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Abstract
We propose a method for arbitrary textual style
transfer (TST)—the task of transforming a text
into any given style—utilizing general-purpose
pre-trained language models. Our method,
Prompt-and-Rerank, is based on a mathemati-
cal formulation of the TST task, decomposing it
into three constituent components: textual sim-
ilarity, target style strength, and fluency. Our
method uses zero-shot or few-shot prompting
to obtain a set of candidate generations in the
target style, and then re-ranks them according
to the three components. Our method enables
small pre-trained language models to perform
on par with state-of-the-art large-scale mod-
els while using two orders of magnitude less
compute and memory. We also investigate the
effect of model size and prompt design (e.g.,
prompt paraphrasing and delimiter-pair choice)
on style transfer quality across seven diverse
textual style transfer datasets, finding, among
other things, that delimiter-pair choice has a
large impact on performance, and that models
have biases on the direction of style transfer.1

1 Introduction

Textual style transfer (TST) refers to the task of
transferring one stylistic aspect of a piece of text
(e.g., sentiment polarity, formality, politeness, etc.)
without changing its main semantic content, struc-
ture, or other attributes. Traditionally, the natu-
ral language generation (NLG) community has ap-
proached each instantiation of style transfer as a
distinct task, designing and training specialized
models on style-specific training corpora. For ex-
ample, sentiment transfer has been studied exten-
sively (Li et al. (2018); Sudhakar et al. (2019);
Luo et al. (2019a), inter alia). This paradigm has
restricted TST research to a limited, simple set of
style choices with parallel corpora, which can often
be solved adequately by word replacement (e.g., re-

1Our code, data, and results are available at https://
github.com/suzgunmirac/prompt-and-rerank

Sentiment Transfer
Input the food was low quality and thrown together quickly with little flavor.

GPT-J-6B the food was delicious and prepared with a lot of care!

Input the staff is awesome and location is right in the heart of old town!

GPT-J-6B the staff is terrible and location is in the middle of nowhere!

Elizabethan → Modern English Translation

Input thou hast quar rell’d with a man for coughing in the street, because he hath
wakened thy dog that hath lain asleep in the sun.

GPT-J-6B you have cursed a man because he’s coughed in the street, because he has
woken your dog, which has been sleeping in the sun.

Input if thou art fickle, what dost thou with him that is renown’d for faith?

GPT-J-6B if you are fickle, then what are you doing with that person who is known
for being reliable?

Fluency and Grammar Correction

Input Forexample, My cousin is 12years old.

GPT-J-6B For example, My cousin is twelve years old.

Formality Transfer

Input r u talking about ur avatar?

GPT-J-6B are you talking about your avatar?

Table 1: Qualitative examples of few-shot style transfer
on the YELP, SHAKESPEARE, JFLEG, and GYAFC
datasets. Coupling off-the-shelf “small” language mod-
els with our prompt-and-reranking method enables us
to perform arbitrary textual style transfer without any
model training or prompt-tuning. Compared to the ex-
tremely large language models (viz., ones with more
than 100 billion parameters) used by Reif et al. (2022),
our models obtain similar performance using almost
two orders of magnitude less compute and memory.

placing negative words with corresponding positive
words for sentiment transfer).

With the recent success of general-purpose lan-
guage modeling (LM), it is, however, natural to ask
whether one can tackle a more general formulation
of style transfer: arbitrary TST, in which one aims
to transform a reference text into an arbitrary style
specified by the user at inference-time.

Inspired by the success of natural-language
prompting in other domains (Radford et al., 2019;
Petroni et al., 2019; Brown et al., 2020; Gao et al.,
2021), we consider a prompting-based zero- and
few-shot approach to arbitrary TST. Under this
setup, we specify the desired type of style transfer
problem using a natural-language prompt contain-
ing the source text (and optionally a few examples,
in the few-shot case), and then use a pre-trained LM
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to generate the stylized target text. Thus, the source
text may be transformed into any user-specified
style without additional training or fine-tuning.

Recent work (Reif et al., 2022) has found that ex-
tremely large language models (LLMs), namely the
175 billion-parameter GPT-3 (Brown et al., 2020)
model and the proprietary 137 billion-parameter
LLM model, are capable of sentiment and formality
transfer. However, language models at this scale
are not accessible to most researchers and practi-
tioners, even in inference-only settings, due to their
large memory consumption and slow generation
times. Thus far, to the best of our knowledge, there
has not been any research on the capabilities of
reasonably-sized models for style transfer domain,
nor any systematic study of how the precise con-
struction of the prompt affects model performance.

Here we take a first-principles approach to arbi-
trary TST using pretrained language models. We
first mathematically formalize the task, showing
how it can be formulated as the combination of
textual similarity, target style strength, and fluency.
This framework naturally leads us to propose a new
method for arbitrary TST, which we call “Prompt-
and-Rerank.” Using this method, we demonstrate,
for the first time, that it is possible to perform arbi-
trary TST using reasonably-sized language models;
prior work indicated that only enormous (i.e., GPT-
3-scale) language models were capable of this task.

We summarize the main contributions and in-
sights of this paper as follows: (i) We provide the
first mathematical formalization of the arbitrary
TST task. (ii) We propose Prompt-and-Rerank, a
novel prompting-based method for arbitrary TST
which follows naturally from our mathematical for-
mulation. (iii) Our method matches and sometimes
even exceeds state-of-the-art performance on arbi-
trary TST while using reasonably-sized language
models such as GPT-2, which consume two orders
of magnitude less memory and compute than prior
work. (iv) We conduct a nuanced investigation of
the influence of prompt design, such as task phras-
ing and delimiter-pair choice, on the quality of style
transfer generations. (v) In order to encourage and
facilitate further research in the area, we establish
a set of benchmarks for arbitrary TST (including
cleaned versions of the popular sentiment transfer
datasets AMAZON and YELP) along with accom-
panying automatic evaluation metrics.

2 Background and Related Work

Background. TST is a long-standing problem in
NLP which encompasses many popular sub-tasks,
such as sentiment and formality transfer. Prior
to the advent of large-scale pre-training in recent
years, it was common practice to consider each
of these sub-tasks separately, and to train sepa-
rate models on different supervised datasets for
each task. These models generally performed well
within the limited scope of their task, but failed to
generalize to new tasks or to texts outside of their
training distribution. Here we show that the mod-
ern paradigm of pre-training large models and then
prompting (or fine-tuning) them can be applied to
many sub-tasks of TST in a unified, zero-shot man-
ner, even with relatively small Transformers.

Related Work. Traditional approaches to TST
can be broadly categorized into two families. The
first family involves identifying and replacing dis-
tinctive style-related phrases (Li et al. (2018); Sud-
hakar et al. (2019); Wu et al. (2019); Madaan
et al. (2020); Malmi et al. (2020); Reid and Zhong
(2021), inter alia). For example, Madaan et al.
(2020) perform the task of politeness transfer by
first identifying words with stylistic attributes us-
ing TF-IDF and then training a model to replace
or augment these stylistic words with ones asso-
ciated with the target attribute. In general, these
approaches perform well for very simple style edits
(e.g., negating a sentence by adding the word not),
but they struggle in scenarios that require more
complex syntactic and semantic changes.

The second family of approaches involves dis-
entangling latent representations of style and con-
tent, such that a text can be encoded into a style-
invariant representation and then decoded in a de-
sired style (Hu et al., 2017; Shen et al., 2017; Fu
et al., 2018; Luo et al., 2019a). For example, Hu
et al. (2017) encodes into and decodes from a style-
agnostic latent space using a VAE alongside at-
tribute discriminators. These approaches are often
theoretically well-grounded, but they generally re-
quire large quantities of labeled data and struggle
to scale beyond a small number of styles.

Differently from these two families, one recent
work (Reif et al., 2022) uses enormous pre-trained
language models to tackle TST, an idea motivated
by the remarkable performance of pre-trained LMs
in other areas of NLP (Radford et al., 2019; Devlin
et al., 2019; Yang et al., 2019; Liu et al., 2019).
Specifically, they use LLM, LLM-Dialog, and GPT-
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3, each of which has over 100 billion parameters,
to rewrite texts in a variety of styles. However, they
perform minimal analysis of their prompting setup,
deferring such analysis to future work, and they
suggest that this prompting-based approach is only
feasible with LLMs.2

While drawing on many intuitions from Reif
et al. (2022) and these earlier studies, this paper
presents a novel prompt-and-rerank approach to
the general task of TST using pre-trained language
models. Alongside our method, we present the first
systematic study of prompt formulation and model
size for the task of textual style transfer. Contrary
to expectations, using our method we find that even
small LMs are able to effectively perform arbitrary
style transfer. In fact, we match the performance
of Reif et al. (2022) on multiple datasets using two
orders of magnitude less memory and compute.

3 Method: Prompt-Based Arbitrary TST

This section begins with a mathematical formal-
ization of the task of textual style transfer.3 Our
formalization elucidates the three underlying com-
ponents of the task, namely text similarity, target
style strength, and fluency, and naturally leads us to
Prompt-and-Rerank, our prompt-based re-ranking
algorithm for solving TST.

3.1 Problem Formulation
Let x ∈ Σ∗ denote a text over a vocabulary Σ, and
S the set of all possible text style choices. Let us
further use x(s1) ∈ Σ∗ to denote a text x written
in the style s1 ∈ S. Informally speaking, the goal
of TST is to transfer the style of a text x(s1) (usu-
ally, a sentence) from s1 to s2 without changing
the main semantic content of the text. We can for-
mally express this transformation via a function
f : Σ∗ × S × S → Σ∗, which takes an input text
(say x(s1)) and its corresponding style (s1), as well
as a target style (s2), and outputs a modified ver-
sion of the input written in the style of s2 (namely,
x̃(s2)).4 Ideally, we would want the generated out-

2A note on terminology: We shall refer to GPT-3 (Brown
et al., 2020) and similar models with 100+ billion model
parameters as large or enormous language models, as they are
two-to-three orders of magnitude larger than previous models
(e.g. the GPT-2 series with 117M-to-6B parameters).

3Despite its important role in NLG, we are not aware of
any prior formal statement of the style transfer problem. Here,
we hope to solidify the problem formulation and illustrate
the a connection between this problem formulation and the
automatic metrics used in the field to evaluate TST models.

4In cases where the original style of the input text might
not be known a priori, one can either estimate the style of the

x s2s1

x̃(s2)x(s1)

x s2s1

x̃(s2)x(s1)

Figure 1: Two different but equally meaningful and
valid interpretations of the textual style transfer task.
Here x can be thought as the universal (abstract) mean-
ing of a text, x(s1) a rewrite of x in the style of s1.
Depending on which graphical model one adheres to,
x(s2) can be said to generated by x and s2 (left model)
or by x(s1) and s2 (right model). In this paper, we fol-
low the second interpretation.

put x̃(s2) = f(x(s1), s1, s2) to be “close” (both
semantically and syntactically) to the ground-truth
x(s2) as much as possible.

The graphical models depicted in Figure 1 pro-
vide two different ways of formulating the task of
TST (and of machine translation for that matter).
Both models have valid and meaningful implica-
tions and interpretations; the main generative differ-
ence between them is that the parents of x̃(s2) are
x and s2 in the former (left), whereas the parents
of x̃(s2) are x(s1) and s2 in the latter (right).

Due to the inherent difficulty of collecting di-
verse supervised data for arbitrary TST, most prior
studies considered a simplified version of the task,
wherein the source (s1) and target (s2) style choices
are fixed beforehand. In this work, we consider a
broad formulation of the task, make no assump-
tions about the source and target style choices a
priori, and explain how one can leverage the power
of off-the-shelf LMs to perform arbitrary TST.

Given an input text x(s1) written in the style
of s1 and the target style s2, we decompose the
conditional likelihood of a generated output x̃(s2)

into three terms:5

p(x̃(s2) | [x(s1), s1], s2) (1)

=
p(x̃(s2), [x(s1), s1], s2)

p([x(s1), s1], s2)

∝ p([x(s1), s1], [x̃
(s2), s2])

= p([x̃(s2), s2]) p([x
(s1), s1] | [x̃(s2), s2])

= p(x̃(s2))︸ ︷︷ ︸
fluency

p(s2 | x̃(s2))︸ ︷︷ ︸
transfer strength

p([x(s1), s1] | [x̃(s2), s2])︸ ︷︷ ︸
textual similarity

input using a statistical classifier or assume that the input is
written in a neutral style.

5We make use of the brackets “[·]” only to group relevant
terms (e.g., x(s1), s1) together; they do not have any statistical
significance in this context.
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Output-1

Output-2

Output-3

Output-4

Output-5

Prompt LM
(GPT-2)

BERTScore
Textual Similarity

MLM (RoBERTa)
Style Classifier

GPT-2-Large
Fluency

x x

x x

x x

x x

x x

Re-score and re-rank the outputs.

Pick the highest scoring output.

Given the input text, source style, and
target style, write a proper prompt.

Generate multiple outputs
using beam search.

Output-3

Input Source Style Target Style

Figure 2: An illustration of our Prompt-and-Rerank method. Given an input text and a target style, we first
compose a prompt and feed it to a pretrained language model to generate multiple output texts—conditioned on the
prompt—using beam search. We then re-score each candidate output along the three axes from Eq. (1): textual
similarity, style transfer strength, and fluency. We choose the candidate with the highest score as our final output.

The first term, p(x̃(s2)), measures the overall flu-
ency of the output. The second term, p(s2 | x̃(s2)),
measures the transfer strength of the output (i.e.,
determines whether the output is written in the tar-
get style). The last term, p([x(s1), s1] | [x̃(s2), s2]),
can be thought of as a proxy for textual similarity
in the context of textual style transfer—it captures
the correspondence between the input and output
texts written in their respective styles.

3.2 Prompt-and-Rerank for Arbitrary TST

The problem formulation above naturally leads us
to a method for (textual) style transfer, which we
denote Prompt-and-Rerank (P&R).

The foundation of our method is use of prompt
templates to convert TST into a natural-language
generation problem. Formally, we use a predefined
template τ ∈ T to convert an input text x(s1) and
the desired style transformation (i.e., s1 → s2) into
a natural-language prefix τ(x, s1, s2). The tem-
plate τ serves to not only contextualize the task for
the model but also incorporate all the necessary con-
ditional information (that is, input sentence, source
style, and target style) in the input context. The
precise design and composition of the templates is
the topic of the following section (§4.2).6

Next, we feed the prompt into a pre-trained LM
(e.g., GPT-2) and use the model to generate k differ-
ent outputs x̃(s2)

k conditioned on the prompt, each
sampled independently without updating any pa-
rameters of the model. These outputs are taken to
be our candidate outputs for re-ranking. We then
re-rank our k candidate outputs according to the

6Additionally, in the few-shot case, where we have a num-
ber of few-shot exemplars, we convert these exemplars into
meaningful prompts using the same template structure τ and
prepend them to the main prompt.

decomposition in Equation 1:

preranking(x̃
(s2)
i |[x(s1), s1], s2) (2)

∝ p(x̃
(s2)
i )p(s2|x̃(s2)

i )p([x(s1), s1]|[x̃(s2)
i , s2]).

Finally, we pick the output x̃(s2)
i ∈ X̃ with the

highest re-ranking score. Figure 2 provides an il-
lustration of the method.

All that remains is to describe how to calculate
each term in the re-ranking pass:

(i) To calculate the first (fluency) term, we use
GPT-2-Large (774M) to determine the overall like-
lihood of each candidate text.7

(ii) For the second (transfer strength) term, we
deliberately turn a masked language model (MLM),
in our case a pre-trained RoBERTa model, into a
style classifier as follows: Given x̃

(s2)
i ∈ X̃ (s2)

and S = {s1, s2}, we convert x̃(s2)
i into a “fill-in-

the-blank” cloze statement via a pre-defined cloze
template, that is, we rewrite it as “The following
text is <mask>: [x̃(s2)

i ].” We then query the MLM
to predict the masked token,8 but instead of look-
ing at the probability distribution over the original
model vocabulary, we restrict our attention to the
elements in S and thus consider the likelihood of
the missing token being s1 or s2. We then normal-
ize these probabilities by l1-normalization and get
a proper probability distribution for p(s2|x̃(s2)).9

(iii) Finally, for the third (textual similar-
ity) term, we use BERTScore (Zhang et al.,
2020), which utilizes pre-trained contextual
embeddings from BERT to measure the co-

7Given a text x := x1:t of length t, we calculate its proba-
bility under a model θ as pθ(x) =

∏t
i=1 pθ(xi | x<i)

8One limitation of this framework is that it assumes the
styles are associated with distinct tokens in the vocabulary.

9Of course, a more sophisticated normalization technique
can be employed in this setup, but this basic normalization
method seemed to be sufficient in our experiments.
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sine similarity between two texts.10 Specif-
ically, we approximate p([x(s1), s1]|[x̃(s2), s2])
with BERTScore(x(s1),x(s2)).11

Afterwards, we compute the score for each can-
didate by multiplying (i), (ii), and (iii) accordingly;
re-rank all the candidates; and pick the one with
the highest score as the final output.12

Overall, our approach is model-agnostic, allow-
ing pre-trained LMs to be used out-of-the-box. Fur-
thermore, our experiments show that with well-
designed prompts, one does not need a massive
language model for this approach to be successful.

4 Prompt Construction
In practice, we found the specific syntax and se-
mantics of the prompt template significantly impact
model performance. Thus, we conducted a system-
atic investigation of the impact of different prompt
design choices on the quality of TST generations.

4.1 Delimiter-Pairs

We experimented with ten different text bound-
ary markers (delimiter pairs), which may be di-
vided into two categories: those whose opening
and closing markers are identical (known as indis-
tinguishable delimiters), and those whose markers
are different (known as complementary delimiters).
Specifically, we considered two indistinguishable
pairs (viz., quotes and dashes) and eight comple-
mentary pairs: (1) curly brackets {·}, (2) square
brackets [·], (3) angle brackets ⟨·⟩, (4) parentheses
(·), (5) quotes " · ", (6) dashes – · –, (7) triple angle
brackets ⟨⟨⟨·⟩⟩⟩, (8) bracket quotes ⟩ " · ", (9) as-
terisk quotes * " · ", and (10) double curly bracket
{{·}}.13 In their experiments, Reif et al. (2022)
use only curly brackets.14

10Our choice of BERTScore comes with some approxi-
mations. It is symmetric, i.e., BERTScore(x(s1),x(s2)) =

BERTScore(x(s2),x(s1)), and BERTScore also does not
explicitly include style information. We believe these are
reasonable simplifications (and it is possible that pre-trained
BERT implicitly incorporates style information).

11One can alternatively use MoverScore (Zhao et al., 2019),
BARTScore (Yuan et al., 2021), or BLEURT (Sellam et al.,
2020) for approximating textual similarity in (iii).

12Since the calculation of (iii) penalizes long sequences
or sequences involving rare words, we also consider the re-
ranking method in which we ignore the fluency factor, assum-
ing that the sentences generated by the models are always
fluent, which, we are aware that, is a faulty assumption.

13We use (8), (9), and (10) to emulate blockquotes, bullet
points, and liquid tags in Markdown, respectively.

14We hypothesized that the complementary delimiter-pairs
might yield better results than the indistinguishable ones, since
it is categorically easier for models to distinguish and under-
stand where sentences start and end. We also speculated

4.2 Prompt Phrasing

We considered four manually-written template for-
mats t ∈ T for our discrete prompts:

(a) Vanilla: “Here is a text: [d1][x(s1)][d2] Here
is a rewrite of the text, which is [s2]: [d1]”,

(b) Contrastive: “Here is a text, which is [s1]:
[d1][x

(s1)][d2] Here is a rewrite of the text, which
is [s2]: [d1]”,

(c) Negation-v1: “Here is a text, which is [s1]:
[d1][x

(s1)][d2] Here is a rewrite of the text, which
is not [s1]: [d1]”, and

(d) Negation-v2: “Here is a text, which is not
[s2]: [d1][x

(s1)][d2] Here is a rewrite of the text,
which is [s2]: [d1]”.

Note that [d1] and [d2] denote the opening and
closing elements of the chosen delimiter-pair, re-
spectively. In their experiments, Reif et al. (2022)
exclusively made use of the vanilla setting, which
only specifies the target style (s2) in the second
half of the prompt; however, we initially specu-
lated that providing useful information about the
source style (s1) and creating a clear contrast be-
tween the source and target styles in the prompt
semantics might help pre-trained LMs to have a
better understanding of the underlying nature of
the task and improve their performance; hence, we
decided to look at the contrastive setting as well.
As for the other two negation templates, we wanted
to test how specifying the source style as the nega-
tion of the target style (viz., s1:=“not s2”) and vice
versa might affect the model performance.15

Example. Finally, to make our prompting setup
more concrete, let us give a concrete and brief ex-
ample of how we formulate a prompt. We consider
the contrastive template with curly brackets as our
delimiter. If we have an input sentence x(s1)=“I
love The Sound of Music; it is the best movie ever!!”
with s1=positive and s2=negative, then the prompt
under this template would be “Here is a text, which
is positive: {I love The Sound of Music; it is the
best movie ever!!} Here is a rewrite of the text,
which is negative: {” The language model would
then generate an output by autoregressively decod-
ing after the last delimiter, to produce a sentence
such as: “I hate The Sound of Music; it is the worst
movie ever!!}.”16

that delimiter-pairs that were more likely to be used as text-
separators in the training data in various contexts (e.g., in code
snippets) might yield better results.

15The last two formats might be useful especially when we
do not have access to either the source or the target style.

16Table 9 in the Appendix provides a complete set of exam-
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Dataset Styles Example Sentence-Pairs Test Set Size

Yelp Restaurant Reviews Negative ever since joes has changed hands it’s just gotten worse and worse. 1000(Zhang et al., 2015) Positive ever since joes has changed hands it’s gotten better and better.

Amazon Product Reviews Negative if your bike had a kickstand on the plate it won’t lock down. 1000(He and McAuley, 2016) Positive if your bike had a kickstand on the plate it would lock down.

GYAFC Formality Dataset Informal and so what if it is a rebound relationship for both of you? 1000(Rao and Tetreault, 2018) Formal what if it is a rebound relationship for both of you?

Shakespearean English Dataset Elizabethan is rosaline, whom thou didst love so dear, so soon forsaken? 599(Xu et al., 2012) Modern have you given up so quickly on rosaline, whom you loved so much?

JFLEG Corpus Ungrammatical Forexample, My cousin is 12years old. 747(Napoles et al., 2017) Grammatical For example, my cousin is 12 years old.

Symbolic Manipulation Symbolic olive > cat 1000(Ours) English olive is greater than cat

Table 2: Overview of the textual style transfer datasets used in this paper.

4.3 Zero-Shot vs. Few-Shot Settings
In recent years, LLMs, such as GPT-3, have proven
themselves to be resourceful few-shot learners. In
a few-shot learning setting, a model is presented
with a small set of illustrative examples, oftentimes
along with a natural-language prompt describing
the task, and expected to understand the underlying
task and make accurate predictions without per-
forming any gradient updates to the weights of the
model at inference time. We wanted to explore
how the number of demonstrations affects the per-
formance of our models. To that end, we also tested
the performances of our models under the zero-shot
and four-shot settings.

5 Experiments and Results

5.1 Datasets
Differently from most previous work, which fo-
cused on single TST subtasks or datasets, we
present experiments on a wide range of TST sub-
tasks (also described in Table 2):

• YELP: Sentiment transfer for Yelp reviews
(Zhang et al., 2015).

• AMAZON: Sentiment transfer for Amazon re-
views (Li et al., 2018).

• SHAKESPEARE: Elizabethan-to-modern trans-
lation for Shakespeare (Xu et al., 2012).

• GYAFC: Formality transfer for Yahoo An-
swers responses (Rao and Tetreault, 2018).

• JFLEG: Grammar error correction for student
essays (Napoles et al., 2017).

• SYM: Symbol-to-natural-language translation
on a new custom synthetic dataset.

In the initial stages of our research, we noticed
that all of these datasets, with the exception of
SYM (which is synthetic), contain various tokeniza-
tion issues (e.g., sentences sometimes contain ex-

ples of prompts used in each task.

tra white-space or have their punctuation marks
separated out by spaces). We did not wish these
tokenization artifacts to diminish the quality of our
generations from general-purpose LMs—neither
did we want this issue to negatively impact our
evaluation scheme. To that end, we used a simple
text-cleaning procedure to clean the texts.17

5.2 Evaluation Metrics

Prior studies on style and sentiment transfer have
typically evaluated models across three dimensions:
content/meaning preservation (textual similarity),
style transfer strength, and fluency (Mir et al., 2019;
Briakou et al., 2021). We note that these dimen-
sions correspond exactly to the criteria that appear
in Equation 1 in §3.1 (Krishna et al., 2020).

Content Preservation. BLEU (Papineni et al.,
2002) is the standard metric for measuring seman-
tic content preservation. We use the SacreBLEU
(sBLEU) implementation (Post, 2018) to compute
both reference-BLEU (r-sBLEU) and self -sBLEU
(s-sBLEU) scores. Whereas r-sBLEU helps mea-
sure the distance of generated sentences from the
ground-truth references, s-sBLEU indicates the de-
gree to which the model directly copies the source.

Transfer Strength. In order to determine
whether outputs generated by a TST model have
the attributes of their target styles, we follow the
standard classifier-based approach: we train a (bi-
nary) style classifier on the corpus of interest and
use it to estimate the fraction of generated outputs
whose styles match their target styles.

Fluency. To measure the fluency of generated
texts, we compute their average token-level per-
plexity (PPL) using a pre-trained LM (in our case,

17We release both the original and cleaned versions of the
datasets alongside this paper to help facilitate future research.
In the Appendix, we also present results for both the original
and cleaned datasets.
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Model Acc r-sBLEU s-sBLEU PPL
SUPERVISED

[1] CrossAlignment 0.73 7.8 18.3 217
[2] BackTrans 0.95 2.0 46.5 158
[3] MultiDecoder 0.46 13.0 39.4 373
[4] DeleteOnly 0.85 13.4 33.9 182
[4] DeleteAndRetrieve 0.90 14.7 36.4 180
[5] UnpairedRL 0.49 16.8 45.7 385
[6] DualRL 0.88 25.9 58.9 133
[7] ST (Multi-Class) 0.86 26.4 63.0 175
[7] ST (Conditional) 0.93 22.9 52.8 223
[8] B-GST 0.81 21.6 46.5 158

ZERO- OR FEW-SHOT INFERENCE ONLY

[9] LLM Aug-0S-FirstChoice 0.85 5.3 9.2 33
[9] LLM 5S-FirstChoice 0.93 6.7 11.2 43
[9] LLM Aug-0S-Best-sBLEU

† 0.63 19.8 45.1 55
[9] LLM 5S-Best-sBLEU

† 0.78 23.2 48.3 77

Ours (GPT-2-XL) 0.87 14.8 28.7 65
Ours (GPT-J-6B) 0.87 23.0 47.7 80

Table 3: A comparison of our Prompt-and-Rerank ap-
proach with supervised sentiment transfer methods and
the ultra-large-scale prompting-based method of Reif
et al. (2022) on YELP-clean. In order to compare fairly
against previous studies, we applied our data-cleaning
code to their publicly-available outputs and re-computed
all evaluation metrics. References: [1] (Shen et al.,
2017), [2] (Prabhumoye et al., 2018), [3] (Fu et al.,
2018), [4] (Li et al., 2018), [5] (Xu et al., 2018), [6] (Luo
et al., 2019b), [7] (Dai et al., 2019), [8] (Sudhakar et al.,
2019), [9] (Reif et al., 2022). Note on †: We used
sBLEU to choose the best candidate, as opposed to
BLEU that was used originally by Reif et al. (2022).

GPT-2-Large). We note that, whilst this PPL-driven
approach has the advantage of being automated and
practical, it still contains considerable drawbacks,
including biases towards shorter texts.

5.3 Model Choices.
We used four GPT-2 models (Radford et al., 2019)
of varying sizes (viz., GPT-2-Small (117M params),
GPT-2-Medium (345M), GPT-2-Large (774M),
and GPT-2-XL (1.6B)), GPT-Neo-1.3B Black et al.
(2021), GPT-Neo-2.7B, and GPT-J-6B (Wang and
Komatsuzaki, 2021). We highlight that none of
these models were fine-tuned or prompt-tuned.

5.4 Results
Here, we present a summary of our key findings.
For our complete results, we encourage the reader
to see the Appendix (especially, Tables 11-20).

Table 3 juxtaposes our results on YELP with
those of prior studies. Despite not training or fine-
tuning, our method is competitive with prior mod-
els that were designed and trained specifically for
these tasks. In fact, compared to supervised meth-
ods, our models almost always generate more flu-
ent outputs, as measured by perplexity. Compared

Dataset Model Acc∗ r-sBLEU s-sBLEU PPL
AMAZON GPT-2-XL 0.70 11.5 17.2 77

P→N GPT-J-6B 0.65 21.5 31.4 70

AMAZON GPT-2-XL 0.56 13.2 19.9 50
N→P GPT-J-6B 0.52 19.3 29.3 58

YELP GPT-2-XL 0.87 14.8 28.7 65
P→N GPT-J-6B 0.87 23.0 47.7 80

YELP GPT-2-XL 0.72 12.0 25.3 55
N→P GPT-J-6B 0.65 20.2 44.6 58

SHAKE- GPT-2-XL 0.39 18.9 38.4 90
SPEARE GPT-J-6B 0.78 21.9 31.8 81

JFLEG GPT-2-XL 35.9 74.8 91.5 76
GPT-J-6B 40.0 64.8 59.1 48

GYAFC GPT-2-XL 0.82 32.7 41.9 58
GPT-Neo-1.3B 0.85 36.4 49.6 68

SYM
GPT-2-XL 0.56 68.5 - -
GPT-J-6B 0.74 81.9 - -

Table 4: Four-shot performances of GPT-2-XL and
GPT-J across all style transfer tasks, using curly brackets
as delimiters. Full results with all models and delimiter
pairs are shown in the appendix. P→N stands for the
positive → negative direction, and vice-versa for N→P.
∗ for JFLEG, GLEU score is used in place of accuracy
to measure grammar correction performance. Note that
the r-sBLEU column is not bolded because it is not
necessarily desirable to have a higher r-sBLEU.

to Reif et al. (2022), who utilize the proprietary
137-billion-parameter LLM (LaMDA), we compare
on-par or favorably despite using much smaller
models; we obtain better sBLEU scores than their
“FirstChoice” setting (which uses a single output)
and better accuracy scores than their “BestBLEU”
oracle setting (which takes the best of 16 outputs,
as measured by sBLEU score).

Table 4 presents a summary of our results across
all seven TST datasets for GPT-2-XL and GPT-J.
For full results including all models (GPT-2-Small
to GPT-J), please refer to the Appendix. Broadly,
we find that all models are capable of TST to a
reasonable degree—with the larger models (e.g.,
GPT-2-XL, GPT-Neo-2.7B, GPT-J) often perform-
ing better than the smaller models. The only model
that consistently performs poorly is GPT-2-Small:
Its high s-sBLEU and low accuracy indicate that it
copies long sections of the input (without changing
its style) more often than the other models.

Looking at individual tasks, we recognize that
there remains substantial room for improvement on
the JFLEG task: Most models underperformed a
simple baseline that copied the input text without
making any changes. The baseline achieved 37.2
GLEU, better than all models except GPT-J (which
obtained 40.0). Finally, on our new synthetic task
SYM, we found that GPT-J performed significantly
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Setting Target Style Textual Similarity Fluency

Ground Truth 3.60 (0.07) 3.34 (0.09) 3.78 (0.05)

DeleteAndRetrieve (Li et al., 2018) 2.31 (0.14) 2.10 (0.13) 1.97 (0.17)

Style Transformer (Dai et al., 2019) 2.43 (0.17) 2.94 (0.13) 2.18 (0.18)

LLM (Reif et al., 2022) 2.90 (0.13) 1.98 (0.14) 3.73 (0.05)

Ours (Prompt-and-Rerank) 3.32 (0.13) 3.51 (0.10) 3.67 (0.08)

Table 5: Human evaluation results on YELP-clean. Each score in the table represents the mean of 250 ratings (with
standard errors shown in parentheses): 5 ratings per example across 50 examples, of which 25 were positive-to-
negative and 25 were negative-to-positive. Raters scored examples on a scale of 1-to-5 (with 5 being best) across
three dimensions: target style, textual similarity, and fluency. We find that Prompt-and-Rerank performs well across
all dimensions; it scores highest on Target Style and Textual Similarity and scores only slightly lower than LLM (a
137-billion parameter language model) on Fluency.

Setting Acc r-sBLEU s-sBLEU PPL
Vanilla 78.0 14.7 31.0 58.5

Contrastive 79.5 13.4 27.0 59.5
Negation-v1 66.5 13.4 28.1 67.5
Negation-v2 52.0 18.0 40.6 69.0

Table 6: Four-shot performances of GPT-2-XL on
YELP-clean under different prompting protocols. We
show the average of scores from P→N and N→P direc-
tions. A full table with all models is in the Appendix.
Across all models, the vanilla and contrastive prompting
protocols tend to yield the most favourable results.

Delimiter Acc r-sBLEU s-sBLEU PPL
⟨·⟩ 49.5 17.4 40.8 45

* " · " 55.0 12.0 29.8 37
⟩ " · " 53.0 10.7 25.4 35
{·} 59.5 10.0 23.6 35
– · – 54.5 6.4 16.5 24
{{·}} 50.5 18.3 43.9 65
(·) 55.5 12.4 28.1 43
" · " 60.5 8.8 20.4 31
[·] 58.0 11.4 27.4 41

Table 7: Zero-shot performances of GPT-2-XL on
YELP-clean using different delimiter pairs. Full tables
with all models for all datasets are in the Appendix.

better than the rest: It achieved 74% accuracy18

whereas no other model exceeded 60% accuracy.19

5.5 Human Evaluation
To evaluate the efficacy of our proposed Prompt-
and-Rerank method, we also conducted a human-
subject study. Our goals were (1) to assess how
our proposed method fares against the previously
proposed methods for style transfer, and (2) to un-
derstand how correct and well-written both the gen-
erations and ground-truth references are.

Our human evaluation followed the procedure
from Reif et al. (2022), in which six human-

18Accuracy is measured via exact-string-matching.
19When the models failed to generate the correct output,

we found that a common failure case was copying the input
words correctly but using the wrong logic (e.g., generating
“less than” instead of “greater than”).

raters were to asked to rank outputs along three
dimensions—namely target-style strength, textual
similarity, and fluency. Our six (volunteer) raters
were all graduate students who were all native or
fluent English speakers. For our evaluation, we
focused only on YELP: We randomly sampled 50
examples (25 positive-to-negative and 25 negative-
to-positive) and selected the corresponding outputs
from DeleteAndRetrieve (Li et al., 2018), Style
Transformer (Dai et al., 2019), LLM (Reif et al.,
2022), and our own method “Prompt-and-Rerank”,
along with the ground-truth references. Each ex-
ample (and its corresponding set of outputs) was
rated by five raters.

To ensure fair comparison, we presented the
same samples to our human-raters but randomized
the order of the outputs and references, and we
asked our raters to rate each output on a scale of 1-
to-5, where 5 indicates the best and 1 the worst. All
our participants successfully completed our study,
and it took about one hour for each rater to com-
plete our human evaluation study.

Results. Table 5 includes a summary of our
human-evaluation results. “Prompt-and-Rerank”
obtained the highest scores along both the target
style and textual similarity dimensions, performing
significantly better than the previously proposed
methods. In terms of fluency, Reif et al. (2022)’s
method (3.73) has scored slightly higher than ours
(3.67), and both methods were close to the average
ground-truth fluency score (3.78). We further note
that the low textual (semantic) ranking score of the
ground-truth references suggest that the references
might be slightly noisy.

5.6 Further Analysis and Discussion

Contrastive prompting generally improves style
transfer quality. As shown in Table 6 (and Ta-
ble 20 in the Appendix), amongst the four prompt-
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ing protocols considered in this paper, contrastive
prompting generally yielded the best accuracy, al-
beit not always the best sBLEU scores.

Delimiter-pair choice has a large impact on
model performance. Our systematic analysis of
ten different delimiter-pairs shows that delimiter
choice substantially affects the quality of generated
outputs. Although there is not a single pair which
performs best across all setups, certain delimiters,
such as the curly brackets {·}, square brackets [·],
parentheses (·), and quotes " · ", yielded consis-
tently better results on both AMAZON and YELP

(see Tables 10-13). We hypothesize that the strong
performance of these markers is attributable to the
fact that they are often used as text separators (or
dividers) in different textual contexts, such as es-
says, dialogues, and code snippets, which compose
part of the pre-training data of our models.

Re-ranking improves overall performance.
We considered two re-ranking approaches, one in
which we picked the generated output with the
highest beam score and one in which we sampled
three outputs from the model using beam search
and then re-scored them according to three criteria
discussed in §3.2. As shown in Tables 15 and 16,
the re-ranking method can boost the sentiment ac-
curacy by 10-30%. It often, but not always, leads
to better sBLEU and fluency scores. Also, as Ta-
ble 8 illustrates, if we have access to a classifier
trained on paired data, it might be more convenient
to use it in our style transfer accuracy measure-
ments, instead of an MLM as a proxy-classifier, in
the re-ranking process, as it empirically leads to
higher accuracy and sBLEU scores.

Analysis of bias and transfer performance
in opposite directions. We find that pre-trained
models have strong directional biases: None of
the models performed the same when going in the
negative→positive (N→P) and positive→negative
(P→N) directions on AMAZON and YELP. We
offer three possible explanations for this phe-
nomenon: (i) The inherent differences in the lin-
guistic difficulty of the tasks, (ii) the potential bi-
ases in pre-training dataset(s), and (iii) the poor
quality of annotations in certain style transfer direc-
tions. Regarding (i), a qualitative inspection of the
sentiment transfer datasets illustrates that in some
cases, good P→N performance can be achieved
by simply adding a negation (e.g., “not”) into the
text. Regarding (ii), it is possible that the web-
scraped pre-training data of these models contains

Model Setting Acc r-sBLEU s-sBLEU PPL

GPT-2-XL
(1558M)

Top Choice 0.63 13.7 20.3 65
P&RRoBERTa 0.87 14.8 28.7 65

P&ROracle Cl. 0.95 16.8 33.4 63

GPT-J-6B
(6B)

Top Choice 0.81 25.3 50.5 107
P&RRoBERTa 0.87 23.0 47.7 80

P&ROracle Cl. 0.95 25.4 52.4 87

Table 8: Comparison of vanilla four-shot performance
of GPT-2 XL and GPT-J-6B models on YELP-clean
(P → N ) under three settings: (1) choosing the out-
put with the highest beam score (TC), (2) Prompt-and-
Rerank with RoBERTa used as a zero-shot style classi-
fier (P&RRoBERTa), and (3) Prompt-and-Rerank with an
oracle style classifier trained on paired data (P&ROracle).
For full results in YELP-clean, see Table 16.

more sentences that resemble the task of changing
the sentiment from positive to negative than the
reverse direction during their pre-training periods.
Qualitatively, the GPT-2 models appear adept at
negation; therefore, it may not be surprising that
these models yield better results in the P→N direc-
tion. As for (iii), our inspection of the ground-truth
data reveals that it contains some noisy labels and
incorrect input-output pairs.

Limitations. The primary limitation of our re-
ranking method is that it involves generating mul-
tiple outputs from an autoregressive LM, which
requires multiple forward passes. Additionally, our
approach relies on having access to a pre-trained
bi-directional MLM. Compared to a simple zero-
shot approach, these elements could potentially add
complexity to deploying this model in practice.

6 Conclusion

In this paper, we propose a novel formal frame-
work for textual style transfer. This framework nat-
urally leads us to a new method, which we denote
Prompt-and-Rerank, that utilizes general-purpose
pretrained language models to transform text into
in arbitrary styles. In our experiments, we use
our method to demonstrate that off-the-shelf, pre-
trained “small” language models, such as GPT-2,
can perform arbitrary textual style transfer, without
any additional model fine-tuning or prompt-tuning.
Additionally, we conduct an extensive investigation
prompt phrasing and delimiter choice on transfer
quality. In total, we hope that our work makes fur-
ther research in this area more accessible to a broad
set of researchers, both by alleviating the compu-
tational constraints of hundred-billion-parameter
language models and by establishing a standard set
of clean datasets for arbitrary text style transfer.
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7 Ethical Considerations & Limitations

Our work aims to advance the state of research
on the task of arbitrary textual style transfer. As
with many NLP applications, these methods may
be used for negative purposes by malicious actors.
For example, it would be possible to conceive of
an instantiation of arbitrary textual style transfer
which converts a non-sensationalist news headline
into a sensationalist news headline, or one that con-
verts a non-offensive piece of text into an offensive
piece of text, in order to achieve a malicious goal.

Our work also involves pretrained general-
purpose language models, which bring up less-
obvious ethical considerations than those discussed
above. Since these language models are trained on
text scraped from the web, they have acquired some
of the biases present in web text. Such biases may
be extracted by certain forms of prompting; recent
work (Prabhumoye et al., 2021) suggests that few-
shot prompts can be used to detect social biases in
pretrained language models. A large body of work
is dedicated to understanding and de-biasing these
large language models, but it is not the subject of
our present work.

Acknowledgments

We would like to thank Yonatan Belinkov, Fed-
erico Bianchi, Dora Demszky, Esin Durmus, Tim
Franzmeyer, Tayfun Gür, Tatsu Hashimoto, John
Hewitt, Laurynas Karazija, Deniz Keleş, Faisal
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A Appendix

A.1 Additional Details about Datasets

Previous TST studies have often chosen to focus on
particular subtasks (such as changing the sentiment
of a text from positive to negative) or particular
datasets (such as YELP or AMAZON). In contrast,
in our experiments, we decided to focus on a va-
riety of TST datasets, some of which are known
and widely used datasets in the field and some of
which are new and synthetic. In the first half of this
section, we present and discuss these datasets.20

Yelp Sentiment Dataset. YELP is a subset of the
Yelp Review Polarity Dataset that was first used by
Zhang et al. (2015) for a text classification task. It
consists restaurant and other business reviews from
Yelp, along with a label—either positive or nega-
tive—for each review. We used the version of the
dataset that was curated by Li et al. (2018) in our
experiments. The test set contains 500 positive and
500 negative samples, with one human reference
(ground-truth) for each sample.

Amazon Sentiment Dataset. AMAZON is sim-
ilar to YELP in its nature, but it contains product
reviews that were obtained from Amazon. Each
review is labeled either positive or negative. As
before, we used the version of the dataset that was
used by Li et al. (2018). The test set contains 500
positive and 500 negative sentences, with one hu-
man reference output for each sample.

Shakespearean English Dataset. We addition-
ally used a small subset of the dataset that was used
by Xu et al. (2012) originally for phrase-based ma-
chine translation, and experimented with “trans-
lating” sentences written in Elizabethan English
to modern English. This small test set, which we
call SHAKESPEARE, contains 599 paired sentences
from William Shakespeare’s Romeo and Juliet,
written in Elizabethan and modern English.21

GYAFC Formality Dataset. Grammarly’s Ya-
hoo Answers Formality corpus (GYAFC; Rao and

20We chose these datasets to broaden the semantic diversity
of the TST tasks and to establish benchmarks for new TST
studies. We share both the original and clean versions of
some of the widely-used but poorly-tokenized datasets, such
as AMAZON and YELP. In doing so, we hope to help address
the recent call-to-action on reproducibility in TST from Jin
et al. (2021); they encouraged researchers to share their data
and evaluation codes in order to establish reliable benchmarks
and facilitate easier comparison of new studies with existing
work. We hope that our efforts will be a constructive step
towards this goal.

21All the input sentences in SHAKESPEARE contain at least
10 and at most 25 words (inclusive).

Tetreault (2018)) contains paired informal and for-
mal sentences. Following Luo et al. (2019b), we
used the samples from the “Family & Relationship”
(F&R) domain and restricted our focus to the infor-
mal to formal direction. The test set contains 500
formal and 500 informal sentences.

JFLEG Corpus. The JHU FLuency-Extended
GUG (JFLEG) Corpus was introduced by Napoles
et al. (2017) to train and evaluate models for au-
tomatic grammatical error correction. It contains
paired grammatical and ungrammatical sentences
(with three error types—namely, awkward, ortho-
graphic, and grammatical). In our experiments, we
focused on the ungrammatical to grammatical di-
rection and used the publicly available test set that
contains 747 sentences.

Symbolic Manipulation Task. We designed
this small synthetic dataset to investigate how skill-
ful the off-the-shelf language models are at writing
symbolic expressions as natural English-language
sentences. This dataset contains 1,000 example
pairs, in which each input sample is written in a
symbolic form (as either “α > β” or “α < β”, where
α and β are two different single words from the
animal color, fruit, and number categories) and its
corresponding output is basically the spoken utter-
ance in English.

Remark. We realized that the original versions of
all the aforementioned real-world TST datasets con-
tain various tokenization issues (for instance, sen-
tences sometimes contain extra whitespaces or have
their puntuation marks separated out by spaces).
We did not wish these tokenization artifacts to di-
minish the quality of our generations. To that end,
we used a simple text-cleaning procedure to clean
the texts before feeding them to our models.22

A.2 Additional Evaluation Metrics
Here, we describe in greater detail the standard au-
tomatic evaluation metrics used in the assessment
of the performance of TST models.

Content Preservation. The standard metric for
measuring semantic content preservation (or tex-
tual similarity, as we call it) has been BLEU (Pap-
ineni et al., 2002): If reference (ground-truth) sen-
tences are available, then reference-BLEU scores
are calculated by comparing model outputs to
human-written ground-truth outputs using n-grams.
Some recent studies (Lample et al., 2019; Dai et al.,

22For the AMAZON and YELP datasets, we show the benefit
of data-cleaning on overall performance. We also publicly
release our text-cleaning code.
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2019) further look at self -BLEU scores, compar-
ing model outputs to input sentences—this is par-
ticularly done when reference sentences are not
directly available. In our evaluations, we primar-
ily used the SacreBLEU metric (Post, 2018)—as
SacreBLEU has been shown to be a more reliable
and accessible metric than BLEU—and considered
both reference-SacreBLEU (r-sBLEU) and self -
SacreBLEU (s-sBLEU) scores.23 When evaluating
the performances of models on the JFLEG cor-
pus, we also used the sentence-level GLEU metric
(Napoles et al., 2015), a variant of BLEU that was
specifically designed for evaluating grammatical
error correction (GEC) models.

Transfer Strength. To determine whether out-
puts generated by a TST model have the attributes
of their target styles, the most common approach
has been to train a (binary) classifier on the training
set of the corpus of focus, where the sentences are
taken as the inputs and their corresponding styles
as the labels, and then to use this trained classifier
to predict the percentage of the generated outputs
for which the styles predicted by the model match
their target styles.24 In our sentiment transfer exper-
iments, we measured transfer strength (sentiment
accuracy) by fine-tuning pre-trained RoBERTa clas-
sifiers (Liu et al., 2019) on the training data in each
case. In our experiments on SHAKESPEARE, we
used the RoBERTa-based Shakespeare classifier of
Krishna et al. (2020). Finally, in our experiments
on GYAFC, we fine-tuned a pre-trained RoBERTa
classifier on a subset of F&R examples.25

Fluency. With the emergence of successful LMs
at our disposal, most recent TST models measure
the fluency of their generated texts by computing
perplexity (PPL) via a pre-trained LM like GPT-
2.26 Whilst this PPL-driven approach has the ad-
vantage of being automated and practical, it still
contains considerable drawbacks, among which bi-
ases towards short texts and more frequent tokens
can be listed right away. In our evaluations, we
reported the average token-level PPL of generated

23We used the SacreBLEU metric implemented in Hug-
ging Face’s Metrics library and lowered all the texts—both
predictions and references—before calculating the scores.

24This method of measuring transfer accuracy demands
access to either paired data for training a classifier or a pre-
trained classier that can accurately estimate the style of an
input text. It is, therefore, difficult to measure transfer accu-
racy for arbitrary or unknown styles, because there may not
be any specific data to train a classifier.

25We release all our fine-tuned classifiers on our codebase.
26Early work used to measure fluency of sentences using

an n-gram (typically trigram) Kneser-Ney language model.

texts using GPT-2-Large (774M).

A.3 Full Results

In the tables below, we include zero-shot results
for the clean versions of AMAZON (Table 11) and
YELP (Table 13), as well as the original versions
of AMAZON (Table 10) and YELP (Table 12). We
also include four-shot results for the clean versions
of AMAZON (Table 14), YELP (Table 15), SHAKE-
SPEARE (Table 16), JFLEG (Table 17), GYAFC
(Table 18), and SYM (Table 19).

A.4 Further Discussion

Sentiment Transfer. Table 15 and Table 16 show
the results for the clean versions of AMAZON and
YELP, respectively. In terms of sentiment accu-
racy, GPT-2-XL yielded the best performance on
both datasets, achieving 70% (87%) positive →
negative accuracy and 56% (72%) negative → pos-
itive on AMAZON (YELP). In both cases, however,
the sBLEU scores of GPT-2-XL were relatively
lower than those of other models, indicating that it
copied more from the source text. The GPT-Neo
models had higher r-sBLEU and s-sBLEU scores
than GPT-2-XL on both AMAZON and YELP, with
only slightly worse accuracy scores. In the case
of YELP-clean especially, the GPT-Neo/J models
achieved good balances of sentiment accuracy, tex-
tual similarity, and fluency.

Shakespeare-to-Modern English Translation.
As shown in Table 14, model performance gen-
erally improves with model size, with GPT-J-6B
achieving almost 80% accuracy (according to the
supervised classifier) and 21.9 r-sBLEU. Also no-
table is the difference between GPT-2-Small’s high
s-sBLEU score and low classifier accuracy, relative
to the other models. Together, these indicate that
the model copies large parts of the input text more
often than the other GPT models.

Formality Transfer and Grammatical Error
Correction. For GYAFC (Table 18), most models
achieved accuracy scores above 80%, with increas-
ing model size correlating with BLEU score. No-
tably, GPT-Neo-2.7B achieved an accuracy score
of 81% and and a r-sBLEU score of 50 in the infor-
mal to formal direction. For JFLEG (Table 17), on
the other hand, most models failed to outperform a
simple baseline, which automatically copied the in-
put text without making any changes. This baseline
achieves a GLEU score of 37.2, better than all mod-
els except GPT-J (which obtains 40.0). Broadly,
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there remains substantial room for improvement on
JFLEG.

Symbolic Manipulation. Our final task is de-
signed to measure the ability of these language
models to copy and manipulate tokens under a re-
fined synthetic experimental setup. With the excep-
tion of GPT-J, no model exceeded 60% accuracy on
this synthetic dataset. GPT-J, by contrast, achieved
74% accuracy.

A.5 Additional Qualitative Examples
We provide additional qualitative examples from
our language models in Tables 22-25.

A.6 Additional Related Work
Here, we describe additional related work on dif-
ferent subtasks of textual style transfer that could
not be included in the main component of the paper
due to space constraints.

These works can be broadly categorized into two
families. The first family of approaches involves
identifying and replacing distinctive style-related
phrases (Li et al. (2018); Sudhakar et al. (2019);
Wu et al. (2019); Madaan et al. (2020); Malmi
et al. (2020); Reid and Zhong (2021), inter alia).
For instance, Madaan et al. (2020) tackle the task
of politeness transfer with a two-step text-editing
approach, first identifying words with stylistic at-
tributes using a n-gram TF-IDF method and then
training a model to replace or augment these stylis-
tic words with ones associated with the target at-
tribute. Similarly, Li et al. (2018) propose a simple
approach to sentiment and style transfer based on
the idea that these attributes can often be identified
by certain distinctive phrases. They identify these
phrases, replace them with phrases associated with
the target attribute, and combine them with an RNN
to improve the fluency of the output text. Recently,
Reid and Zhong (2021) propose to minimize the
Levenshtein edit-distance between source and tar-
get texts, using a fine-tuned LM to make targeted
edits. In general, these approaches perform well
for very simple types of style transfer (e.g., nega-
tion by adding the word not to a sentence), but they
struggle in scenarios that require more complex
syntactic and semantic changes.

The second family of approaches involves disen-
tangling latent representations of style and content
Hu et al. (2017); Shen et al. (2017); Fu et al. (2018);
Luo et al. (2019a); Wang et al. (2020) seek to learn
a style-invariant representation for a piece of text,
such that it can then be decoded in an arbitrary style.

For example, Hu et al. (2017) encoded sentences
into a style-agnostic space and then decode them
in a style-specific manner using a variational au-
toencoder alongside attribute discriminators. Shen
et al. (2017); Fu et al. (2018); Dai et al. (2019);
Wang et al. (2019) improved upon this method-
ology through the use of cross-alignment, style
embeddings, rule-based systems, and new architec-
tures. While these approaches are often theoreti-
cally well-grounded, they generally require large
quantities of labeled data and struggle with scaling
beyond a small number of styles.

A.7 Computational Details
The computational cost of our experiments were
quite low, as they only involve running inference
on pre-trained models. All experiments were con-
ducted on a single GPU. We usde an NVidia V100
for all experiments except those with GPT-J-6B,
for which we used an RTX 8000 due to memory
requirements. We estimate that all experiments for
this paper consumed fewer than 30 GPU-days.

A.8 License Details
We will release all code for this experiment under
an open-source license (MIT License).

A.9 Language Details
All datasets used for this paper are in English.

2209



Dataset [Few-Shot Examples] and [Test-Time Input]

AMAZON

Here is a text, which is positive: {very small but it works great in the car.} Here is a rewrite of the text, which is negative:
{very small and it works terribly in the car.} \n ### \n Here is a text, which is positive: {i really loved it and will use it alot.}
Here is a rewrite of the text, which is negative: {i really disliked it and will not use it again.} \n ### \n Here is a text, which
is positive: {it gets the job done and for the price you can t beat it.} Here is a rewrite of the text, which is negative: {it does
not work well and it was expensive.} \n ### \n Here is a text, which is negative: {i will never buy anything from this brand
again.} Here is a rewrite of the text, which is positive: {i will buy from this brand again.} \n ### \n Here is a text, which is
negative: {if your bike had a kickstand on the plate it won’t lock down. } Here is a rewrite of the text, which is positive: {

YELP

Here is a text, which is negative: {this place is awful!} Here is a rewrite of the text, which is positive: {this place is
amazing!} \n ### \n Here is a text, which is positive: {definitely will buy another pair of socks from this store–they have
the best socks ever} Here is a rewrite of the text, which is negative: {definitely will NOT buy another pair of socks from
this store–they have the worst socks ever} \n ### \n Here is a text, which is negative: {my wife and i were disappointed by
the quality of the service–also, the food was pretty tasteless} Here is a rewrite of the text, which is positive: {my wife
and i were impressive by the quality of the service–also, the food was pretty delicious} \n ### \n Here is a text, which is
positive: {i loved their black tea and hot chocolate selections!} Here is a rewrite of the text, which is negative: {i hated
their black tea and hot chocolate selections!} \n ### \n Here is a text, which is positive: {it’s small yet they make you feel
right at home.} Here is a rewrite of the text, which is negative: {

SHAKESPEARE

Here is a text, which is written in old English: {what hast thou there?} Here is a rewrite of the text, which is written in
modern English: {what have you got there?} \n ### \n Here is a text, which is written in old English: {what say’st thou,
my dear nurse?} Here is a rewrite of the text, which is written in modern English: {what did you say, my dear nurse?} \n
### \n Here is a text, which is written in old English: {and how doth she?} Here is a rewrite of the text, which is written in
modern English: {and how is she doing?} \n ### \n Here is a text, which is written in old English: {talk not to me, for i’ll
not speak a word.} Here is a rewrite of the text, which is written in modern English: {don’t talk to me, because i won’t
answer you.} \n ### \n Here is a text, which is old English: {as mine on hers, so hers is set on mine, and all combined,
save what thou must combine by holy marriage.} Here is a rewrite of the text, which is modern English: {

GYAFC

\n Here is a text, which is informal: {sorry but donnt know if i can do this alone.} Here is a rewrite of the text, which is
formal: {I am sorry, but I don’t know if I can do this alone.} \n ### \n Here is a text, which is formal: {i am going to ask
him to come to the concert with me, and i hope he accepts my invitation.} Here is a rewrite of the text, which is informal:
{gonna ask him to come to the concert with me and hope he says yes :)} \n ### \n Here is a text, which is informal: {that
sucks man but u gotta move on} Here is a rewrite of the text, which is formal: {that is unfortunate, but you need to move
on} \n ### \n Here is a text, which is formal: {and i am sorry that you and your girlfriend broke up last week.} Here is a
rewrite of the text, which is informal: {and im sorry that u and ur girlfriend broke up last week...} \n ### \n Here is a text,
which is formal: {i mean that you have to really be her friend.} Here is a rewrite of the text, which is informal: {

JFLEG

\n Here is a text, which is ungrammatical: {There are several reason.} Here is a rewrite of the text, which is grammatical:
{There are several reasons.} \n ### \n Here is a text, which is ungrammatical: {To my surprize nothing happened.} Here
is a rewrite of the text, which is grammatical: {To my surprise, nothing happened.} \n ### \n Here is a text, which is
ungrammatical: {This is important thing.} Here is a rewrite of the text, which is grammatical: {This is an important
thing.} \n ### \n Here is a text, which is ungrammatical: {Water is needed for alive.} Here is a rewrite of the text, which is
grammatical: {Water is necessary to live.} \n ### \n Here is a text, which is ungrammatical: {New and new technology
has been introduced to the society.} Here is a rewrite of the text, which is grammatical: {

SYM

Here is a text, which is symbolic: {apple > seven} Here is a rewrite of the text, which is English: {apple is greater than
seven} \n ### \n Here is a text, which is symbolic: {tiger < robin} Here is a rewrite of the text, which is English: {tiger is
less than robin} \n ### \n Here is a text, which is symbolic: {teal > green} Here is a rewrite of the text, which is English:
{teal is greater than green} \n ### \n Here is a text, which is symbolic: {apple < dog} Here is a rewrite of the text, which is
English: {apple is less than dog} \n ### \n Here is a text, which is symbolic: {yellow > gray} Here is a rewrite of the text,
which is English: {

Table 9: A complete list of example-prompts used in our few-shot experiments. Here, the color gray is used to
highlight the examples used in our setups and the color teal an example test-time input in each specific TST task.
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Positive → Negative Negative → Positive
Model Delimiter-Pair Acc r-sBLEU s-sBLEU PPL Acc r-sBLEU s-sBLEU PPL

GPT-2-Small
(117M)

⟨·⟩ 0.35 12.4 22.7 34 0.19 11.4 23.6 33
* " · " 0.43 9.0 15.9 42 0.24 7.3 14.5 40
⟩ " · " 0.46 6.6 11.3 29 0.23 6.8 14.1 30
{·} 0.33 14.1 26.4 35 0.18 15.0 31.3 39
– · – 0.40 6.8 12.6 29 0.17 6.5 13.8 26
{{·}} 0.36 27.0 49.7 85 0.20 27.0 56.0 94
(·) 0.35 18.1 32.7 54 0.18 17.6 38.2 59
" · " 0.45 8.2 14.2 32 0.21 8.4 16.2 33
[·] 0.35 18.9 35.5 60 0.21 14.3 29.3 43

⟨⟨⟨·⟩⟩⟩ 0.42 6.4 12.1 24 0.19 6.7 14.1 26

GPT-2-Medium
(345M)

⟨·⟩ 0.42 21.9 37.9 67 0.27 23.2 45.0 72
* " · " 0.46 11.1 20.0 45 0.31 7.8 15.2 32
⟩ " · " 0.45 13.4 22.4 43 0.29 6.2 13.4 27
{·} 0.44 21.6 38.2 73 0.26 19.1 37.1 67
– · – 0.63 4.2 7.0 22 0.31 3.7 7.6 21
{{·}} 0.45 25.3 43.2 69 0.27 20.2 39.8 67
(·) 0.49 19.4 32.4 69 0.31 18.1 35.5 69
" · " 0.47 11.3 19.2 35 0.28 9.2 17.5 34
[·] 0.54 17.1 28.6 63 0.32 13.1 26.3 52

⟨⟨⟨·⟩⟩⟩ 0.47 14.2 25.3 43 0.28 10.8 21.1 35

GPT-2-Large
(774M)

⟨·⟩ 0.38 25.5 43.7 52 0.24 27.8 58.0 73
* " · " 0.39 27.1 46.7 72 0.25 22.9 47.0 60
⟩ " · " 0.39 27.1 46.9 66 0.23 26.5 53.7 70
{·} 0.39 28.7 48.8 77 0.24 28.0 54.8 63
– · – 0.50 8.8 15.4 22 0.22 6.5 13.3 18
{{·}} 0.43 27.7 46.5 63 0.25 36.6 69.3 113
(·) 0.41 22.2 38.9 48 0.26 22.9 45.1 59
" · " 0.52 19.7 31.4 57 0.30 17.7 34.2 48
[·] 0.44 22.0 36.8 53 0.26 19.4 38.7 44

⟨⟨⟨·⟩⟩⟩ 0.47 13.1 21.9 28 0.28 12.2 24.6 25

GPT-2-XL
(1558M)

⟨·⟩ 0.40 26.3 43.0 81 0.31 25.9 48.2 82
* " · " 0.42 22.7 39.3 60 0.29 17.6 33.3 44
⟩ " · " 0.43 20.8 35.1 54 0.29 17.9 34.0 47
{·} 0.47 23.8 37.6 73 0.31 22.7 42.5 80
– · – 0.56 5.6 9.0 19 0.28 4.3 7.8 18
{{·}} 0.42 29.8 49.8 99 0.29 25.7 46.4 80
(·) 0.45 16.4 28.8 41 0.28 17.8 33.6 53
" · " 0.47 16.1 26.2 38 0.30 14.6 28.4 41
[·] 0.46 19.2 30.8 60 0.32 16.4 31.4 52

⟨⟨⟨·⟩⟩⟩ 0.51 9.0 13.9 25 0.37 7.4 12.7 26

GPT-Neo-1.3B
(1.3B)

⟨·⟩ 0.48 14.9 26.1 48 0.29 11.0 21.5 40
* " · " 0.41 15.1 26.8 36 0.25 13.8 28.5 44
⟩ " · " 0.38 19.7 36.0 60 0.26 18.9 37.4 48
{·} 0.48 11.0 18.7 32 0.30 8.8 16.6 31
– · – 0.54 5.0 8.6 18 0.30 4.9 9.6 18
{{·}} 0.49 15.3 25.0 47 0.31 13.6 24.6 42
(·) 0.44 14.3 25.3 44 0.27 15.5 29.1 51
" · " 0.39 19.5 33.4 50 0.25 15.8 31.4 37
[·] 0.46 15.1 27.0 51.7 0.26 15.1 30.4 47

⟨⟨⟨·⟩⟩⟩ 0.56 5.9 9.2 28 0.32 4.6 8.1 22

GPT-Neo-2.7B
(2.7B)

⟨·⟩ 0.43 20.0 36.1 53 0.27 22.2 43.8 59
* " · " 0.37 26.2 46.7 65 0.21 26.8 54.1 65
⟩ " · " 0.37 26.1 45.9 68 0.22 23.6 50.7 60
{·} 0.44 21.6 37.7 61 0.29 27.1 51.4 80
– · – 0.56 4.4 7.7 15 0.23 4.0 8.2 14
{{·}} 0.42 23.7 42.0 56 0.24 29.5 58.5 72
(·) 0.44 19.7 32.9 48 0.27 21.1 40.9 64
" · " 0.38 26.1 44.5 67 0.22 26.3 52.7 67
[·] 0.48 20.3 35.6 67 0.25 22.4 42.9 58

⟨⟨⟨·⟩⟩⟩ 0.45 14.1 24.8 32 0.22 21.0 42.1 55

GPT-J-6B
(6B)

⟨·⟩ 0.40 27.3 47.0 74 0.32 17.0 32.7 51
* " · " 0.38 29.2 49.5 82 0.28 23.4 42.9 61
⟩ " · " 0.36 27.4 47.2 69 0.30 23.1 43.6 64
{·} 0.41 27.8 47.6 80 0.32 24.9 45.6 78
– · – 0.43 7.1 12.3 19 0.20 4.8 9.0 17
{{·}} 0.29 30.4 54.9 72 0.29 26.8 51.1 76
(·) 0.48 24.9 41.6 80 0.35 22.3 39.3 77
" · " 0.39 28.6 47.3 69 0.31 23.0 42.4 64
[·] 0.43 23.3 38.2 63 0.37 20.8 38.3 60

⟨⟨⟨·⟩⟩⟩ 0.34 30.3 55.6 98 0.31 23.6 44.2 67

Table 10: Zero-shot performances of the off-the-shelf “small” language models from the GPT-2 and GPT-Neo/J
families on the original version of the AMAZON dataset. Here, we also experimented with ten different delimiter-
pairs, ranging from curly brackets to asterisk quotes: Overall, curly brackets {·}, square brackets [·], parentheses (·),
and quotes " · " yielded consistently reliable and high-quality outputs. Most of the models could not go beyond
60% accuracy in the positive to negative direction and 35% accuracy in the negative to positive direction. As shown
in Table 11, most models performed marginally better (in terms of their accuracy, BLEU, and PPL scores) on
the cleaner version of the dataset, suggesting that the original version might contain some tokenization-related
(semantic) noises that might be preventing the models from performing well.
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Positive → Negative Negative → Positive
Model Delimiter-Pair Acc r-sBLEU s-sBLEU PPL Acc r-sBLEU s-sBLEU PPL

GPT-2-Small
(117M)

⟨·⟩ 0.34 17.9 33.4 47 0.19 13.7 30.5 42
* " · " 0.43 8.1 14.8 38 0.26 7.9 16.3 37
⟩ " · " 0.45 6.3 11.6 29 0.25 7.7 15.4 32
{·} 0.31 18.9 34.9 49 0.18 17.7 38.1 48
– · – 0.42 6.6 12.0 24 0.21 6.6 13.7 26
{{·}} 0.28 30.4 56.7 90 0.19 28.4 60.9 81
(·) 0.34 22.2 39.1 57 0.21 18.7 40.1 48
" · " 0.46 8.7 15.9 35 0.27 7.3 14.9 34
[·] 0.32 19.9 35.4 59 0.20 18.4 39.7 55

⟨⟨⟨·⟩⟩⟩ 0.39 9.3 17.0 31 0.20 9.0 18.8 28

GPT-2-Medium
(345M)

⟨·⟩ 0.43 19.3 33.7 49 0.28 16.8 33.4 47
* " · " 0.52 10.4 17.2 31 0.33 7.6 15.1 29
⟩ " · " 0.46 10.4 17.6 30 0.32 6.3 12.9 25
{·} 0.48 21.9 36.7 68 0.32 20.1 38.0 57
– · – 0.57 3.9 6.8 20 0.29 3.1 5.9 18
{{·}} 0.45 23.3 40.1 62 0.31 21.2 41.1 64
(·) 0.45 19.9 33.1 50 0.32 17.6 35.3 58
" · " 0.49 9.8 16.1 31 0.35 7.0 12.8 25
[·] 0.50 15.7 25.9 42 0.30 13.2 26.1 46

⟨⟨⟨·⟩⟩⟩ 0.48 8.8 14.8 26 0.31 10.1 19.2 30

GPT-2-Large
(774M)

⟨·⟩ 0.40 26.3 44.6 68 0.29 22.9 43.4 52
* " · " 0.44 23.5 40.9 54 0.27 18.8 36.9 42
⟩ " · " 0.43 20.8 36.0 44 0.29 19.4 39.2 42
{·} 0.44 28.6 49.1 70 0.28 26.0 51.2 55
– · – 0.40 7.3 12.0 17 0.36 7.4 13.8 19
{{·}} 0.43 31.0 53.1 90 0.29 31.3 60.0 79
(·) 0.39 23.0 39.1 51 0.26 23.3 45.3 61
" · " 0.47 18.1 29.8 47 0.31 16.8 32.7 48
[·] 0.47 20.2 34.3 50 0.26 17.5 34.1 42

⟨⟨⟨·⟩⟩⟩ 0.49 9.9 16.2 21 0.27 9.4 18.2 22

GPT-2-XL
(1558M)

⟨·⟩ 0.40 25.6 42.0 68 0.29 23.1 43.0 65
* " · " 0.36 22.5 39.4 48 0.31 18.7 37.5 47
⟩ " · " 0.40 18.8 31.5 43 0.27 19.2 37.8 46
{·} 0.46 21.5 35.4 59 0.32 22.3 41.4 70
– · – 0.53 7.2 11.7 23 0.32 6.9 11.8 21
{{·}} 0.45 25.7 43.2 81 0.31 24.8 45.4 72
(·) 0.48 19.3 30.7 52 0.30 17.8 33.4 53
" · " 0.45 20.5 33.6 49 0.31 17.9 33.4 51
[·] 0.47 21.1 33.4 55 0.32 19.2 34.7 55

⟨⟨⟨·⟩⟩⟩ 0.47 7.8 13.1 24 0.38 6.8 12.5 25

GPT-Neo-1.3B
(1.3B)

⟨·⟩ 0.50 11.4 20.1 38 0.30 10.6 19.7 34
* " · " 0.38 15.0 25.0 37 0.26 11.9 22.4 31
⟩ " · " 0.40 12.6 22.1 35 0.26 11.3 22.2 29
{·} 0.49 11.8 19.9 34 0.31 10.9 20.5 35
– · – 0.50 4.1 6.8 18 0.25 4.4 8.5 18
{{·}} 0.48 13.9 23.9 41 0.35 12.4 22.9 38
(·) 0.42 16.6 27.8 53 0.28 13.1 25.8 42
" · " 0.45 13.8 24.8 36 0.30 12.4 24.7 32
[·] 0.46 16.7 28.1 45 0.26 14.7 28.5 43

⟨⟨⟨·⟩⟩⟩ 0.57 3.4 5.8 20 0.36 3.1 5.5 18

GPT-Neo-2.7B
(2.7B)

⟨·⟩ 0.44 20.1 34.8 51 0.29 19.5 38.3 46
* " · " 0.40 27.2 47.9 61 0.22 28.9 57.6 58
⟩ " · " 0.37 21.8 39.4 45 0.21 22.5 45.6 41
{·} 0.48 21.4 36.5 55 0.28 23.7 45.9 57
– · – 0.56 3.9 6.7 14 0.26 3.8 7.4 13
{{·}} 0.43 21.2 36.2 44 0.27 28.0 55.7 56
(·) 0.48 17.0 28.7 42 0.32 19.5 36.8 52
" · " 0.38 25.6 44.5 58 0.22 28.6 58.2 59
[·] 0.48 18.7 32.1 47 0.26 23.3 46.2 50

⟨⟨⟨·⟩⟩⟩ 0.49 14.8 24.9 33 0.32 18.7 37.3 37

GPT-J-6B
(6B)

⟨·⟩ 0.40 25.0 43.4 66 0.35 20.1 35.7 56
* " · " 0.42 26.8 44.8 60 0.33 23.5 41.9 56
⟩ " · " 0.39 29.3 50.3 65 0.31 24.2 44.8 64
{·} 0.41 26.1 44.6 57 0.33 27.1 47.7 72
– · – 0.46 5.9 9.7 17 0.23 4.6 8.6 17
{{·}} 0.30 29.9 53.8 56 0.30 27.5 52.3 73
(·) 0.44 21.0 34.8 53 0.37 19.5 37.7 64
" · " 0.41 27.8 45.7 63 0.34 25.3 45.2 62
[·] 0.45 20.1 34.0 53 0.36 20.8 37.7 65

⟨⟨⟨·⟩⟩⟩ 0.39 28.3 47.4 66 0.32 25.6 47.2 66

Table 11: Zero-shot performances of the off-the-shelf “small” language models on the clean version of the AMAZON
dataset (AMAZON-clean, in short). As before, none of the models could go beyond the 60% accuracy level, but
most of them seem to have achieved slightly better perplexity scores in the clean version of the dataset than in the
original version.
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Positive → Negative Negative → Positive
Model Delimiter-Pair Acc r-sBLEU s-sBLEU PPL Acc r-sBLEU s-sBLEU PPL

GPT-2-Small
(117M)

⟨·⟩ 0.38 10.1 29.7 49 0.11 13.8 40.6 47
* " · " 0.41 3.1 10.6 31 0.21 4.4 14.0 33
⟩ " · " 0.33 4.8 13.4 31 0.15 6.5 18.6 31
{·} 0.36 8.4 23.3 35 0.15 7.8 23.5 34
– · – 0.45 4.5 12.0 28 0.14 6.7 19.3 33
{{·}} 0.37 13.4 38.9 62 0.11 16.6 49.1 54
(·) 0.36 8.0 25.2 42 0.13 10.9 32.7 46
" · " 0.37 4.9 13.7 30 0.18 6.7 20.3 35
[·] 0.36 6.8 20.7 38 0.12 8.7 25.2 31

⟨⟨⟨·⟩⟩⟩ 0.43 2.1 5.8 17 0.09 2.1 6.4 17

GPT-2-Medium
(345M)

⟨·⟩ 0.55 9.9 27.0 44 0.31 10.3 28.2 38
* " · " 0.64 7.4 17.5 40 0.38 7.2 16.7 33
⟩ " · " 0.52 5.5 15.3 26 0.31 5.8 14.8 26
{·} 0.66 7.6 17.6 34 0.35 8.7 24.1 34
– · – 0.69 4.6 11.3 30 0.36 5.0 12.3 27
{{·}} 0.68 12.2 30.3 52 0.32 14.8 36.6 58
(·) 0.63 8.5 22.1 46 0.32 10.5 26.8 48
" · " 0.66 5.1 13.1 29 0.41 6.3 15.2 30
[·] 0.66 8.4 22.0 36 0.32 8.1 21.0 33

⟨⟨⟨·⟩⟩⟩ 0.64 1.8 4.7 16 0.24 2.2 5.9 16

GPT-2-Large
(774M)

⟨·⟩ 0.65 14.5 36.8 54 0.22 17.3 46.7 38
* " · " 0.61 13.8 33.7 43 0.27 15.8 44.4 45
⟩ " · " 0.57 16.2 44.0 59 0.27 18.7 51.4 53
{·} 0.68 12.8 30.6 41 0.26 13.5 37.5 38
– · – 0.64 8.9 22.3 31 0.24 9.7 26.3 25
{{·}} 0.69 18.2 45.9 75 0.24 20.6 58.2 55
(·) 0.68 10.6 26.0 40 0.28 15.4 40.6 46
" · " 0.74 12.0 25.9 44 0.34 14.3 34.7 42
[·] 0.70 8.3 20.2 31 0.28 9.7 26.2 32

⟨⟨⟨·⟩⟩⟩ 0.73 6.1 14.8 21 0.27 6.9 17.7 19

GPT-2-XL
(1558M)

⟨·⟩ 0.67 15.0 35.3 59 0.41 16.4 40.4 54
* " · " 0.67 10.0 25.0 35 0.37 13.0 31.6 36
⟩ " · " 0.66 10.4 25.8 41 0.34 12.5 30.2 39
{·} 0.78 9.7 21.1 41 0.41 12.1 30.1 40
– · – 0.74 6.4 13.9 25 0.37 6.3 14.2 20
{{·}} 0.67 17.2 38.9 61 0.35 18.8 49.2 66
(·) 0.72 8.6 18.5 35 0.40 12.4 28.3 42
" · " 0.72 9.7 23.3 41 0.38 10.3 24.9 34
[·] 0.72 9.2 22.0 35 0.41 10.1 23.5 31

⟨⟨⟨·⟩⟩⟩ 0.70 4.0 9.5 18 0.39 4.6 11.0 17

GPT-Neo-1.3B
(1.3B)

⟨·⟩ 0.61 6.5 16.0 28 0.38 6.8 15.7 26
* " · " 0.31 13.3 38.7 33 0.24 13.5 35.4 37
⟩ " · " 0.24 16.9 52.1 54 0.21 15.7 45.8 44
{·} 0.66 3.2 8.4 19 0.38 5.3 12.2 21
– · – 0.52 2.9 8.4 17 0.30 4.4 11.2 20
{{·}} 0.60 9.1 23.6 35 0.39 8.5 21.2 30
(·) 0.59 6.8 18.6 34 0.27 11.1 31.1 47
" · " 0.46 14.9 40.2 54 0.23 14.9 40.1 47
[·] 0.57 8.1 20.8 38 0.36 8.4 22.1 33

⟨⟨⟨·⟩⟩⟩ 0.68 1.3 3.8 17 0.38 1.9 4.1 16

GPT-Neo-2.7B
(2.7B)

⟨·⟩ 0.68 8.3 21.8 28 0.28 12.5 33.1 31
* " · " 0.56 14.1 39.1 54 0.18 18.1 51.9 51
⟩ " · " 0.54 12.1 34.3 43 0.21 15.9 46.4 42
{·} 0.63 7.5 19.5 27 0.26 12.4 32.8 32
– · – 0.63 3.4 8.5 16 0.26 3.7 9.8 14
{{·}} 0.55 12.0 32.9 40 0.20 16.2 48.1 42
(·) 0.73 7.3 18.0 38 0.34 13.6 34.2 47
" · " 0.55 12.6 33.2 42 0.17 15.4 45.9 42
[·] 0.62 8.0 21.3 33 0.27 13.7 37.0 39

⟨⟨⟨·⟩⟩⟩ 0.64 4.6 12.6 21 0.27 7.1 18.5 20

GPT-J-6B
(6B)

⟨·⟩ 0.60 14.9 37.6 52 0.44 14.4 33.0 51
* " · " 0.57 16.2 41.0 57 0.36 16.1 37.1 49
⟩ " · " 0.52 16.4 43.3 62 0.32 17.2 42.6 56
{·} 0.60 13.6 36.1 51 0.46 14.3 32.0 46
– · – 0.60 4.4 11.4 20 0.27 3.7 8.9 17
{{·}} 0.44 16.2 44.4 50 0.34 17.8 43.0 56
(·) 0.64 11.3 29.2 46 0.50 15.8 34.1 57
" · " 0.57 12.7 34.0 52 0.37 14.8 34.5 43
[·] 0.58 13.6 35.3 56 0.51 13.1 29.1 44

⟨⟨⟨·⟩⟩⟩ 0.47 16.1 45.3 58 0.40 13.5 31.7 43

Table 12: Zero-shot performances of the off-the-shelf “small” language models on the original version of the YELP
dataset. Amongst all the model architectures, GPT-J-6B had the finest results, both quantitatively and qualitatively.
We also note the performance differences between the positive to negative direction and the negative to positive
direction across all the experiments. It appears that the former direction is easier for all the models than the latter
direction. Furthermore, as in the case of AMAZON, Table 13 illustrates that most models performed slightly better
in the the clean version of YELP than in the original version.2213



Positive → Negative Negative → Positive
Model Delimiter-Pair Acc r-sBLEU s-sBLEU PPL Acc r-sBLEU s-sBLEU PPL

GPT-2-Small
(117M)

⟨·⟩ 0.34 13.1 37.9 52 0.14 12.9 38.2 50
* " · " 0.38 3.2 9.2 30 0.23 3.7 11.3 29
⟩ " · " 0.38 3.1 10.4 25 0.16 5.3 14.9 27
{·} 0.36 6.6 19.3 28 0.12 8.2 25.7 29
– · – 0.43 4.3 12.4 24 0.12 5.3 16.7 27
{{·}} 0.37 16.0 45.0 67 0.12 17.2 54.0 59
(·) 0.42 8.2 22.5 34 0.13 12.1 37.9 37
" · " 0.35 4.9 15.4 33 0.21 6.1 18.5 30
[·] 0.42 8.3 23.0 41 0.13 11.3 35.9 39

⟨⟨⟨·⟩⟩⟩ 0.50 1.5 4.0 14 0.11 1.9 5.9 15

GPT-2-Medium
(345M)

⟨·⟩ 0.57 8.9 23.7 37 0.31 9.4 27.3 39
* " · " 0.64 5.8 14.5 31 0.41 5.4 14.7 29
⟩ " · " 0.52 5.7 16.7 28 0.30 5.6 15.0 26
{·} 0.65 7.3 19.9 37 0.33 10.5 28.6 41
– · – 0.66 3.9 9.7 23 0.34 3.0 7.4 20
{{·}} 0.63 13.1 33.5 52 0.31 12.7 35.5 48
(·) 0.64 9.4 25.3 44 0.29 11.8 33.8 44
" · " 0.63 5.2 14.2 29 0.42 6.1 15.9 27
[·] 0.64 7.0 18.4 35 0.33 8.2 22.4 33

⟨⟨⟨·⟩⟩⟩ 0.62 1.9 5.0 15 0.24 1.7 4.8 14

GPT-2-Large
(774M)

⟨·⟩ 0.63 14.3 36.3 46 0.27 17.9 48.2 44
* " · " 0.65 13.5 33.3 47 0.35 12.5 34.6 36
⟩ " · " 0.61 13.9 35.9 47 0.32 15.3 42.9 44
{·} 0.67 12.0 28.8 40 0.30 12.5 33.8 30
– · – 0.65 5.0 13.7 18 0.26 7.3 19.8 20
{{·}} 0.75 17.2 39.9 59 0.31 21.3 58.1 62
(·) 0.69 12.2 29.2 47 0.31 14.6 40.7 46
" · " 0.77 11.8 27.3 41 0.37 11.7 29.6 34
[·] 0.75 10.3 24.7 40 0.38 12.9 32.9 38

⟨⟨⟨·⟩⟩⟩ 0.72 3.6 9.1 16 0.31 4.2 10.7 15

GPT-2-XL
(1558M)

⟨·⟩ 0.64 17.4 40.1 58 0.35 17.3 41.5 53
* " · " 0.69 11.3 28.2 40 0.41 12.6 31.3 33
⟩ " · " 0.71 9.7 22.1 36 0.35 11.6 28.6 34
{·} 0.73 8.6 21.3 35 0.46 11.4 25.9 35
– · – 0.70 6.0 15.4 23 0.39 6.8 17.5 25
{{·}} 0.63 17.4 40.9 70 0.38 19.1 46.8 59
(·) 0.72 10.8 25.0 45 0.39 14.0 31.1 41
" · " 0.77 7.6 17.6 31 0.44 9.9 23.1 30
[·] 0.75 10.8 24.9 38 0.41 12.0 29.9 43

⟨⟨⟨·⟩⟩⟩ 0.68 2.2 5.4 14 0.32 2.0 5.1 13

GPT-Neo-1.3B
(1.3B)

⟨·⟩ 0.68 6.5 16.7 27 0.42 6.9 17.6 29
* " · " 0.38 12.5 37.0 37 0.22 12.5 36.2 33
⟩ " · " 0.32 13.7 42.3 41 0.19 16.1 47.9 40
{·} 0.69 4.6 10.5 22 0.37 6.3 15.3 23
– · – 0.58 3.1 8.1 18 0.33 4.2 11.1 17
{{·}} 0.69 7.2 17.0 30 0.40 8.9 20.6 27
(·) 0.63 8.6 21.3 39 0.28 8.3 23.3 28
" · " 0.47 12.6 35.2 43 0.30 13.8 35.6 36
[·] 0.68 8.3 21.4 40 0.34 8.6 23.9 30

⟨⟨⟨·⟩⟩⟩ 0.72 1.2 2.9 15 0.38 1.7 3.6 15

GPT-Neo-2.7B
(2.7B)

⟨·⟩ 0.66 8.8 23.4 31 0.32 13.9 35.3 36
* " · " 0.58 14.5 36.9 42 0.17 17.4 51.1 42
⟩ " · " 0.54 13.8 38.3 43 0.21 13.2 39.9 32
{·} 0.64 7.0 19.0 24 0.28 11.0 32.6 29
– · – 0.68 3.4 9.1 17 0.26 5.0 14.3 16
{{·}} 0.57 11.0 29.3 31 0.24 15.5 46.1 35
(·) 0.76 10.3 23.1 44 0.41 14.4 33.6 43
" · " 0.59 12.5 33.6 42 0.21 14.9 43.4 38
[·] 0.66 9.6 23.7 32 0.29 14.9 42.4 43

⟨⟨⟨·⟩⟩⟩ 0.64 5.4 14.4 21 0.27 8.1 21.7 23

GPT-J-6B
(6B)

⟨·⟩ 0.62 14.1 35.3 50 0.47 14.7 33.4 44
* " · " 0.55 17.1 43.9 65 0.40 13.2 31.8 41
⟩ " · " 0.61 16.9 41.6 56 0.38 13.3 30.5 37
{·} 0.61 14.3 34.7 49 0.48 13.5 30.6 43
– · – 0.54 5.4 14.7 22 0.36 4.8 10.9 19
{{·}} 0.42 14.7 42.3 38 0.33 17.5 45.0 53
(·) 0.66 12.9 30.7 50 0.51 11.5 23.4 44
" · " 0.66 15.7 36.1 55 0.40 16.6 36.2 45
[·] 0.69 11.8 28.7 45 0.53 13.3 27.3 43

⟨⟨⟨·⟩⟩⟩ 0.53 10.7 29.8 35 0.43 11.4 25.4 30

Table 13: Zero-shot performances of the off-the-shelf “small” language models on the clean version of the YELP
dataset (YELP-clean, in short). In contrast to Table 12, we note that models, overall, achieved better results in
YELP-clean than in YELP-original. Some models even could go beyond the 75% accuracy level in the positive to
negative direction. Consistent with the previous findings, these results also indicate that curly brackets {·}, square
brackets [·], parentheses (·), and quotes " · " are favourable delimiter-pairs, leading to better outcomes than many
other delimiter-pairs. 2214



Shakespearean → Modern English
Model Setting Acc r-sBLEU s-sBLEU PPL

GPT-2-Small (117M) 4-Shot (Top Choice) 0.35 17.1 42.4 65
GPT-2-Medium (345M) 4-Shot (Top Choice) 0.50 7.1 13.9 65

GPT-2-Large (774M) 4-Shot (Top Choice) 0.38 14.1 30.9 134
GPT-2-XL (1558M) 4-Shot (Top Choice) 0.39 18.9 38.4 90

GPT-Neo-1.3B (1.3B) 4-Shot (Top Choice) 0.39 17.2 37.0 63
GPT-Neo-2.7B (2.7B) 4-Shot (Top Choice) 0.62 23.9 41.4 106

GPT-J-6B (6B) 4-Shot (Top Choice) 0.78 21.9 31.8 81

Table 14: Four-shot performances of the off-the-shelf “small” language models on the clean version of the
SHAKESPEARE corpus. In this few-shot setup, we included a simple natural-language task description and four
illustrative examples in the prompt. We note that GPT-J-6B was able to “translate” sentences written in Elizabethan
English to Modern English successfully, achieving a transfer accuracy score of 78%, reference BLEU score of 21.9,
and perplexity value of 81.

Positive → Negative Negative → Positive
Model Setting Acc r-sBLEU s-sBLEU PPL Acc r-sBLEU s-sBLEU PPL

Style-Embedding

Li et al. (2018)

0.33 16.2 33.2 265 0.47 13.1 29.0 287
CrossAligned 0.66 2.2 3.0 93 0.74 1.7 2.4 96

DeleteAndRetrieve 0.49 33.3 60.3 120 0.51 26.7 53.5 113
TemplateBased 0.65 38.1 70.5 243 0.56 31.0 65.7 200

GPT-2-Small
(117M)

0-Shot (Top Choice) 0.31 18.9 34.9 49 0.18 17.7 38.1 48
4-Shot (Top Choice) 0.32 23.8 46.1 94 0.25 27.7 58.2 67
4-Shot (RC: 3, IF) 0.42 21.1 39.2 68 0.32 24.6 51.0 69
4-Shot (RC: 3, FS) 0.38 23.0 43.5 73 0.30 27.2 52.4 77

GPT-2-Medium
(345M)

0-Shot (Top Choice) 0.48 21.9 36.7 68 0.32 20.1 38.0 57
4-Shot (Top Choice) 0.44 12.3 17.8 78 0.42 11.5 17.8 72
4-Shot (RC: 3, IF) 0.58 12.6 18.6 66 0.55 10.2 15.0 53
4-Shot (RC: 3, FS) 0.52 7.2 10.0 59 0.50 5.6 9.0 56

GPT-2-Large
(774M)

0-Shot (Top Choice) 0.44 28.6 49.1 70 0.28 26.0 51.2 55
4-Shot (Top Choice) 0.47 17.1 27.7 54 0.32 15.0 27.4 101
4-Shot (RC: 3, IF) 0.60 15.4 24.7 62 0.43 15.6 27.7 59
4-Shot (RC: 3, FS) 0.55 21.6 33.1 55 0.35 20.0 34.7 53

GPT-2-XL
(1558M)

0-Shot (Top Choice) 0.46 21.5 35.4 59 0.32 22.3 41.4 70
4-Shot (Top Choice) 0.63 13.7 20.3 65 0.44 14.5 22.3 60
4-Shot (RC: 3, IF) 0.70 11.5 17.2 77 0.56 13.2 19.9 50
4-Shot (RC: 3, FS) 0.66 11.5 16.6 54 0.50 14.8 19.7 58

GPT-Neo-1.3B
(1.3B)

0-Shot (Top Choice) 0.49 11.8 19.9 34 0.31 10.9 20.5 35
4-Shot (Top Choice) 0.53 22.1 35.8 68 0.34 22.0 39.6 67
4-Shot (RC: 3, IF) 0.60 21.2 33.4 66 0.39 21.6 36.2 65
4-Shot (RC: 3, FS) 0.56 22.2 33.1 67 0.32 20.9 32.6 63

GPT-Neo-2.7B
(2.7B)

0-Shot (Top Choice) 0.48 21.4 36.5 55 0.28 23.7 45.9 57
4-Shot (Top Choice) 0.52 22.3 33.7 74 0.35 22.3 39.5 74
4-Shot (RC: 3, IF) 0.60 21.7 32.3 69 0.42 20.6 34.9 66
4-Shot (RC: 3, FS) 0.55 21.2 30.2 65 0.40 19.2 29.7 60

GPT-J-6B
(6B)

0-Shot (Top Choice) 0.41 26.1 44.6 57 0.33 27.1 47.7 72
4-Shot (Top Choice) 0.59 20.5 31.9 69 0.46 18.1 28.8 60
4-Shot (RC: 3, IF) 0.65 21.5 31.4 70 0.52 19.3 29.3 58
4-Shot (RC: 3, FS) 0.64 17.0 24.7 61 0.50 18.6 25.7 59

Table 15: Four-shot results on AMAZON-clean. We show the average results under (i) the zero-shot setting (0-Shot
(Top Choice)); (ii) the four-shot setting in which we chose the top beam search result (4-Shot (Top Choice); (iii) the
four-shot setting in which we generated three outputs from the model, re-scored and re-ranked them according to
the textual similarity and style factors—ignoring the fluency aspect—(4-Shot (RC: 3, IF)); and (iv) the four-shot
setting in which we generated three outputs from the model, re-scored and re-ranked them according to the textual
similarity, style, and fluency factors (4-Shot (RC: 3, FS). (Here, “RC” denotes to the re-ranking-and-choosing
method, “IF” ignoring fluency, and “FS” full set (meaning that we consider all the textual similarity, transfer
accuracy, and fluency criteria). First, we stress that proving few-shot examples in the input resulted in 10-15%
improvements in the accuracy scores in most of our models (see 0-shot results vs. 4-shot results). Second, we
highlight that some of our off-the-shelf models (e.g., GPT-2-XL and GPT-J-6B) performed on par with, and
even succeeded the performances of, the specially-tailored models of Li et al. (2018) along certain metrics. (For
instance, our off-the-shelf models achieve significantly lower perplexity rates than theirs.) Third, we note that the
Prompt-and-Rerank method (described in §3.2) seems to boost the models’ performances in almost all the cases.
Fourth, we note that 4-Shot (RC: 3, IF) often performs noticeably better than 4-Shot (RC: 3, FS) across all the
models, suggesting that we may not need to include the fluency factor in our re-scoring calculations after all.
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Positive → Negative Negative → Positive
Model Setting Acc r-sBLEU s-sBLEU PPL Acc r-sBLEU s-sBLEU PPL

BackTranslation (Prabhumoye et al., 2018) 0.90 2.0 2.7 120 0.99 1.9 2.6 64

UnpairedRL (Xu et al., 2018) 0.42 16.1 46.0 408 0.56 17.5 45.3 362

CrossAlignment (Shen et al., 2017) 0.72 7.3 19.3 244 0.74 8.3 19.3 190

Multidecoder (Fu et al., 2018) 0.42 13.4 43.2 376 0.49 12.6 35.5 369
StyleEmbedding 0.08 19.7 71.3 154 0.10 18.9 62.7 197

Style-Embedding

Li et al. (2018)

0.08 19.7 71.3 154 0.10 18.9 62.7 197
Delete-Only 0.89 12.7 33.1 195 0.81 14.0 34.7 169

Retrieve-Only 1.00 1.1 2.1 93 0.98 1.8 2.8 86
CrossAligned 0.72 7.3 19.3 244 0.74 8.3 19.3 190

DeleteAndRetrieve 0.90 14.5 36.8 279 0.89 14.8 35.9 100
TemplateBased 0.84 21.2 55.2 289 0.83 20.9 55.7 190

DualR (Luo et al., 2019b) 0.91 26.5 58.7 125 0.85 25.3 58.8 141

B-GST (Sudhakar et al., 2019) 0.83 19.8 46.8 153 0.79 23.4 46.1 163

Multi-Class (StyleTransformer,
Dai et al. (2019))

0.94 26.3 61.0 177 0.77 26.5 65.0 173
Conditional 0.95 22.6 52.6 211 0.87 23.1 53.0 234

GPT-2-Small
(117M)

0-Shot (Top Choice) 0.36 6.6 19.3 28 0.12 8.2 25.7 29
4-Shot (Top Choice) 0.08 24.8 75.2 94 0.10 23.1 74.1 81
4-Shot (RC: 3, IF) 0.14 21.5 71.0 73 0.17 18.5 58.5 99
4-Shot (RC: 3, FS) 0.06 26.7 84.6 72 0.09 27.9 85.4 68

GPT-2-Medium
(345M)

0-Shot (Top Choice) 0.65 7.3 19.9 37 0.33 10.5 28.6 41
4-Shot (Top Choice) 0.49 14.5 34.1 72 0.35 13.3 35.2 56
4-Shot (RC: 3, IF) 0.68 15.0 35.1 69 0.53 12.6 29.8 45
4-Shot (RC: 3, FS) 0.43 20.4 46.4 74 0.40 17.7 43.5 48

GPT-2-Large
(774M)

0-Shot (Top Choice) 0.67 12.0 28.8 40 0.30 12.5 33.8 30
4-Shot (Top Choice) 0.79 16.6 32.8 84 0.57 14.5 31.0 74
4-Shot (RC: 3, IF) 0.79 10.6 24.7 79 0.58 12.1 30.3 53
4-Shot (RC: 3, FS) 0.58 23.0 56.8 76 0.45 22.1 53.5 64

GPT-2-XL
(1558M)

0-Shot (Top Choice) 0.73 8.6 21.3 35 0.46 11.4 25.9 35
4-Shot (Top Choice) 0.63 13.7 20.3 65 0.44 14.5 22.3 60
4-Shot (RC: 3, IF) 0.87 14.8 28.7 65 0.72 12.0 25.3 55
4-Shot (RC: 3, FS) 0.77 21.1 38.7 85 0.62 18.0 35.2 70

GPT-Neo-1.3B
(1.3B)

0-Shot (Top Choice) 0.69 4.6 10.5 22 0.37 6.3 15.3 23
4-Shot (Top Choice) 0.78 14.8 30.2 58 0.45 14.5 32.0 56
4-Shot (RC: 3, IF) 0.85 14.6 30.1 59 0.61 13.1 28.3 42
4-Shot (RC: 3, FS) 0.77 22.5 46.1 87 0.49 23.5 46.1 72

GPT-Neo-2.7B
(2.7B)

0-Shot (Top Choice) 0.64 7.0 19.0 24 0.28 11.0 32.6 29
4-Shot (Top Choice) 0.83 22.8 42.7 89 0.42 21.8 47.1 89
4-Shot (RC: 3, IF) 0.88 23.5 45.8 96 0.52 22.0 48.0 69
4-Shot (RC: 3, FS) 0.80 24.5 44.5 87 0.48 23.9 48.4 68

GPT-J-6B
(6B)

0-Shot (Top Choice) 0.61 14.3 34.7 49 0.48 13.5 30.6 43
4-Shot (Top Choice) 0.81 25.3 50.5 107 0.52 21.7 48.7 82
4-Shot (RC: 3, IF) 0.87 23.0 47.7 80 0.65 20.2 44.6 58
4-Shot (RC: 3, FS) 0.79 25.9 51.5 78 0.55 26.3 50.0 67

Table 16: Four-shot results on YELP-clean. As before, we detail the average results under different zero- and
few-shot settings: Overall, our few-shot results on YELP-clean are consistent with those on AMAZON-clean, as
reported in Table 15. GPT-2-XL and GPT-J-6B models, amongst all the models, have achieved the most successful
performances, leveling themselves almost with the custom-made (trained) state-of-the-art models. We present some
of the generated examples from these models in Table 21.
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Ungrammatical → Grammatical
Model Setup GLEU r-sBLEU s-sBLEU PPL

GPT-2-Small (117M) 4-Shot (Top Choice) 35.9 74.8 91.5 76
GPT-2-Medium (345M) 4-Shot (Top Choice) 19.9 38.0 40.6 63

GPT-2-Large (774M) 4-Shot (Top Choice) 30.0 56.8 64.1 55
GPT-2-XL (1558M) 4-Shot (Top Choice) 24.8 46.2 47.0 57

GPT-Neo-1.3B (1.3B) 4-Shot (Top Choice) 26.6 48.4 49.4 54
GPT-Neo-2.7B (2.7B) 4-Shot (Top Choice) 34.5 57.4 54.1 40

GPT-J-6B (6B) 4-Shot (Top Choice) 40.0 64.8 59.1 48

Table 17: Four-shot performances of the off-the-shelf “small” language models on the clean version of the JFLEG
corpus. In this task, as a baseline, we consider the model which directly copies its input—we call this model
“copy-input” model; this model achieves a GLEU score score 37.7. All but GPT-J-6B fail to beat the performance of
the baseline “copy-input” model. GPT-J-6B, on the other hand, achieves a GLEU score of 40.0. Small language
models fail, in fact rather miserably, at this grammatical error correction task. There is therefore an open room for
improvement. We hope that our results will encourage researchers to come up with more effective ways to utilize
pre-trained language models to solve this challenging problem.

Informal → Formal
Model Setup Accuracy r-sBLEU s-sBLEU PPL

GPT-2-Small (117M) 4-Shot (Top Choice) 0.85 6.1 8.7 41
GPT-2-Medium (345M) 4-Shot (Top Choice) 0.76 12.9 16.2 39

GPT-2-Large (774M) 4-Shot (Top Choice) 0.78 23.2 31.3 33
GPT-2-XL (1558M) 4-Shot (Top Choice) 0.82 32.7 41.9 58

GPT-Neo-1.3B (1.3B) 4-Shot (Top Choice) 0.85 36.4 49.6 68
GPT-Neo-2.7B (2.7B) 4-Shot (Top Choice) 0.81 50.0 61.2 64

GPT-J-6B (6B) 4-Shot (Top Choice) 0.69 47.9 52.3 49

Table 18: Four-shot results on GYAFC-clean. We highlight that most of the off-the-shelf “small” language
models could obtain at least 80% accuracy in the informal to formal direction. Amongst all the models, GPT-2-XL,
GPT-Neo-1.3B, and GPT-Neo-2.7B appeared to be most successful, achieving not only high accuracy scores but
also high BLEU scores and relatively low perplexity rates.

Model Correct-Class Accuracy Opposite-Class Accuracy reference-sBLEU

GPT-2-Small 0.42 0.46 51.9
GPT-2-Medium 0.46 0.46 60.3

GPT-2-Large 0.53 0.35 65.6
GPT-2-XL 0.56 0.38 68.5

GPT-Neo-1.3B 0.55 0.37 67.3
GPT-Neo-2.7B 0.57 0.38 69.6

GPT-J-6B 0.74 0.21 81.9

Table 19: Four-shot performances of the off-the-shelf “small” language models on the symbolic manipulation task
(SYM) defined in §5.1. Correct-Class accuracy refers to the accuracy of the model under exact-string matching,
whereas Opposite-Class accuracy refers to the fraction of the cases for which the model copied and placed the
right input words in the output but verbalized the incorrect (opposite) inequality symbol, that is writing “less than”
instead of “greater than” or vice versa in between the expressions (for instance, the ground-truth might be “olive is
greater than cat”, but the model might have generated “olive is less than cat.”) It was surprising to discover that
most models failed to go beyond 60% accuracy on this small dataset. GPT-J-6B, on the other hand, outperformed
all the other models, achieving an accuracy score of 74% on this task. We also remark that of the cases for which
the models failed to generate the correct output, they often were able to copy the appropriate words from the input
but failed to write the correct inequality symbol at the end.
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Positive → Negative Negative → Positive
Model Setting Acc r-sBLEU s-sBLEU PPL Acc r-sBLEU s-sBLEU PPL

GPT-2-Small
(117M)

4-Shot, Vanilla 0.14 25.3 82.1 79 0.13 24.9 80.6 75
4-Shot, Contrastive 0.14 21.5 71. 0 73 0.17 18.5 58.5 99

4-Shot, Negation-v1 0.05 25.2 83.7 72 0.07 23.1 75.3 68
4-Shot, Negation-v2 0.06 25.4 84.5 75 0.08 25.3 83.0 74

GPT-2-Medium
(345M)

4-Shot, Vanilla 0.63 19.7 49.4 75 0.38 17.7 49.7 62
4-Shot, Contrastive 0.68 15.0 35.1 69 0.53 12.6 29.8 45
4-Shot, Negation-v1 0.34 15.7 41.6 63 0.22 15.4 42.3 55
4-Shot, Negation-v2 0.36 14.1 39.2 63 0.30 12.6 36.2 51

GPT-2-Large
(774M)

4-Shot, Vanilla 0.75 16.2 38.9 60 0.52 17.2 45.6 55
4-Shot, Contrastive 0.79 10.6 24.7 79 0.58 12.1 30.3 53
4-Shot, Negation-v1 0.41 10.8 30.1 79 0.27 13.4 36.7 59
4-Shot, Negation-v2 0.14 16.9 52.1 57 0.22 12.6 36.3 59

GPT-2-XL
(1558M)

4-Shot, Vanilla 0.86 15.6 32.0 59 0.70 13.8 29.9 58
4-Shot, Contrastive 0.87 14.8 28.7 65 0.72 12.0 25.3 55
4-Shot, Negation-v1 0.83 11.8 24.1 81 0.50 14.9 32.0 54
4-Shot, Negation-v2 0.53 19.0 43.5 77 0.51 16.9 37.7 61

GPT-Neo-1.3B
(1.3B)

4-Shot, Vanilla 0.80 17.2 38.5 80 0.52 14.5 35.6 50
4-Shot, Contrastive 0.85 14.6 30.1 59 0.61 13.1 28.3 42
4-Shot, Negation-v1 0.79 16.1 34.7 72 0.00 0.0 0.0 0
4-Shot, Negation-v2 0.57 16.5 40.6 67 0.00 0.0 0.0 0

GPT-Neo-2.7B
(2.7B)

4-Shot, Vanilla 0.86 24.7 51.2 104 0.43 24.3 54.9 74
4-Shot, Contrastive 0.88 23.5 45.8 96 0.52 22.0 48.0 69
4-Shot, Negation-v1 0.80 22.5 47.8 79 0.00 0.0 0.0 0
4-Shot, Negation-v2 0.76 22.0 48.2 85 0.00 0.0 0.0 0

GPT-J-6B
(6B)

4-Shot, Vanilla 0.90 23.5 51.0 85 0.62 22.8 49.9 63
4-Shot, Contrastive 0.87 23.0 47.7 80 0.65 20.2 44.6 58
4-Shot, Negation-v1 0.82 23.6 50.9 85 0.53 24.3 54.7 65
4-Shot, Negation-v2 0.73 25.1 59.1 95 0.48 25.2 58.1 66

Table 20: Four-shot performances of the off-the-shelf “small” language models on the YELP-clean dataset under
different prompting protocols. Rows are bolded according to best accuracy scores. Across all models, the vanilla
and contrastive prompting protocols appear to yield the most favourable results, though the contrastive prompting
protocol typically performs better than the vanilla prompting protocol along the accuracy dimension, but not
necessarily along the r-sBLEU dimension. We, however, note that in the case of GPT-J-6B, vanilla prompting
performs on par with contrastive prompting overall.
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Model Text
Input (P→N) the staff is awesome and location is right in the heart of old town!

GPT-2-Small the staff is awesome and location is right in the heart of old town!
GPT-2-Medium the staff was great but the location was an even higher priority.
GPT-2-Large the staff is awful and location is not in the center of old town!
GPT-2-XL the staff was kind of awful, location was kind of a shithole
GPT-Neo-1.3B the staff is awful and location is just a couple minutes away from the city center!
GPT-Neo-2.7B the staff is terrible and location is just outside of old town!
GPT-J-6B the staff is terrible and location is in the middle of nowhere!

Input (P→N) he always looks gorgeous and is so happy when i pick him up!

GPT-2-Small he always looks gorgeous and is so happy when i pick him up!
GPT-2-Medium he always looks so sad and upset by the fact that i pick him up!
GPT-2-Large he always looks ugly and is so sad when i pick him up!
GPT-2-XL he never looks gorgeous and is so sad when i pick him up!
GPT-Neo-1.3B he always looks awful and is so sad when i pick him up!
GPT-Neo-2.7B he always looks horrible and is so unhappy when i pick him up!
GPT-J-6B he always looks ugly and is so sad when i pick him up!

Input (N→P) the food was low quality and thrown together quickly with little flavor.

GPT-2-Small the food was low quality and thrown together quickly with little flavor.
GPT-2-Medium the food was high quality and thrown together quickly with a great flavor.
GPT-2-Large the food was excellent and was cooked to perfection by very skilled and professional server-chefs.
GPT-2-XL the food was high quality and tasted really good.
GPT-Neo-1.3B the food was high quality and tasted amazing!
GPT-Neo-2.7B the food was fantastic and presented exceptionally with excellent quality and excellent flavors!
GPT-J-6B the food was delicious and prepared with a lot of care!

Input (N→P) we went there on a busy holiday weekend and the service was extremely slow.

GPT-2-Small we went there on a busy holiday weekend and the service was extremely slow.
GPT-2-Medium we went there on a busy holiday weekend and the service was exceptional!
GPT-2-Large we did go there on a busy holiday weekend–it was fast!
GPT-2-XL we went there on a quiet weekend and the service was very fast.
GPT-Neo-1.3B we went there on a busy holiday weekend and the service was exceptional!
GPT-Neo-2.7B we went there on a slow holiday weekend and the service was extremely fast
GPT-J-6B we went there on a busy holiday weekend and the service was extremely fast.

Input (P→N) i love the outside seating and the reverse happy hour is incredibly affordable.

GPT-2-Small i love the outside seating and the reverse happy hour is unbelievably affordable.

GPT-2-Medium i love everything about this place–the music is great, everyone is super nice, and they have
amazing desserts that are affordable.

GPT-2-Large i loved the outside seating and the reverse happy hour is insanely expensive.
GPT-2-XL i hate the outside seating and the reverse happy hour.
GPT-Neo-1.3B i hate the outside seating and the reverse happy hour is incredibly costly.
GPT-Neo-2.7B i hate the outside seating and the reverse happy hour is outrageously expensive.
GPT-J-6B i hate the outside seating and the reverse happy hour is incredibly expensive.

Input (N→P) the service is mediocre and the restaurant is just average.

GPT-2-Small i love their black tea and hot chocolate selections!

GPT-2-Medium i liked their black tea and hot chocolate selections; i was impressed by the quality of the food
and service

GPT-2-Large the service is wonderful!
GPT-2-XL the service is great, and the restaurant is great!
GPT-Neo-1.3B the service and the restaurant are just average.
GPT-Neo-2.7B the service and the restaurant are just wonderful!
GPT-J-6B the service is remarkable and the restaurant is amazing.

Table 21: Qualitative examples of sentiment transfer on YELP-clean. We manually highlight in blue and red phrases
that we find to be associated with the input and target styles, respectively.

2219



Model Text
Input (N→P) it works for maybe a few minutes and wears off quickly.

GPT-2-Small it does not wear or work well when driving.
GPT-2-Medium i think that it may have something to do with this brand.
GPT-2-Large it works well for a while, but it wears off very quickly.
GPT-2-XL it only does a few minutes’ worth of work and then gives up.
GPT-Neo-1.3B it can be used for a few minutes, but wears off quickly.
GPT-Neo-2.7B it lasts a lifetime and wears off after a few hours.
GPT-J-6B it works for a few hours and wears well.

Input (N→P) i am only giving this item num_num stars because of the absurd price.

GPT-2-Small i am only giving this item num_num stars because of the absurd price.
GPT-2-Medium i will buy some num_num stars and will use them to have an extra day off when i work.
GPT-2-Large i am only giving this item stars because it got a good review.
GPT-2-XL i will NOT purchase this item again.
GPT-Neo-1.3B i really liked it and i will do it more often.
GPT-Neo-2.7B i am giving this item num_num stars, because of the absurd price.
GPT-J-6B i am only giving this item 5 stars because it works perfect and the price is reasonable.

Input (N→P) would have been alot nicer if it simply threaded in with the correct alignment.

GPT-2-Small would have been alot nicer if it simply threaded in with the correct alignment.
GPT-2-Medium it works perfectly.
GPT-2-Large would have been so much better if the plastic was a bit thicker.
GPT-2-XL would have been great if it just threaded in properly.
GPT-Neo-1.3B would have been alot nicer if it simply threaded in with the correct alignment.
GPT-Neo-2.7B it is very nice but it does not fit in properly at all.
GPT-J-6B it works just fine and there is zero frustration with the way the threading is implemented.

Input (P→N) it fulfills my modest requirements, and exceeds my expectations in appearance.

GPT-2-Small it isn’t good enough. I would buy from this brand again.
GPT-2-Medium it doesn’t fit my needs and falls short in other areas.

GPT-2-Large it did not fulfill my modest requirements, and did not exceed my expectations in appearance, and
would not fit well in the car.

GPT-2-XL it does not meet my expectations in appearance.
GPT-Neo-1.3B it does not fit my expectations and it does not fulfill my modest requirements in appearance.
GPT-Neo-2.7B it doesn t fulfill my modest requirements, and i found it to be unsatisfactory.
GPT-J-6B it fails to meet my needs, and is disappointing to look at.

Input (P→N) great headset, solid build quality and blocks out the wind.

GPT-2-Small i hate it
GPT-2-Medium lots of dust on here and can be worn.
GPT-2-Large not worth buying and not worth the price. It’s just too large.
GPT-2-XL i hate it, it is terrible.
GPT-Neo-1.3B dreadful headset, terrible quality and wind blocks out the audio quality.
GPT-Neo-2.7B lousy headset, hard to unblock the wind.
GPT-J-6B great headset, but it does not work great in the wind.

Input (P→N) i dropped phone once and the case held up perfectly.

GPT-2-Small i dropped phone once and the case held up perfectly.
GPT-2-Medium i dropped phone as a result.
GPT-2-Large i never dropped my phone once and the case held up fine.
GPT-2-XL i dropped phone twice and the case was damaged.
GPT-Neo-1.3B i dropped it and it was very broken.
GPT-Neo-2.7B i dropped phone as many times as I dropped a brick.
GPT-J-6B i dropped the phone and the case broke into pieces.

Table 22: Qualitative examples of sentiment transfer on AMAZON-clean. We manually highlight in blue and red
phrases that we find to be associated with the input and target styles, respectively.
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Model Text
Input follow ur heart... it’s neva wrong

GPT-2-Small follow my heart.
GPT-2-Large follow your heart... its nova wrong...
GPT-2-Medium follow your heart... its nova wrong
GPT-2-XL follow ur heart and be the man you always wanted to be and never had.
GPT-J-6B follow your heart... it is never wrong
GPT-Neo-1.3B follow your heart... its neva wrong
GPT-Neo-2.7B follow your heart... it’s never wrong

Input if u you act like dat all da time she might think u desperate.

GPT-2-Small if u acts like dat all, she might think that u wanna be happy with something and u dont want dat
to break up with you, you will regret it, and she will become jealous. it is good...

GPT-2-Medium if u u are always like dat..
GPT-2-Large if you act like dat all da time she might think you desperate...
GPT-2-XL if u u act like dat all da time she might think u desperate :)
GPT-Neo-1.3B if u you act like dat everytime she thinks u desperately searching.
GPT-Neo-2.7B if u you act like dat all da time she might think u desperate...
GPT-J-6B if you act like that all the time she might think you desperate

Input dont do things tht can get you hurt.

GPT-2-Small but im sorry that u can do it and u can’t leave
GPT-2-Medium do things which i’m sure u will like.
GPT-2-Large don’t do things that can get you hurt
GPT-2-XL dont do things that can end up getting u hurt.
GPT-Neo-1.3B do things that can get you hurt.
GPT-Neo-2.7B do not do things that can get you hurt.
GPT-J-6B dont do things that might hurt you

Table 23: Qualitative examples of sentiment transfer on GYAFC-clean. We manually highlight in blue and red
phrases that we find to be associated with the input and target styles, respectively.

Model Text

Input Fo example, in this genaration people watch movies and listen to musics more than read books
and novels.

GPT-2-Small Fo example, in this genaration people watch movies and listen to musics more than read books
and novels.

GPT-2-Medium In this generation people watch movies more than read books and novels.

GPT-2-Large Fo example, in this genaration people watch movies and listen to musics more than read books
and novels.

GPT-2-XL Fo example, in this example people watch movies and listen to music more than read books.

GPT-Neo-1.3B Example, in this genaration people watch movies and listen to musics more than read books and
novels.

GPT-Neo-2.7B Examples, in this generation, people watch movies and listen to music, whereas, reading books
and novels is limited.

GPT-J-6B For example, in this generation, people are watching movies and listening to musics more than
reading books and novels.

Input they are the boney and vital part o the society.

GPT-2-Small They are the most important part of the society.
GPT-2-Medium they are the vital part of the kingdom.
GPT-2-Large they are the vital and boney parts of the society.
GPT-2-XL they are the vital part, the boney part, and the society.
GPT-Neo-1.3B they are the vital part of society.
GPT-Neo-2.7B they are the boney and vital part of society.
GPT-J-6B they are the bone and vital part of the society.

Input And I am completely disagree with what the auther want to say.

GPT-2-Small And I am completely disagree with what the auther want to say.
GPT-2-Medium And I am entirely disagree with what the auther want to say.
GPT-2-Large And I am completely disagree with what the auther want to say
GPT-2-XL And I think the auther want to say completely differently.
GPT-Neo-1.3B And I disagree with what he say.
GPT-Neo-2.7B And I absolutely disagree with what the author want to say.
GPT-J-6B I completely disagree with what the author wants to say.

Table 24: Qualitative examples on JFLEG-clean. We manually highlight in blue and red phrases that we find to be
associated with the input and target styles, respectively.
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Model Text
Input romeo, doff thy name; and for that name, which is no part of thee, take all myself

GPT-2-Small speak you, my dear nurse, to me...
GPT-2-Medium Romeo, Romeo, Romeo.
GPT-2-Large romo, doff thy name, take all myself, all i’ll say is, you’re a dirty old man.
GPT-2-XL roome, doff thy name; and for that name, which is no part of thee, take all myself.
GPT-Neo-1.3B romeo, get out of my sight; get out, i’ll not have it.
GPT-Neo-2.7B rommy, get rid of your name; and because your name, which is no part of you, needs to get rid of, take all of me.
GPT-J-6B romeo, take off your name, and for that name, which is not part of you, take all of me.

Input now art thou sociable, now art thou romeo; now art thou what thou art, by art as well as by nature.

GPT-2-Small now art thou romeo, now art thou romeo; now art thee what thou art, by art as well as by nature.
GPT-2-Medium what I have said in thy speech thou hast said enough of me, wherewith to destroy thy soul.
GPT-2-Large now art thou sociable, now art thou romeo; now art thou what thou art, by art as well as by nature.
GPT-2-XL now is thou sociable, now is thou Romeo; now is thou what thou art, by nature as well as by nature.
GPT-Neo-1.3B and now art thou what thou art, by art as well as by nature.
GPT-Neo-2.7B now are you sociable, now are you romeo; now are you what you are, by nature.
GPT-J-6B now you are friendly, now you are Romeo; now you are who you are, by nature as well as by art.

Input the sweetest honey is loathsome in his own deliciousness and in the taste confounds the appetite.

GPT-2-Small the sweetest honey is loathsome in his own deliciousness and in the taste confounds the appetite.
GPT-2-Medium sweetest honey, sweetest bread, sweetest wine, sweetest dainties, do them to the soul’s delights.
GPT-2-Large the sweetest honey is loathsome in his own deliciousness; in the taste confounds the appetite.
GPT-2-XL the most sweet and clearest honey is loathsome in the taste and in the very smell confounds the appetite.

GPT-Neo-1.3B the honey is sweeter than ever it was in the honeycomb, and is almost enough to make one lose their senses and
die a corpse.

GPT-Neo-2.7B the sweetest milk is foul and sickly in his own deliciousness and in the taste confounds the appetite.
GPT-J-6B the sweetest honey is disgusting in its own deliciousness and in its taste it confounds the appetite.

Input unless philosophy can make a juliet, displant a town, reverse a prince’s doom, it helps not, it prevails not.

GPT-2-Small what am I thinking of?*

GPT-2-Medium if philosophy can make a juliet, supplant your King, reverse his doom, reverse a prince’s doom, reverse a king’s
doom.

GPT-2-Large unless philosophy can make a juliet, displant a town, reverse a prince’s doom, it helps not, it prevails not.
GPT-2-XL unless it can convert a whore into a knight, it does not make it jolly.
GPT-Neo-1.3B unless philosophy can make a juliet, a town, reverse a prince’s doom, it helps not, it prevails not.

GPT-Neo-2.7B unless philosophy can make a Juliet, cause a town to explode, reverse a prince’s downfall, it helps not, it prevails
not.

GPT-J-6B unless philosophy can make a Juliet, overturn a town, reverse a prince’s doom, it doesn’t help, it doesn’t work.

Input night’s candles are burnt out, and jocund day stands tiptoe on the misty mountain tops.

GPT-2-Small not here
GPT-2-Medium and when night comes, the sun sets and stars all flicker in the distance.
GPT-2-Large night’s candles are burnt out, and jocund day stands in a field of snow.
GPT-2-XL night’s candles are burning out, and jocund day is standing still on the misty mountain tops.
GPT-Neo-1.3B night’s fires are out and the day stands up above the foggy mountains.
GPT-Neo-2.7B night’s candles are burnt out; day’s gone to bed and evening’s at hand; the sun is setting on the mountain tops.
GPT-J-6B day is over, and night is approaching, and it stands on its tiptoes over the misted mountain tops.

Input nor tears nor prayers shall purchase out abuses, therefore use none.

GPT-2-Small nor tears nor prayers shall purchase out abuses, therefore use none
GPT-2-Medium nor tears nor prayers shall purchase out abuses, therefore use none.
GPT-2-Large use none, for abuse is in the eyes of a man.
GPT-2-XL no tears nor prayers shall buy out abuses, therefore I will not use any.
GPT-Neo-1.3B nor tears nor prayers shall have any power, therefore use none.
GPT-Neo-2.7B nor prayers nor tears will do any good, therefore use none.
GPT-J-6B and tears and prayers won’t work for you, so don’t use them.

Input and here stands all your state: either be gone before the watch be set, or by the break of day disguised from hence.

GPT-2-Small and here stands all your state: either be gone before the watch be set, or by the break of day disguised from hence.
GPT-2-Medium and this day there is nothing but the city.
GPT-2-Large but where is the watch?
GPT-2-XL and here stands all your state: either be gone before the watch, or by the break of day disguised from hence.
GPT-Neo-1.3B and here stands all your state: either be gone before the watch be set, or by the break of day disguised from hence.
GPT-Neo-2.7B and this is all you get: either go before the watch is set, or before the break of day dressed like a thief from hence.
GPT-J-6B and here is all your stuff: either leave now or you’ll have to deal with us when it’s morning.

Table 25: Qualitative examples on SHAKESPEARE-clean. We manually highlight in blue and red phrases that we
find to be associated with the input and target styles, respectively. (Footnote *: Pray tell us, what are you thinking of
right now?)
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