 18: A version of Table 17 considering only lemmatized nouns, proper nouns and numbers, with similar
trends.

Model Batch ChapterBreak StoryCloze Hella RELiC (Recall@k)
Size Size PG19 AO3 2016 2018 Swag 1 3 5 10 50

(RANKGEN models trained on PG19)
base 4096 57.7 36.0 67.6 68.7 30.7 3.8 8.2 10.8 15.4 31.6
large 4096 60.6 31.9 69.3 69.8 34.2 5.7 11.0 14.5 20.0 36.6
XL 1536 63.5 36.9 71.1 72.6 40.7 4.5 8.4 11.0 15.1 27.9

(RANKGEN models trained on all 4 domains)
base 4096 48.1 33.0 69.0 69.1 34.0 3.1 6.2 8.3 11.8 25.6
large 4096 51.4 31.1 70.3 71.7 40.6 3.7 7.3 9.5 13.1 25.8
XL 256 38.2 28.3 70.6 68.5 35.9 2.8 5.6 7.4 10.8 22.9
XL 512 47.3 31.3 72.3 69.8 39.3 3.3 7.1 9.7 13.6 26.5
XL 768 45.2 30.1 72.5 71.2 41.4 3.8 7.2 9.6 13.7 27.5
XL 1536 59.3 32.8 75.4 75.8 46.3 4.9 9.2 11.9 16.5 31.5

Table 19: Variation in performance on existing suffix identification and literary retrieval datasets with model size
and minibatch size (number of negative samples). Overall, we see that scaling both model size and minibatch size
improves suffix identification performance. See Table 14 for comparisons with non-RANKGEN baselines.
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Model Batch pg19-random pg19-hard wiki-random wiki-hard
Size Size 2-way 11-way 2-way 11-way 2-way 11-way 2-way 11-way

(RANKGEN models trained on PG19)
base 4096 98.6 91.7 69.4 36.8 88.4 57.0 65.6 25.7
large 4096 99.0 94.2 76.0 46.4 91.3 66.3 69.7 32.7
XL 1536 99.1 94.4 78.0 49.5 92.3 69.0 71.4 35.7

(RANKGEN models trained on all 4 domains)
base 4096 97.9 88.4 63.5 29.8 95.6 77.8 74.7 42.3
large 4096 98.6 92.1 68.6 39.3 97.0 83.7 79.1 50.7
XL 256 96.8 83.7 60.3 26.0 95.0 75.9 73.5 39.8
XL 512 97.7 87.8 63.1 31.6 96.1 80.0 76.0 45.0
XL 768 98.1 89.7 64.7 34.2 96.6 82.1 77.6 48.2
XL 1536 98.7 92.6 61.3* 39.5* 97.3 84.6 77.2* 52.1*

Table 20: Variation in performance on our PG19 / Wikipedia suffix identification datasets with model size and
minibatch size (number of negative samples). Overall, we see that scaling both model size and minibatch size
improves suffix identification performance. See Table 1 for comparisons with non-RANKGEN baselines. * Note
that these numbers are lower since hard sets were adversarially constructed using this RANKGEN variant.

Generator Language Model (re-ranking 20 nucleus samples)

batch size GPT2-md GPT2-XL T5-XXL-PG19 T5-XXL-C4 Average

(RANKGEN models trained on PG19 and evaluated on PG19 prefixes)
base 4096 78.4 77.5 94.6 72.2 80.7
large 4096 77.1 77.6 93.4 73.4 80.4
XL 1536 76.3 75.2 94.3 80.7 81.6

(RANKGEN models trained on all 4 domains and evaluated on Wikipedia prefixes)
base 4096 83.8 83.0 90.1 87.4 86.1
large 4096 86.3 85.8 92.0 88.5 88.1
XL 256 81.5 84.2 89.7 87.9 85.8
XL 512 82.5 84.5 90.2 87.3 86.1
XL 768 81.0 85.1 89.7 87.8 85.9
XL 1536 83.9 85.7 91.8 88.1 87.3

Table 21: Variation in MAUVE score of top-ranked generation (among 20 nucleus samples with p = 0.9) using
RANKGEN variants having a different model / minibatch size. On average, increasing model size and minibatch
size boosts performance, but the trend is less prominent than in other tasks. However, all RANKGEN variants
outperform baselines like nucleus sampling (see Table 3 for details).

Model batch size GPT2-md GPT2-XL T5-XXL-PG19 T5-XXL-C4 Average

(RANKGEN models trained on PG19 and evaluated on PG19 prefixes)
PG19-base 4096 84.4 78.3 68.3 70.9 75.5
PG19-large 4096 93.7 87.9 79.1 81.3 85.5
PG19-XL 1536 97.4 93.7 87.4 89.7 92.1

(RANKGEN models trained on all 4 domains and evaluated on Wikipedia prefixes)
all-base 4096 71.9 68.2 88.2 60.0 72.1
all-large 4096 80.4 74.7 93.0 64.7 78.2
all-XL 256 73.4 68.8 88.8 60.7 72.9
all-XL 512 78.5 73.6 93.1 64.3 77.4
all-XL 768 81.9 76.1 95.4 65.8 79.8
all-XL 1536 84.5 78.0 95.3 67.3 83.7

Table 22: Variation in human-written text identification (vs machine generated with p = 0.9) performance with
model size and minibatch size (number of negative samples). Overall, we see that scaling both model size and
minibatch size improves human text identification performance. See Table 2 for comparisons with causal LMs.
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Figure 10: The interface shown to Upwork freelancers for human evaluation. We used Amazon Mechanical Turk
Sandbox to collect our annotations (note that we use the MTurk Sandbox interface only; we do not hire any workers
from MTurk due to poor annotation quality (Karpinska et al., 2021).

We are currently looking for people with some experience in English content writing / teaching / editing to
read a prompt text ( 200-250 words) and choose which of two article fragments (70-100 words each) is a valid
continuation of the prompt text. This study is a part of a bigger academic research project on text evaluation.
If you decide to help us in this project, you will be asked to: - set up an account on Amazon Mechanical
Turk Sandbox (this is what we use as the interface, payment will be through Upwork only) - read and evaluate
two sets of 200 fragments, choosing which fragment is a better continuation of the prompt. You will NOT
need to go through complicated and lengthy guidelines. You do NOT need to provide any written feedback on
each story fragment, and you do NOT need to mark mistakes or edit the article fragments. Simply choose the
fragment which continues the context better. The budget we have for this project is $100, which is calculated
assuming a $25/h rate (calculated based on the average time per story fragment from the data we have already collected).

Additional instructions for adding explanations:
In this task you need to choose which better completion is better, along with 2-3 sentences explaining why you felt so.
Some examples of this kind of annotation — (1) Text 1; Text 1 is more relevant to the context because .... (2) Text
2; Both texts are relevant to the context, but Text 1 has lesser repetitions and is more coherent because .... (3) Text
2; Text 2 does not contradict itself like Text 1. In general it would be great if you quote certain parts of the context
/ continuation to support your argument.. for instance — The context talks about the adventures of Frodo, and how
he they started after "he inherited the ring from Bilbo". Text 1 goes on to talk about how Bilbo "suddenly left on his
birthday" which "gave the ring to Frodo", whereas Text 2 contradicts the context by saying "Bilbo went out for the
adventure with the ring."

Table 23: The job posting and instructions shown to Upworkers before they performed the annotation task.
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Prefix Generations Annotator Preference

PG19, Half a Life-time Ago, by Elizabeth
Gaskell: ... If thou doesn’t choose to marry
me on those terms–why! I can snap my
fingers at thee, never fear. I’m not so far
gone in love as that. But I will not have
thee, if thou say’st in such a hectoring way
that Willie must go out of the house–and
the house his own too–before thou’lt set
foot in it. Willie bides here, and I bide with
him.” “Thou hast may-be spoken a word
too much,” said Michael, pale with rage.

Text 1 (Nucleus): “How on earth could it
be? He must be part of the marriage, my
love. But he can’t go away–he can’t go
away with me. And if he does go away,
he’ll have to pay ...
Text 2 (RANKGEN): “Take heed how
thou handlest thy words in the future.”
“I haven’t spoken a word too much,” she
murmured, coolly. “I meant–I meant the
last word!” “Swear it, thou hastna sworn
a word yet. I’ll go to talk with ...

Text 2. Text 1 has a completely
different style, way more modern.
First sentence in Text 2 fits the tone
of enraged character, Michael.
Text 2. The writing style is more
similar, Text 1 sounds too mod-
ern. Plus, the atmosphere of the
fragment is more consistent. The
characters seem to be having an ar-
gument, so "My love" in doesn’t
quite make sense.

PG19, The Fall of a Nation by Thomas
Dixon: The grim gray wave of destruction
from the sand dunes had rolled into battle-
line and spread out over the green clothed
hills and valleys of the Island–swiftly, re-
morselessly, with an uncanny precision ...
a puff of black smoke streamed downward
and the distant officer, ... gunners of his
battery. Our rifles cracked in vain. The
birdmen laughed and paid no attention.

Text 1 (RANKGEN): They raced across
the plains and away. Our artillery fell
silent and rested. It would have to be our
last salvo. "Are they coming down here?”
shouted an American, as he watched ...
Text 2 (Nucleus): With a bark of laughter,
a group of strong men fell among the men
and laughed with them. And with the gen-
eral smile on his face he began to wave
his finger in the air at them and ...

Text 1. The jolly atmosphere of
Text 2 really doesn’t fit with the
prefix. The prefix read together
with Text 2 has kind of a Monty
Python vibe to it.
Text 1. Chose the first one, be-
cause of the stark change in the
tone in the second text, which has
fair amount of laughter and sleep-
ing during a battle.

Wiki, Tim Richmond: ... Richmond raced
in a 1978 Mini Indy car event at Phoenix In-
ternational Raceway, winning the Formula
Super Vee support event in a Lola T620.
The win attracted sponsors and attention
from ... He also competed in USAC’s Silver
Crown series. Richmond’s father bought an
Eagle Indy Car chassis and an Offenhauser
engine for the 1979 race at Michigan In-
ternational Speedway. Richmond qualified
21st fastest with a lap, significantly slower
than Bobby Unser’s pole position speed.

Text 1 (RANKGEN): However, his effort
earned him an invitation to join the 1979
Indy 500 at Phoenix International Race-
way. After finishing sixth, Richmond was
called upon to replace the injured Jimmy
Corder. A rookie, Richmond began his
race in a three-car pack ...
Text 2 (Nucleus): In 1982 the pair
switched to the SuperCar chassis that year.
As a result of the change, Richmond’s
driving style evolved somewhat. At age
42 he returned to IndyCar. At the 1977 ...

Text 1 - Chronology - the events of
text 1 follow prefix text and are be-
fore the events of text 2. It makes
sense the text would be written in
the correct order.
Text 1 - Text 1 continues the idea
of the final sentence of the prefix
paragraph. Despite his unimpres-
sive position in the qualifying race,
his effort earned him an invitation
into the Indy 500.

Table 24: A continuation of Table 7 with representative model generations using RANKGEN vs nucleus sam-
pling (Holtzman et al., 2020), along with human explanations (from English teachers/writers) for preferring
RANKGEN outputs. For every row the color coding is used to ground the annotator explanation in the prefix
and generation. See Table 25-29 for full-length generations.
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Prefix (PG19) A Young Inventor’s Pluck by Arthur M. Winfield: "Oh, I only wanted to know," replied the young man,
apparently unconcerned. "Pooler said I was never to speak of it," returned Meg. "He thinks I don’t know where it is,
but I do." "Show it to us, will you?" asked Mont, eagerly. Meg shrank back. "It’s haunted!" she exclaimed. "Besides,
Pooler would kill me if he found it out." "We’ll never tell him, will we, Jack?" "Certainly not," replied the young
machinist, to whom this new move was only another mystery. "Besides, we intend to be your friends, you know,"
continued Mont. "Well, then, come on," replied Meg, finally. "I don’t care if he likes it or not. ’Taint a very nice place
though." "Never mind. We can’t find any worse or more dangerous places than we have already gone through." Meg
picked her way along one bank of the island for nearly a quarter of a mile. Jack and Mont followed closely.

Text 1 (RANKGEN, T5-XXL-C4): The path led through an area of woods, shrubbery and scrub oak. Neither meadow
nor open ground was seen. Jack called out as they scampered around an occasional rough rock, often from the height
of a dozen feet. "I think I can see it now," said Meg, suddenly, as they rounded a grassy slope and followed another
bank. A few yards farther on she stopped, and glared at the clear sky and the undisturbed valley. "That’s the place," she
said. The young man could tell she had a point.
Text 2 (Nucleus, T5-XXL-C4): Jack would not let her out of his sight. He made a sharp look at Meg as she walked
forward. Then, his expression became grave. "Meg," he whispered, "are we going to the haunted house or not?" "This
is the haunted house, Jack," she replied. "Is it haunted?" "Of course it’s haunted," returned Mont, "but if you were so
scared you would be shaking all over." "Of course it’s haunted," replied the young man.

Human Annotation 1: Text 1. Second text appears to omit a part when they get to their destination having them
appear at their destination instantly. Although a haunted hous sounds more in-line with the sample text than a haunted
valley, the first text fits more naturally with the sample text.
Human Annotation 2: Text 1 - Meg is taking them somewhere - so leading them would make sense. ’That’s the place’
indicates she had found it. Jack does not sound worried in prefix text, so it would not really fit that he doesn’t let Meg
out of his sight as indicated in Text 2.
Human Annotation 3: Text 2. The collocations and style in Text 1 sound too colloquial and off when compared to the
prefix. "(...) he had a point. "

Prefix (PG19) A Young Inventor’s Pluck by Arthur M. Winfield: But at that moment, he did not stop to question how
the young man had gotten into a position similar to his own. His one thought was whether or not his friend was alive.
He placed the body as comfortably as possible on the fork of the tree, and then watched eagerly for some sign of life.
There was a cut upon Mont’s brow, and presently a few drops of blood oozed from the wound, and trickled down his
cheek. Jack took this as a good sign, and he was not mistaken, for a few seconds later the young man gave a deep sigh,
and slowly opened his eyes. "Where am I?" he asked, faintly. "Here with me, Mont," replied the young machinist,
bending over him. "Don’t you know me?" "Jack!" was the low response. "Oh, how my head hurts! Where are we?"
"On the river." "We are?" Mont attempted to rise, but Jack pushed him back. "Oh, I remember now!" he continued,
shuddering. "Remember what?"

Text 1 (Nucleus, GPT2-md): "Mont, when I was twenty-two, I met some girls who took care of my grandfather, and
when I wanted to give a hand in the shop, I got him to promise to do it for me for free, if he liked me, or give me money.
And now, when I tell you I feel a sense of belonging, Jack, I have been a slave for four hundred years. I have been born
of slavery, and yet I feel like a slave." Jack listened to this.
Text 2 (RANKGEN, GPT2-md): "That time I tried to drag you off my back and then went back on to kill myself."
"That is wrong," replied the young machinist, trembling. "I was in your arms. I never intended to kill myself. It
happened." "It was a mistake, then," said Jack with a shake of his head. "That was just the first of many," said Mont.
The young man looked at him sadly. "Don’t lie, Jack," he said gently. "You are not dead. You are alive. What’s going
on?

Human Annotation 1: Text 2 - Text 1 seems too mundane to be the memory on waking after being knocked out. Text
2 would fit a little better perhaps.
Human Annotation 2: Text 2 - Text 2 was chosen via deductive reasoning. Text 1 mentions ideas that have nothing to
do with the prefix paragraph.
Human Annotation 3: Text 2. Text 2 answers the question that was asked at the end of the paragraph and continues
with the same characters.

Table 25: More model generations (Part 1) from each decoding method with human preferences and explanations.
See our attached data submission for all 600 annotations for the 200 generation pairs.
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Prefix (PG19) Life in the Iron-Mills by Rebecca Harding Davis: While she was skinning the potatoes, and munching
them, a noise behind her made her stop. "Janey!" she called, lifting the candle and peering into the darkness. "Janey,
are you there?" A heap of ragged coats was heaved up, and the face of a young girl emerged, staring sleepily at the
woman. "Deborah," she said, at last, "I’m here the night." "Yes, child. Hur’s welcome," she said, quietly eating on. The
girl’s face was haggard and sickly; her eyes were heavy with sleep and hunger: real Milesian eyes they were, dark,
delicate blue, glooming out from black shadows with a pitiful fright. "I was alone," she said, timidly. "Where’s the
father?" asked Deborah, holding out a potato, which the girl greedily seized. "He’s beyant,–wid Haley,–in the stone
house." (Did you ever hear the word _jail_ from an Irish mouth?) "I came here.

Text 1 (Nucleus, T5-XXL-C4): I needed to find my feet." "What have you done here?" Deborah was amazed.
"Whoever came in here yesterday found his feet," she replied, "and went away,–not hearing my voice." "What a
wonder! What chance do you have of hearing your own voice?" She went over to the fire, lowered it, and began to put
the potatoes on it, by degrees, till she had covered all the floor. "Why did you come here?" Deborah inquired, as she
looked at the girl’s face. "Just for the night. Where’s the father?
Text 2 (RANKGEN, T5-XXL-C4): I came to ask for food. Hur git me?" "You don’t see it so bad," said Deborah,
leaning her long arms about the girl’s small shoulders. "You’re poor." "That’s true," the girl said, weeping softly. "Hus
poor is no better than a beast’s. I’d be well if they’d only set food on the table," she added, trembling again. "Evil
grows in the dark," said Deborah sadly.

Human Annotation 1: Text 2. Both bit chaotic and funny, but the second one seems at least more outlandish. Being
poor or saying Hur and Hus isn’t as bad as putting potatos in fire that’s covering the floor.
Human Annotation 2: Text 2 - Prefix text says she is hungry, so it would make sense that she would say she came to
ask for food.
Human Annotation 3: Text 2. Deborah already told the girl in the prefix part where the father is, but she asks again in
Text 1. So Text 2 makes more sense.

Prefix (Wikipedia) Homarus Gammarus: It may grow to a length of and a mass of , and bears a conspicuous pair of
claws. In life the lobsters are blue, only becoming "lobster red" on cooking. Mating occurs in the summer, producing
eggs which are carried by the females for up to a year before hatching into planktonic larvae. Homarus gammarus is a
highly esteemed food, and is widely caught using lobster pots, mostly around the British Isles. Homarus gammarus is a
large crustacean, with a body length up to and weighing up to , although the lobsters caught in lobster pots are usually
long and weigh . Like other crustaceans, lobsters have a hard exoskeleton which they must shed in order to grow, in a
process called ecdysis (molting). This may occur several times a year for young lobsters, but decreases to once every
1–2 years for larger animals. The first pair of pereiopods is armed with a large, asymmetrical pair of feet.

Text 1 (Nucleus, T5-XXL-C4): They are armed with two large claws, whose upper surfaces are split into segmented
claws, to allow them to grasp with maximum force. The claws are bent backwards when not in use, to keep them from
rolling off the lobster’s body, and are hooked into the shell. One claw can also bear a thick, sharp biting claw (known
as the "hammer claw"). Both claws contain a fan-shaped set of “feathered” hairs, arranged around a central spine.
Text 2 (RANKGEN, T5-XXL-C4): The foot is covered in spines, and each skeletal segment has a claw (which is a
pair of claws in an asymmetrical arrangement). The claws bear nails (trapezoids) and powerful radulae, and are able to
claw prey through a small hole in the ground. The second pair of pereiopods has a small foot, with three claws arranged
symmetrically. The foot of the second pair is covered in concave spines which are longer and thinner than those of the
first pair.

Human Annotation 1: Text 2. Because "The first pair of pereiopods is armed with a large, asymmetrical pair of feet.
They (the feet???) are armed with two large claws..) just sounds weird.
Human Annotation 2: Text 2 - prefix mentions the feet and text 2 describes the foot. Text 1 just sounds odd as a
follow on from prefix.
Human Annotation 3: Text 2. Both text seem to be very factually incorrect, but the second one at least appears more
like a continuation of the sample text. The first text goes back to talk about the claws, while the second talks about feet
and second pair of pereiopods.

Table 26: More model generations (Part 2) from each decoding method with human preferences and explanations.
See our attached data submission for all 600 annotations for the 200 generation pairs.
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Prefix (PG19) The Horse in History by Basil Tozer: Two years after James I. had ascended the throne there set in one
of the coldest winters this country has ever known, with the result that a long stretch of the River Ouse became frozen
over and so afforded the king an opportunity, of which he was quick to avail himself, of organising a race-meeting on
the ice. Drake tells us that the course extended “from the tower at the end of Marygate, under the great arch of the
bridge, to the crane at Skeldergate Postern.” But even so early as this in the reign of King James the opponents of horse
racing began to raise indignant protests against “the folly and wickedness of betting on running horses,” protests to
which but scant attention was paid. Not until some years later did the extremely zealous clergyman named Hinde set
seriously to work to denounce the practice of gambling in any and every form, and he appears then to have spoken
and written so forcibly that many persons of intelligence and education—I quote from a trustworthy source—gathered
round and strove to encourage him to the best of their ability.

Text 1 (RANKGEN, GPT2-md): He did not, however, heed their advice and instead turned his attention to betting. "The
king, who at that time was of a temperance and reform bent, had taken into his royal commission the recommendation
that betting and horse-trading, while in principle harmless, be avoided. Such was the feeling among the clergy at that
time as well as among the people, that in their opinions bettors and dealers, when dealing openly with men, did more
harm than good.
Text 2 (Nucleus, GPT2-md): ” Here again I have a record that can be said to be worthy of mention of a high level.
There is one point which the facts of the situation require me to address, namely that from that day till our own day it is
an object of our interest to try to remove all evidence of a race-course. That purpose is, I believe, the greatest thing that
we can hope to attain in the course of this study.

Human Annotation 1: Text 1. The original paragraph mentions a "zealous clergyman" and "denounce the practice of
gambling", and text 1 continues the discourse about "the clergy at the time" and "their opinions betters and dealers".
Text 2 does not follow the same discourse, nor does it provide more information in prefix.
Human Annotation 2: Text 2 - prefix text is setting up for a quote with ’I quote from a trustworthy source, then Text
2 is the start of a quote as it begins with quotation marks.
Human Annotation 3: Text 1; Text 1 continues the narrative established around horse-race betting established in the
prefix. The prefix mentions, "the opponents of horse racing began to raise indignant protests against [betting]", then,
Text 1 continues this idea when it states, "He did not, however, heed their advice and instead turned his attention to
betting".

Prefix (Wikipedia) Thelnetham Windmill: The mill is a small four storey tower mill with Patent sails and winded by
a fantail. It drives two pairs of millstones, with a third pair driven by an auxiliary engine. The earliest record of a
windmill in Thelnetham was a post mill which was shown of Joseph Hodgkinson’s map of Suffolk of 1778. In 1818,
the post mill was moved to Sandy Lane, Diss, Norfolk The post mill was replaced by a tower mill, which was built by
millwright George Bloomfield for William Button in 1819. The mill was set to work on Christmas Day 1819. In 1832,
the mill was modernised by the fitting of a cast-iron windshaft, Patent sails and a fantail. The new windshaft was fitted
on 16 July 1832. It was made by J Aickman, the King’s Lynn millwright, and weighs 1 3/4 tons (1,780 kg). A new
stock was fitted in September 1836. William Button died on 11 February 1837. The mill passed jointly to his widow
Rebecca and their son Richard.

Text 1 (Nucleus, GPT2-md): In 1841, it was renamed The Postmill Mill in memory of its deceased owner. The mill
has been restored to its original function. It is now used to run turbines for a turbine company. The mill was built
for William Button. He used to work on it during the day, but he would also travel by carriage. In the years around
1816-17, he visited several other mills in the town, including his father’s old mill. He bought it in 1810. This mill was
not as modern as the mill on the left.
Text 2 (RANKGEN, GPT2-md): Richard built the mill and sold it to John Beattie on 21 May 1845. On 8 June 1854,
Thomas Moore purchased the mill from the Beattie family. In 1861 the mill was owned by the Earl of Dartmouth who
rebuilt it as a tenement mill for a number of years, then sold it to a local paper company for £60 a week to pay for
repairs. In 1913, the mill was purchased by David Cottrell. There is a stone chimney and iron grate set into the front
wall of the mill.

Human Annotation 1: Text 2. Text 2 follows the original style of the paragraph by continuing the history of the mill,
while Text 1 is redundant and repeats some things from the original text. Due to following the same pattern as the
original paragraph, text 2 is the best choice.
Human Annotation 2: Text 2 - I really don’t know, neither seem to fit. Text 1 says ’ The mill was built for William
Button’ but we’ve just been told William Button is dead so that seems to be a little odd to mention, so Text 2 is a better
choice.
Human Annotation 3: Text 2; Text 2 is the better contintuation of the prefix. Prefix ends with mentioned that, "The
mill passed jointly to his widow Rebecca and their son Richard. Then, the Text 2 begins with, "Richard built the mill" -
this connects the prefix to Text 2.

Table 27: More model generations (Part 3) from each decoding method with human preferences and explanations.
See our attached data submission for all 600 annotations for the 200 generation pairs.
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Prefix (Wikipedia) Daniel Radcliffe: Radcliffe’s performance in the show earned him Drama Desk Award, Drama
League Award and Outer Critics Circle Award nominations. The production itself later received nine Tony Award
nominations. Radcliffe left the show on 1 January 2012. Radcliffe’s first post-Harry Potter project was the 2012 horror
film The Woman in Black, adapted from the 1983 novel by Susan Hill. The film was released on 3 February 2012
in the United States and Canada, and was released on 10 February in the UK. Radcliffe portrays a man sent to deal
with the legal matters of a mysterious woman who has just died, and soon after he begins to experience strange events
and hauntings from the ghost of a woman dressed in black. He has said he was "incredibly excited" to be part of the
film and described the script as "beautifully written". In 2013, he portrayed American beat poet Allen Ginsberg in the
thriller drama Kill Your Darlings, directed by John Krokidas.

Text 1 (RANKGEN, T5-XXL-C4): The film premiered at Sundance Film Festival in January 2013, where it won two
awards. The film follows Ginsberg during the 1959 American poets’ conference at Bennington College. Radcliffe
next appeared in the film adaptation of Mary Shelley’s Frankenstein. Following the film’s premiere at the Venice Film
Festival on 21 August 2013, it was released on 5 October 2013. Radcliffe also starred as William H. Macy in the
animated adaptation of Bram Stoker’s Dracula in 2013. The film was directed by Christian Rivers and was released on
27 July 2014.
Text 2 (Nucleus, T5-XXL-C4): He described the film as "so much fun, and a reminder that life after Hogwarts is
exciting and fun". He also starred in the 2016 thriller The Woman in the Window, which was produced by his agent
Lydia Dean Pilcher, in which he plays the titular role of a boy who is sent to the country to be married to his pregnant
aunt. In March 2018, Radcliffe appeared in the romantic comedy/drama Imposter, co-starring Rooney Mara.

Human Annotation 1: Text 1. The second text says he plays a titular role, while the title is "The Woman in the
Window", being a contradiction. First text has no major issues and follows very similar structure of listing acting jobs
Radcliffe had after the unnamed show (be that true or not).
Human Annotation 2: Text 1. The quotation at the beginning of Text 2 seems pretty off, as it follows the exact same
structure as the quote in the prefix section - the movie + a quote in the movie. Also, the two quotes together make
Radcliffs vocabulary seem limited to the word "exciting" and its cognates. Text 2 sounds automatical and forced. Plus,
the "so much fun" bit sounds pretty childish for a grown man, especially together with the Hogwarts remark.
Human Annotation 3: Text 1 - This refers to the film date from prefix, 2013, the same film presumably as it mentioned
Ginsberg, and with it being a thriller, it may not perhaps be described as being ’so much fun’ .

Prefix (PG19) The Making of Arguments by J.H. Gardiner: But besides the omissions there were only six among the
forty which did not contain positively wrong statements; in twenty-four papers up to ten per cent of the statements
were free inventions, and in ten answers–that is, in one fourth of the papers–more than ten per cent of the statements
were absolutely false, in spite of the fact that they all came from scientifically trained observers. Only four persons, for
instance, among forty noticed that the <DW64> had nothing on his head; the others gave him a derby, or a high hat,
and so on. In addition to this, a red suit, a brown one, a striped one, a coffee- jacket, shirt sleeves, and similar costume
were invented for him. He wore in reality white trousers and a black jacket with a large red neck-tie. The scientific
commission which reported the details of the inquiry came to the general statement that the majority of the observers
omitted or falsified about half of the processes which occurred completely in their field of vision.

Text 1 (RANKGEN, T5-XXL-C4): That is, they gave the impression that they had not seen a thing; or they had only
seen a part of it, and put it down wrongly; or they only saw what they wanted to see, and presented a falsified impression
of a given process. Only one third of the papers gave correct information, but that figure is based on the assumption
that an observer watches more than half the processes at a time. How can it be explained that the observers give a false
impression of processes?
Text 2 (Nucleus, T5-XXL-C4): It also came to the conclusion that the <DW64>, since he was not standing still in a
given position, did not exert his full influence on the proceedings of the people within his area of activity, and that
there was no need for special observations on the phenomena. But the whole suggestion of the Commission was not
well received. There was, the commission declared, a noticeable scepticism about their conduct. Thus a report of the
commission was sent to the official newspaper, and three days later the secretary of the observatory came to it and
spoke frankly about the commission’s conduct.

Human Annotation 1: Text 1. It seems to be closer aligned with the prefix, covering pretty much the same points. It
still sounds off, with the numbers not adding up (Only one third of the papers gave correct information, but that figure
is based on the assumption that an observer watches more than half the processes at a time. «< different numbers in the
prefix). Also the rhetorical question at the end discrupts the style. However, Text 2 with this fragments: " did not exert
his full influence on the proceedings of the people within his area of activity, and that there was no need for special
observations on the phenomena" makes even less sense.
Human Annotation 2: Text 1. Second text has an awkward "word" in it followed by a convoluted explanation of
something that appears only vaguely related to the sample text. Latter part of text 2 talks about the conduct of the
commission while most of the text 1 sticks to talking about the results.
Human Annotation 3: Text 1 - This continues the concept that observers are not remembering what they saw, or not
truly seeing but guessing. Text 2 is about something else.

Table 28: More model generations (Part 4) from each decoding method with human preferences and explanations.
See our attached data submission for all 600 annotations for the 200 generation pairs.
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Prefix (PG19) Letters of Lord Acton by Lord Acton: In that character he showed, when occasion came, that his lxvi
long silence in Parliament had not been due to incapacity for public speaking. At Windsor he was agreeable to the
Queen from his German tastes and sympathies, not to mention the fact that he could speak German as fluently as
English. Every moment of leisure during his "wait" there was spent in the Castle library. Yet the position was an
unnatural one, and Lord Acton soon became anxious to escape from it. His thoughts turned to his favourite Bavaria, and
he humbly suggested the Legation at Stuttgart as a possible sphere. But something infinitely better than any political
or diplomatic post remained for this born student and truly learned man. In 1895, just a year after Mr. Gladstone’s
resignation, Sir John Seeley, Professor of Modern History at Cambridge, departed this life. The Chair was in the gift of
the Crown, that is, of the Prime Minister, and Lord Rosebery appointed Lord Acton. The appointment was singularly
felicitous, and the opportunity came in the nick of time.

Text 1 (RANKGEN, GPT2-md): Lord Acton entered upon his first year in the Chair, and the year was filled with
extraordinary events, the first of which was the assassination of King George V, which had so disastrous an effect upon
the world that it has never since been fully restored. Then came the attempt on the life of Sir Edmund Burke at St.
Petersburg, the downfall of William of Orange, and the beginning of the Spanish War.
Text 2 (Nucleus, GPT2-md): The "youngest and most handsome man of his class", as they called him, had been
nominated to succeed him. Mr. Gladstone, whose wit had been so well known for many years, was now at last able
to be seen in public with dignity, and his manner was becoming more relaxed. The Prince felt confident enough to
nominate Sir John, who was the most distinguished scholar in Bavaria, and he received his nomination in person. There
were some curious features of the office.

Human Annotation 1: Text 1 - The prefix paragraph focuses on the life and career of Lord Acton, thus, Text 1 is the
best selection to continue exposition of Lord Acton’s career.
Human Annotation 2: Text 1 - Prefix states that Lord Acton was appointed as chair, Text 1 then mentions Lord Acton
entering his first year as chair. This seems to follow more closely than Text 2.
Human Annotation 3: Text 1. At the end of the paragraph, Lord Acton is appointed Chair and text 1 delves into what
occurred once that was fact. Text 2 does not closely follow the narrative of the paragraph.

Prefix (Wikipedia, Battle of Roanoke Island): They arrived too late to take part in the battle, but were involved in the
attack on the fortress at Pao-ting Fu, where the Chinese government was believed to have found asylum after Peking
was captured by western forces. The Victorians joined a force of 7,500 men on a ten-day march to the fort, once
again only to find that it had already surrendered. The Victorians then garrisoned Tientsin and the New South Wales
contingent undertook garrison duties in Peking. HMCS Protector was mostly used for survey, transport, and courier
duties in the Gulf of Chihli, before departing in November. The naval brigades remained during the winter, unhappily
performing policing and guard duties, as well as working as railwaymen and fire-fighters. They left China in March
1901, having played only a minor role in a few offensives and punitive expeditions and in the restoration of civil order.
Six Australians died from sickness and injury, but none were killed as a result of enemy action.

Text 1 (Nucleus, GPT2-md): In July 1901 they began their work in the Indian Ocean, arriving in Hong Kong in
November 1901. In January 1902, the Australian Expeditionary Force joined the Chinese in a massive invasion of
Peking. While Australian naval forces took an active part in this event, the Australian Navy was still engaged in military
operations in the Gulf of Hainan. When the Chinese invaded Hong Kong, the navy withdrew from the mainland and its
warships were deployed at the port of Hong Kong until December 1902.
Text 2 (RANKGEN, GPT2-md): A second invasion of the Chinese mainland was attempted by British naval forces
on 23 June 1901 when Victoria signed a treaty with China. Following the treaty signing, a force led by HMAS Sault
Ste. Marie was sent to occupy Peking and Tientsin. HMAS San Francisco, HMAS Mackellar and HMAS Melbourne
returned to Hong Kong after a two-month deployment in China in early 1902 and were replaced by a group of 14,000
men under HMCS Lendl, which was formed on 24 November 1902 as part of the second invasion.

Human Annotation 1: Text 2; Text 2 is the better continuation of the prefix. In Text 1, it isn’t clear who "they" is in
the phrase, "they began their work in the Indian Ocean" which makes Text 1 appear disjointed when reading directly
after the prefix whereas Text 2’s introduction flows more seamlessly even though it’s introduction brings a slight change
in idea.
Human Annotation 2: Text 1. Although both texts could follow the paragraph, Text 1 follows along with the timeline
set in the paragraph.
Human Annotation 3: Text 2 - very difficult without more knowledge of these events. I’m picking text 2 just because
the date mentioned, 23 June 1901, is closest to the date mentioned in prefix text - march 1901

Table 29: More model generations (Part 5) from each decoding method with human preferences and explanations.
See our attached data submission for all 600 annotations for the 200 generation pairs.
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