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Abstract

Question answering (QA) has recently shown
impressive results for answering questions from
customized domains. Yet, a common challenge
is to adapt QA models to an unseen target do-
main. In this paper, we propose a novel self-
supervised framework called QADA for QA
domain adaptation. QADA introduces a novel
data augmentation pipeline used to augment
training QA samples. Different from exist-
ing methods, we enrich the samples via hid-
den space augmentation. For questions, we
introduce multi-hop synonyms and sample aug-
mented token embeddings with Dirichlet distri-
butions. For contexts, we develop an augmenta-
tion method which learns to drop context spans
via a custom attentive sampling strategy. Addi-
tionally, contrastive learning is integrated in the
proposed self-supervised adaptation framework
QADA. Unlike existing approaches, we gener-
ate pseudo labels and propose to train the model
via a novel attention-based contrastive adapta-
tion method. The attention weights are used
to build informative features for discrepancy
estimation that helps the QA model separate
answers and generalize across source and tar-
get domains. To the best of our knowledge, our
work is the first to leverage hidden space aug-
mentation and attention-based contrastive adap-
tation for self-supervised domain adaptation in
QA. Our evaluation shows that QADA achieves
considerable improvements on multiple target
datasets over state-of-the-art baselines in QA
domain adaptation.

1 Introduction

Question answering (QA) is the task of finding
answers for a given context and a given question.
QA models are typically trained using data triplets
consisting of context, question and answer. In the
case of extractive QA, answers are represented as
subspans in the context defined by a start position
and an end position, while question and context are

∗Both authors contributed equally to this research.

given as running text (e.g., Seo et al., 2016; Chen
et al., 2017; Devlin et al., 2019; Kratzwald et al.,
2019).

A common challenge in extractive QA is that QA
models often suffer from performance deterioration
upon deployment and thus make mistakes for user-
generated inputs. The underlying reason for such
deterioration can be traced back to the domain shift
between training data (from the source domain)
and test data (from the target domain) (Fisch et al.,
2019; Miller et al., 2020; Zeng et al., 2022b).

Existing approaches to address domain shifts
in extractive QA can be grouped as follows. One
approach is to include labeled target examples or
user feedback during training (Daumé III, 2007;
Kratzwald and Feuerriegel, 2019a; Kratzwald et al.,
2020; Kamath et al., 2020). Another approach is to
generate labeled QA samples in the target domain
for training (Lee et al., 2020; Yue et al., 2021a,
2022a). However, these approaches typically re-
quire large amounts of annotated data or extensive
computational resources. As such, they tend to be
ineffective in adapting existing QA models to an
unseen target domain (Fisch et al., 2019). Only re-
cently, a contrastive loss has been proposed to han-
dle domain adaptation in QA (Yue et al., 2021b).

Several approaches have been used to address
issues related to insufficient data and generaliza-
tion in NLP tasks, yet outside of QA. For exam-
ple, augmentation in the hidden space encourages
more generalizable features for training (Verma
et al., 2019; Chen et al., 2020, 2021). For domain
adaptation, there are approaches that encourage
the model to learn domain-invariant features via a
domain critic (Lee et al., 2019; Cao et al., 2020),
or adopt discrepancy regularization between the
source and target domains (Kang et al., 2019; Yue
et al., 2022b). However, to the best of our knowl-
edge, no work has attempted to build a smooth and
generalized feature space via hidden space augmen-
tation and self-supervised domain adaption.
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In this paper, we propose a novel self-supervised
QA domain adaptation framework for extractive
QA called QADA. Our QADA framework is de-
signed to handle domain shifts and should thus
answer out-of-domain questions. QADA has three
stages, namely pseudo labeling, hidden space aug-
mentation and self-supervised domain adaptation.
First, we use pseudo labeling to generate and fil-
ter labeled target QA data. Next, the augmenta-
tion component integrates a novel pipeline for data
augmentation to enrich training samples in the hid-
den space. For questions, we build upon multi-
hop synonyms and introduce Dirichlet neighbor-
hood sampling in the embedding space to generate
augmented tokens. For contexts, we develop an
attentive context cutoff method which learns to
drop context spans via a sampling strategy using
attention scores. Third, for training, we propose
to train the QA model via a novel attention-based
contrastive adaptation. Specifically, we use the at-
tention weights to sample informative features that
help the QA model separate answers and generalize
across the source and target domains.

Main contributions of our work are:1

1. We propose a novel, self-supervised framework
called QADA for domain adaptation in QA.
QADA aims at answering out-of-domain ques-
tion and should thus handle the domain shift
upon deployment in an unseen domain.

2. To the best of our knowledge, QADA is the first
work in QA domain adaptation that (i) lever-
ages hidden space augmentation to enrich train-
ing data; and (ii) integrates attention-based con-
trastive learning for self-supervised adaptation.

3. We demonstrate the effectiveness of QADA in
an unsupervised setting where target answers
are not accessible. Here, QADA can consid-
erably outperform state-of-the-art baselines on
multiple datasets for QA domain adaptation.

2 Related Work

Extractive QA has achieved significantly progress
recently (Devlin et al., 2019; Kratzwald et al., 2019;
Lan et al., 2020; Zhang et al., 2020). Yet, the ac-
curacy of QA models can drop drastically under
domain shifts; that is, when deployed in an un-
seen domain that differs from the training distribu-
tion (Fisch et al., 2019; Talmor and Berant, 2019).

1The code for our QADA framework is publicly available
at https://github.com/Yueeeeeeee/Self-Supervised-QA.

To overcome the above challenge, various ap-
proaches for QA domain adaptation have been
proposed, which can be categorized as follows.
(1) (Semi-)supervised adaptation uses partially la-
beled data from the target distribution for train-
ing (Yang et al., 2017; Kratzwald and Feuerriegel,
2019b; Yue et al., 2022a). (2) Unsupervised adap-
tation with question generation refers to settings
where only context paragraphs in the target domain
are available, QA samples are generated separately
to train the QA model (Shakeri et al., 2020; Yue
et al., 2021b). (3) Unsupervised adaptation has
access to context and question information from
the target domain, whereas answers are unavail-
able (Chung et al., 2018; Cao et al., 2020; Yue
et al., 2022d). In this paper, we focus on the third
category and study the problem of unsupervised
QA domain adaptation.

Domain adaptation for QA: Several ap-
proaches have been developed to generate synthetic
QA samples via question generation (QG) in an
end-to-end fashion (i.e., seq2seq) (Du et al., 2017;
Sun et al., 2018). Leveraging such samples from
QG can also improve the QA performance in out-of-
domain distributions (Golub et al., 2017; Tang et al.,
2017, 2018; Lee et al., 2020; Shakeri et al., 2020;
Yue et al., 2022a; Zeng et al., 2022a). Given unla-
beled questions, there are two main approaches: do-
main adversarial training can be applied to reduce
feature discrepancy between domains (Lee et al.,
2019; Cao et al., 2020), while contrastive adapta-
tion minimizes the domain discrepancy using maxi-
mum mean discrepancy (MMD) (Yue et al., 2021b,
2022d). We later use the idea from contrastive
learning but tailor it carefully for our adaptation
framework.

Data augmentation for NLP: Data augmenta-
tion for NLP aims at improving the language under-
standing with diverse data samples. One approach
is to apply token-level augmentation and enrich the
training data with simple techniques (e.g., synonym
replacement, token swapping, etc.) (Wei and Zou,
2019) or custom heuristics (McCoy et al., 2019).
Alternatively, augmentation can be done in the hid-
den space of the underlying model (Chen et al.,
2020). For example, one can drop partial spans
in the hidden space, which aids generalization per-
formance under distributional shifts (Chen et al.,
2021) but in NLP tasks outside of QA. To the best
of our knowledge, we are the first to propose a hid-
den space augmentation pipeline tailored for QA
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data in which different strategies are combined for
question and context augmentation.

Contrastive learning for domain adaptation:
Contrastive learning is used to minimize distances
of same-class samples and maximize discrepancy
among classes (Hadsell et al., 2006). For this, dif-
ferent metrics are adopted to measure pair-wise
distances (e.g., triplet loss) or domain distances
with MMD (Cheng et al., 2016; Schroff et al.,
2015). Contrastive learning can also be used for
domain adaptation by reducing the domain discrep-
ancy: this “pulls together” intra-class features and
“pushes apart” inter-class representations. Here,
several applications are in computer vision (Kang
et al., 2019). In QA domain adaptation, contrastive
learning was applied with averaged token features
to separate answer tokens and minimize the dis-
crepancy between source and target domain (Yue
et al., 2021b, 2022d). However, our work is dif-
ferent in that we introduce a novel attention-based
strategy to construct more informative features for
discrepancy estimation and contrastive adaptation.

3 Setup

We consider the following problem setup for QA
domain adaptation, where labeled source data and
unlabeled target data are available for training. Our
goal is to train a QA model f that maximizes the
performance in the target domain using both source
data and unlabeled target data (Cao et al., 2020;
Shakeri et al., 2020; Yue et al., 2021b, 2022d).

Data: Our research focuses on question answer-
ing under domain shift. Let Ds denote the source
domain, and let Dt denote the (different) target do-
main. Then, labeled data from the source domain
can be used for training, while, upon deployment,
it should perform well on the data from the target
domain. Specifically, training is two-fold: we first
pretrain a QA model on the source domain Ds and,
following this, the pretrained QA model is adapted
to the target domain Dt. The input data to each
domain is as follows:

• Labeled source data: Training data is provided
by labeled QA data Xs from the source domain
Ds. Here, each sample (x

(i)
s,c,x

(i)
s,q,x

(i)
s,a) ∈ Xs

is a triplet comprising a context x(i)
s,c, a question

x
(i)
s,q, and an answer x(i)

s,a. As we consider extrac-
tive QA, the answer is represented by the start
and end position in the context.

• Unlabeled target data: We assume partial ac-

cess to data from the target domain Dt, that is,
only contexts and unlabeled questions. The con-
texts and questions are first used for pseudo la-
beling, followed by self-supervised adaptation.
Formally, we refer to the contexts and questions
via x

(i)
t,c and x

(i)
t,q, with (x

(i)
t,c,x

(i)
t,q) ∈ X

′
t where

X
′
t is the unlabeled data from the target domain.

Model: The QA model can be represented with
function f . f takes both a question and con-
text as input and predicts an answer, i.e., x(i)

a =

f(x
(i)
q ,x

(i)
c ). Upon deployment, our goal is to

maximize the model performance on Xt in the tar-
get domain Dt. Mathematically, this corresponds
to the optimization of f over target data Xt:

min
f

Lce(f ,Xt), (1)

where Lce is the cross-entropy loss.

4 The QADA Framework

4.1 Overview
Our proposed QADA framework has three stages to
be performed in each epoch (see Fig. 1): (1) pseudo
labeling, where pseudo labels are generated for the
unlabeled targeted data; (2) hidden space aug-
mentation, in which the proposed augmentation
strategy is leveraged to generated virtual examples
in the feature space; and (3) contrastive adapta-
tion that minimizes domain discrepancy to transfer
source knowledge to the target domain.

To address the domain shift upon deployment,
we use the aforementioned stages as follows. In
the first stage, we generate pseudo labels for the
unlabeled target data X

′
t . Next, we enrich the set of

training data via hidden space augmentation. In the
adaptation stage, we train the QA model using both
the source and the target data with our attention-
based contrastive adaptation. We summarize the
three stages in the following:

1. Pseudo labeling: First, we build labeled target
data X̂t via pseudo labeling. Formally, a source-
pretrained QA model f generates a (pseudo)
answer x(i)

t,a for context x(i)
t,c and question x

(i)
t,q,

i = 1, . . . Each sample x(i)
t ∈ X̂t now contains

the original context, the original question, and
a predicted answer. We additionally apply con-
fidence thresholding to filter the pseudo labels.

2. Hidden space augmentation: The QA model
f takes a question and context pair as input.
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Labeled QA Pairs
(e.g. Q: When was he 
born? A: Feb 6, 1977) 

Source QA Pairs
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Pretrained
QA System

Hidden Space Augmentation
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Augmentation

Answer 
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Figure 1: Overview of our proposed QADA framework. QADA generates pseudo labels for the unlabeled target
data, followed by hidden space augmentation. The QA model is trained via attention-based contrastive adaptation.

For questions, we perform Dirichlet neighbor-
hood sampling in the word embedding layer
to generate diverse, yet consistent query infor-
mation. We also apply a context cutoff in the
hidden space after transformer layers to reduce
the learning of redundant domain information.

3. Contrastive adaptation: We train the QA model
f with the source data Xs from the source do-
main Ds and the target data X̂t with pseudo
labels from the previous stage. We impose reg-
ularization on the answer extraction and further
minimize the discrepancy between the source
and target domain, so that the learned features
generalize well to the target domain.

4.2 Pseudo Labeling

Provided with the access to labeled source data, we
first pretrain the QA model to answer questions in
the source domain. Then, we can use the pretrained
model to predict target answers for self-supervised
adaptation (Cao et al., 2020). The generated pseudo
labels are filtered via confidence thresholding, in
which the target samples above confidence thresh-
old τ (= 0.6 in our experiments) are preserved
for the later stages. We repeat the pseudo-labeling
step in each epoch to dynamically adjust the target
distribution used for self-supervised adaptation.

The QA model f is pretrained on the source
dataset Xs via a cross-entropy loss Lce, i.e.,
minf Lce(f ,Xs). When selecting QA pairs from
the target domain, we further use confidence thresh-
olding for filtering and, thereby, build a subset of
target data with pseudo labels X̂t, i.e.,

X̂t =
{
(x

(i)
t,c,x

(i)
t,q,f(x

(i)
t,c,x

(i)
t,q)

∣∣

σ(f(x
(i)
t,c,x

(i)
t,q)) ≥ τ, (x

(i)
t,c,x

(i)
t,q) ∈ X

′
t

}
,

(2)

where σ computes the output answer confidence
(i.e, softmax function).

4.3 Hidden Space Augmentation

We design a data augmentation pipeline to enrich
the training data based on the generated QA pairs.
The augmentation pipeline is divided into two parts:
(i) question augmentation via Dirichlet neighbor-
hood sampling in the embedding layer and (ii) con-
text augmentation with attentive context cutoff in
transformer layers. Both are described below.

Question augmentation: To perform augmen-
tation of questions, we propose Dirichlet neigh-
borhood sampling (see Fig. 2) to sample synonym
replacements on certain proportion of tokens, such
that the trained QA model captures different pat-
terns of input questions. Dirichlet distributions
have been previously applied to find adversarial
examples (Zhou et al., 2021; Yue et al., 2022c);
however, different from such methods, we propose
to perform question augmentation in the embed-
ding layer. We first construct the multi-hop neigh-
borhood for each token in the input space. Here,
1-hop synonyms can be derived from a synonym
dictionary, while 2-hop synonyms can be extended
from 1-hop synonyms (i.e., the synonyms of 1-hop
synonyms).

For each token, we compute a convex hull
spanned by the token and its multi-hop synonyms
(i.e., vertices), as shown in Fig. 2. The convex
hull is used as the sampling area of the augmented
token embedding, where the probability distribu-
tion in the sampling area can be computed using a
Dirichlet distribution. That is, the sampled token
embedding is represented as the linear combina-
tions of vertices in the convex hull. Formally, for a
token x and the set of its multi-hop synonyms Cx,
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2-hop 
Synonyms

Token
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Figure 2: The proposed Dirichlet neighborhood sam-
pling in QADA. We sample coefficients from a Dirichlet
distribution and represent the augmented embedding as
the linear combination of multi-hop synonyms.

we denote the coefficients of the linear combina-
tion by ηx = [ηx,1, ηx,2, . . . , ηx,|Cx|]. We sample
coefficients ηx from a Dirichlet distribution:

ηx ∼ Dirichlet(α1, α2, . . . , α|Cx|), (3)

where α values are selected differently for the orig-
inal token and its multi-hop synonyms. Using the
sampled ηx, we can compute the augmented token
embedding with the embedding function fe via

fe(ηx) =

|Cx|∑

j∈Cx
ηx,j fe(j). (4)

Dirichlet distributions are multivariate proba-
bility distributions with

∑
ηx = 1 and ηx,j ≥

0, ∀j ∈ Cx. The augmented embedding is there-
fore a linear combination of vertices in the convex
hull. By adjusting α values, we can change the
probability distribution in the sampling area, that
is, how far the sampled embedding can travel from
the original token. For example, with increasing α
values, we can expect the sampled points approach-
ing the center point of the convex hull.

The above augmentation is introduced in order
to provide semantically diverse yet consistent ques-
tions. At the same time, by adding noise locally,
it encourages the QA model to capture robust in-
formation in questions (see Zhou et al., 2021). We
control the question augmentation by a token aug-
mentation ratio, ζ, to determine the percentage of
tokens within questions that are augmented.2

2We considered using the above embedding-level augmen-

Transformer Layer

Answer Classifier

Embeddings

Transformer Layer

Dropout Attentive Context Cutoff

When was James Conroy born ? [SEP] James Conroy ( born February 6, 1977 ) is ...

When was James Conroy born ? [SEP] James Conroy ( born February 6, 1977 ) is ...

Figure 3: The proposed context cutoff in QADA. Con-
text cutoff drops context subspans in the length dimen-
sion and is performed after transformer layers via an
attentive sampling strategy.

Context augmentation: For contexts, we adopt
augmentation in the hidden space of the trans-
former layers instead of the embedding layer. Here,
we propose to use an attentive context cutoff in the
hidden space. Specifically, we zero out sampled
context spans in the hidden space after each trans-
former layer in the QA model. This is shown in
Fig. 3, where all hidden states in the selected span
along the input length are dropped (i.e., setting val-
ues to zero as shown by the white color). Thereby,
our cutoff forces the QA model to attend to context
information that is particularly relevant across all
input positions and thus hinders it from learning
redundant domain information.

Formally, our attentive sampling strategy learns
to select cutoff spans: we compute a probability dis-
tribution and sample a midpoint using the attention
weights A ∈ RH×Lc×Lc in the context span from
the previous transformer layer. The probability of
the i-th token pi is computed via

pi = σ

(
1

H

H∑

j

( Lc∑

k

Aj,k

))

i

, (5)

where H is the number of attention heads, Lc is the
context length, and σ denotes the softmax function.
Once the cutoff midpoint is sampled, we introduce
a context cutoff ratio, φ, as a hyperparameter. It
determines the cutoff length (as compared to length

tation for contexts but eventually discarded this idea: (1) em-
bedding augmentation undermines the original text style and
the underlying domain characteristics; and (2) token changes
for contexts are likely to cause shifts among answer spans.
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of the original context). We avoid context cutoff
in the final transformer layer to prevent important
answer features from being zeroed out.

Eventually, the above procedure of question aug-
mentation should improve the model capacity in
question understanding. Combined with context
cutoff, the QA model is further forced to attend
context information globally in the hidden space.
This thus encourages the QA model to reduce re-
dundancy and capture relevant information, i.e.,
from all context positions using self-attention.

4.4 Contrastive Adaptation

To adapt the QA model to the target domain, we
develop a tailored attention-based contrastive adap-
tation. Here, our idea is to regularize the intra-class
discrepancy for knowledge transfer and increase
the inter-class discrepancy for answer extraction.
We consider answer tokens and non-answer tokens
as different classes (Yue et al., 2021b).

Loss: We perform contrastive adaptation to re-
duce the intra-class discrepancy between source
and target domains. We also maximize the inter-
class distances between answer tokens and non-
answer tokens to separate answer spans. For a
mixed batch X with Xs and Xt representing the
subset of source and target samples, our contrastive
adaptation loss is

LQADA = D(Xs,a,Xt,a) +D(Xs,n,Xt,n)

−D(Xa,Xn) with

D =
1

|Xs||Xs|

|Xs|∑

i=1

|Xs|∑

j=1

k(ϕ(x(i)
s ), ϕ(x(j)

s ))

+
1

|Xt||Xt|

|Xt|∑

i=1

|Xt|∑

j=1

k(ϕ(x
(i)
t ), ϕ(x

(j)
t ))

− 2

|Xs||Xt|

|Xs|∑

i=1

|Xt|∑

j=1

k(ϕ(x(i)
s ), ϕ(x

(j)
t )),

(6)
where Xa represents answer tokens, Xn represents
non-answer tokens in X . x

(i)
s is the i-th sample

from Xs, and x
(j)
t is the j-th sample from Xt. D

computes the MMD distance with empirical kernel
mean embeddings and Gaussian kernel k using our
scheme below. In LQADA, the first two terms re-
duce the intra-class discrepancy (discrepancy term),
while the last term maximizes the distance of an-
swer tokens to other tokens, thereby improving
answer extraction (extraction term).

Decision Boundary

Original 
Distance 
Estimation

Improved 
Estimation

Figure 4: Illustration of QA samples in feature space.
The token features are obtained from the last layer in
BERT and visualized using principle component analy-
sis (PCA). Question tokens are in cyan, context tokens
in orange, and answer tokens in red. We compared
the feature mappings ϕ between (i) Yue et al. (2021b)
(called CAQA) vs. (ii) our QADA framework.

MMD: The maximum mean discrepancy
(MMD) computes the proximity between prob-
abilistic distributions in the reproducing kernel
Hilbert space H using drawn samples (Gretton
et al., 2012). In previous research (Yue et al.,
2021b), the MMD distance D was computed using
the BERT encoder. However, simply using ϕ as in
previous work would return the averaged feature
of relevant tokens in the sample rather than more
informative tokens (i.e., tokens near the decision
boundary which are “harder” to classify).

Unlike previous methods, we design an attention-
based sampling strategy. First, we leverage the at-
tention weights A ∈ RH×Lx×Lx of input x using
the encoder of the QA model. Based on this, we
compute a probability distribution for tokens of the
relevant class (e.g., non-answer tokens) using the
softmax function σ and sample an index. The cor-
responding token feature from the QA encoder is
used as the class feature, i.e.,

ϕ(x) = fenc(x)i with i ∼ σ

(
1

H

H∑

j

Lx∑

k

Aj,k

)
,

(7)
where fenc is the encoder of the QA model. As a
result, features are sampled proportionally to the
attention weights. This should reflect more rep-
resentative information of the token class for dis-
crepancy estimation. We apply the attention-based
sampling to both answer and non-answer features.

Illustration: We visualize an illustrative QA
sample in Fig. 4 to explain the advantage of our
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Model HotpotQA NaturalQ. NewsQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

(I) Zero-shot target performance

BERT 43.34/60.42 39.06/53.7 39.17/56.14 16.19/25.03 49.70/59.09

(II) Target performance w/ domain adaptation

DAT (Lee et al., 2019) 44.25/61.10 44.94/58.91 38.73/54.24 22.31/31.64 49.94/59.82
CASe (Cao et al., 2020) 47.16/63.88 46.53/60.19 43.43/59.67 26.07/35.16 54.74/63.61
CAQA (Yue et al., 2021b) 46.37/61.57 48.55/62.60 40.55/55.90 36.05/42.94 55.17/63.23
CAQA* (Yue et al., 2021b) 48.52/64.76 47.37/60.52 44.26/60.83 32.05/41.07 54.30/62.98
QADA (ours) 50.80/65.75 52.13/65.00 45.64/61.84 40.47/48.76 56.92/65.86

(III) Target performance w/ supervised training

BERT w/ 10k Annotations 49.52/66.56 54.88/68.10 45.92/61.85 60.20/66.96 54.63/60.73
BERT w/ All Annotations 57.96/74.76 67.08/79.02 52.14/67.46 71.54/77.77 64.51/70.27

Table 1: Main results of QA adaptation performance on target dataset.

attention-based sampling for domain discrepancy
estimation. We visualize all token features and then
examine the extraction term from Eq. 6. We fur-
ther show the feature mapping ϕ from Yue et al.
(2021b), which, different from ours, returns the
average feature. In contrast, our ϕ focuses on the
estimation of more informative distances. As a
result, our proposed attention-based sampling strat-
egy is more likely to sample “harder” context to-
kens. These are closer to the decision boundary,
as such token positions have higher weights in A.
Owing to our choice of ϕ, QADA improves the
measure of answer-context discrepancy and, there-
fore, is more effective in separating answer tokens.

4.5 Learning Algorithm
We incorporate the contrastive adaptation loss from
Eq. 6 into the original training objective. This gives
our overall loss

L = Lce + λLQADA, (8)

where λ is a weighting factor for the contrastive
loss.

5 Experiments

Datasets: We use the following datasets (see Ap-
pendix A for details):

• For the source domain Ds, we use SQuAD
v1.1 (Rajpurkar et al., 2016).

• For target domain Dt, we select MRQA
Split I (Fisch et al., 2019): HotpotQA (Yang

et al., 2018), Natural Questions (Kwiatkowski
et al., 2019), NewsQA (Trischler et al., 2016),
SearchQA (Dunn et al., 2017), and TriviaQA
(Joshi et al., 2017). This selection makes our
results comparable with other works in QA do-
main adaptation (e.g., Lee et al., 2020; Shakeri
et al., 2020; Cao et al., 2020; Yue et al., 2021b,
2022d).

Baselines: As a naïve baseline, we pretrain a
BERT on the source dataset as our base model and
evaluate on each target dataset with zero knowl-
edge of the target domain. In addition, we adopt
three state-of-the-art baselines: domain-adversarial
training (DAT) (Lee et al., 2019), conditional ad-
versarial self-training (CASe) (Cao et al., 2020),
and contrastive adaptation for QA (CAQA) (Yue
et al., 2021b). For a fair comparison, we adopt
both the original CAQA and CAQA with our self-
supervised adaptation framework (= CAQA*).3

Baseline details are reported in Appendix B.
Training and Evaluation: We use the proposed

method to adapt the pretrained QA model, augmen-
tation hyperparameters are tuned empirically by
searching for the best combinations. To evaluate
the predictions, we follow (Lee et al., 2020; Shak-
eri et al., 2020; Yue et al., 2021b) and assess the
exact matches (EM) and the F1 score on the dev
sets. Implementation details are in Appendix C.

3For CAQA*, we exclude question generation and adopt
the same process of pseudo labeling and self-supervised adap-
tation as QADA. Different from QADA, hidden space augmen-
tation is not applied and we use the same objective function
as in the original CAQA paper.
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Model HotpotQA NaturalQ. NewsQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

QADA (ours) 50.80/65.75 52.13/65.00 45.64/61.84 40.47/48.76 56.92/65.86
w/o Dirichlet sampling 49.57/64.71 51.15/64.24 45.27/61.44 35.90/44.28 56.83/65.51
w/o context cutoff 50.36/65.71 50.30/62.98 45.39/61.47 33.94/42.43 56.04/64.87
w/o contrastive adaptation 48.21/64.54 48.35/61.76 44.35/60.66 30.85/39.42 55.42/64.38

Table 2: Ablation study on different components of QADA.

6 Experimental Results

6.1 Adaptation Performance

Our main results for domain adaptation are in Ta-
ble 1. We distinguish three major groups: (1) Zero-
shot target performance. Here, we report a naïve
baseline (BERT) for which the QA model is solely
trained on SQuAD. (2) Target performance w/ do-
main adaptation. This refers to the methods where
domain adaptation techniques are applied. This
group also includes our proposed QADA. (3) Tar-
get performance w/ supervised training. Here,
training is done with the original target data. Hence,
this reflects an “upper bound”.

Overall, the domain adaptation baselines are
outperformed by QADA across all target datasets.
Hence, this confirms the effectiveness of the pro-
posed framework using both data augmentation
and attention-based contrastive adaptation. In addi-
tion, we observe the following: (1) All adaptation
methods achieve considerable improvements in an-
swering target domain questions compared to the
naïve baseline. (2) QADA performs the best over-
all. Compared to the best baseline, QADA achieves
performance improvements by 6.1% and 4.9% in
EM and F1, respectively. (3) The improvements
with QADA are comparatively larger on HotpotQA,
Natural Questions, and SearchQA (∼ 8.1% in EM)
in contrast to NewsQA and TriviaQA (∼ 3.1% in
EM). A potential reason for the gap is the limited
performance of BERT in cross-sentence reasoning,
where the QA model often fails to answer composi-
tional questions in long input contexts. (4) QADA
can perform similarly or outperform the supervised
training results using 10k target data. For exam-
ple, QADA achieve 56.92 (EM) and 65.86 (F1) on
TriviaQA in contrast to 54.63 and 60.73 of the 10k
supervised results, suggesting the effectiveness of
QADA.

6.2 Ablation Study for QADA

We evaluate the effectiveness of the proposed
QADA by performing an ablation study. By com-
paring the performance of QADA and CAQA* in
Table 1, we yield an ablation quantifying the gains
that should be attributed to the combination of all
proposed components in QADA. We find distinc-
tive performance improvements due to our hidden
space augmentation and contrastive adaptation. For
example, we observe that EM performance can
drop up to 20.8% without QADA, suggesting clear
superiority of the proposed QADA.

We further evaluate the effectiveness of the in-
dividual components in QADA. We remove the
proposed Dirichlet neighborhood sampling, atten-
tive context cutoff and attention-based contrastive
adaptation in QADA separately and observe the per-
formance changes. The results on target datasets
are reported in Table 2. For all components, we ob-
serve consistent performance drops when removed
from QADA. For example, the performance of
QADA reduces, on average, by 3.3%, 4.5%, and
8.3% in EM when we remove Dirichlet sampling,
context cutoff, and contrastive adaptation, respec-
tively. The results suggest that the combination
of question and context augmentation in the hid-
den space is highly effective for improving QA
domain adaptation. Moreover, the performance im-
proves clearly when including our attention-based
contrastive adaptation.

6.3 Sensitivity Analysis for Hidden Space
Augmentation

Our QADA uses question augmentation (i.e.,
Dirichlet neighborhood sampling) and context aug-
mentation (i.e., context cutoff), where the augmen-
tation ratios determine the percentage of tokens
that are augmented. Figure 5 compares different
augmentation ratios from 0 to 0.4 on HotpotQA,
Natural Questions, and NewsQA. Overall, we ob-
serve some variations but, importantly, the perfor-
mance of QADA improves adaptation performance
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Figure 5: Sensitivity analysis for different Dirichlet
sampling ratios (left) and context cutoff ratios (right).

and remains fairly robust for different nonzero ra-
tios. Moreover, we find comparatively large im-
provements for HotpotQA by introducing Dirichlet
neighborhood sampling (2.5% in EM), while Nat-
ural Questions benefits more from context cutoff
(3.6% in EM). A potential reason for such improve-
ments is that HotpotQA has more complex ques-
tions that need potential matching and reasoning,
while Natural Questions provides longer unstruc-
tured text as contexts, thereby requiring improved
understanding of long paragraphs.

7 Conclusion

In this paper, we propose a novel self-supervised
framework called QADA for QA domain adapta-
tion. QADA introduces: (1) hidden space augmen-
tation tailored for QA data to enrich target train-
ing corpora; and (2) an attention-based contrastive
adaptation to learn domain-invariant features that
generalize across source and target domain. Our ex-
periments demonstrate the effectiveness of QADA:
it achieves a superior performance over state-of-
the-art baselines in QA domain adaptation.

8 Limitations

Despite having introduced hidden space augmen-
tation in QADA, we have not discussed different
choices of α values for multi-hop synonyms to ex-
ploit the potential benefits of the Dirichlet distribu-
tion. For context cutoff, dropping multiple context
spans in each QA example may bring additional
benefits to improve context understanding and the
answer extraction process of the QA model. Com-
bined with additional question value estimation in
pseudo labeling, we plan to explore such directions
in adaptive QA systems as our future work.
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Appendix

A Dataset Details

For the source domain, we adopt SQuAD v1.1 (Ra-
jpurkar et al., 2016) following (Cao et al., 2020;
Lee et al., 2020; Shakeri et al., 2020; Yue et al.,
2021b). SQuAD v1.1 is a question-answering
dataset where context paragraphs originate from
Wikipedia articles. The QA pairs were then anno-
tated by crowdworkers.

In our experiments, we adopt all datasets from
MRQA Split I (Fisch et al., 2019) for the target
domains:
1. HotpotQA is a question-answering dataset with

multi-hop questions and supporting facts to pro-
mote reasoning in QA (Yang et al., 2018).

2. NaturalQuestions (Kwiatkowski et al., 2019)
builds upon real-world user questions. These
were then combined with Wikipedia articles as
context. The Wikipedia articles may or may not
contain the answer to each question.

3. NewsQA (Trischler et al., 2016) provides news
as contexts and challenging questions beyond
simple matching and entailment.

4. SearchQA (Dunn et al., 2017) was built based
on an existing dataset of QA pairs. The QA
pairs were then extended by contexts, which
were crawled through Google search.

5. TriviaQA (Joshi et al., 2017) is a question-
answering dataset containing evidence infor-
mation for reasoning in QA.

B Baseline Details

As a naïve baseline, we adopt BERT (uncased base
version with additional batch normalization layer)
and train on the source dataset (Devlin et al., 2019;
Cao et al., 2020). Additionally, we implemented
the following three baselines for unsupervised QA
domain adaptation:

1. Domain adversarial training (DAT) (Tzeng
et al., 2017; Lee et al., 2019) consists of a
QA system and a discriminator using [CLS]
output in BERT. The QA system is first trained
on labeled source data. Then, input data from
both domains is used for domain adversarial
training to learn generalized features.

2. Conditional adversarial self-training
(CASe) (Cao et al., 2020) leverages self-
training with conditional adversarial learning
across domains. CASe iteratively perform

pseudo labeling and domain adversarial
training to reduce domain discrepancy. We
adopt the entropy weighted CASe+E in our
work as baseline.

3. CAQA (Yue et al., 2021b) leverages QAGen-
T5 for question generation but extends the
learning algorithm with a contrastive loss on
token-level features for generalized QA fea-
tures. Specifically, CAQA uses contrastive
adaptation to reduce domain discrepancy and
promote answer extraction.

4. Self-supervised contrastive adaptation for
QA (CAQA*) (Yue et al., 2021b) is a modi-
fied self-supervised baseline based on CAQA.
We exclude question generation and adopt
the same process of pseudo labeling and
self-supervised adaptation as in QADA. Un-
like QADA, hidden space augmentation and
attention-based contrastive loss are removed.

C Implementation Details

QA model: We adopt BERT with an additional
batch norm layer after the encoder for QA domain
adaptation, as in (Cao et al., 2020). We first pre-
train BERT with a learning rate of 3 · 10−5 for two
epochs and a batch size of 12 on the source dataset.
We use the AdamW optimizer with 10% linear
warmup. We additionally use Apex for mixed pre-
cision training.

Adaptation: For the baselines, we use the origi-
nal BERT architecture and follow the default set-
tings provided in the original papers. For QADA,
adaptation is performed 4 epochs with the AdamW
optimizer, learning rate of 2 · 10−5, and 10% pro-
portion as warmup in each epoch (as training data
changes after pseudo labeling). In the pseudo label-
ing stage, we perform inference on unlabeled target
data and preserve the target samples with confi-
dence above the threshold τ = 0.6. For batching
in self-supervised adaptation, we perform hidden
space augmentation and sample 12 target examples
and another 12 source examples.

QADA: For our experiments, the scaling fac-
tor λ for the adaptation loss is chosen from
[0.0001, 0.0005] depending on the target dataset.
For Dirichlet neighborhood sampling, we use α =
1 for the original token and a decay factor of 0.1 for
multi-hop synonyms (i.e., 0.1 for 1-hop synonyms
and 0.01 for 2-hop synonyms). For hyperparame-
ters in hidden space augmentation, we search for
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a combination of question augmentation ratio ζ
and context cutoff ratio φ. Specifically, we empiri-
cally search for the best combination in the range
of [0.1, 0.2, 0.3, 0.4] for both ζ and φ. Eventually,
the best hyperparameter combination is selected.
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