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Abstract

Model interpretability methods are often used
to explain NLP model decisions on tasks such
as text classification, where the output space
is relatively small. However, when applied to
language generation, where the output space
often consists of tens of thousands of tokens,
these methods are unable to provide informa-
tive explanations. Language models must con-
sider various features to predict a token, such
as its part of speech, number, tense, or seman-
tics. Existing explanation methods conflate ev-
idence for all these features into a single expla-
nation, which is less interpretable for human
understanding.

To disentangle the different decisions in lan-
guage modeling, we focus on explaining lan-
guage models contrastively: we look for
salient input tokens that explain why the model
predicted one token instead of another. We
demonstrate that contrastive explanations are
quantifiably better than non-contrastive expla-
nations in verifying major grammatical phe-
nomena, and that they significantly improve
contrastive model simulatability for human ob-
servers. We also identify groups of contrastive
decisions where the model uses similar evi-
dence, and we are able to characterize what in-
put tokens models use during various language
generation decisions.1

1 Introduction

Despite their success across a wide swath of natural
language processing (NLP) tasks, neural language
models (LMs) are often used as black boxes: how
they make certain predictions remains obscure (Be-
linkov and Glass, 2019). This is in part due to the
high complexity of the LM task itself, as well as
that of the model architectures used to solve it.

We argue that this is also due to the fact that inter-
pretability methods commonly used in NLP, such

∗∗Work done while at Carnegie Mellon University.
1Code and demo: https://github.com/kayoyin/interpret-lm.

Input: Can you stop the dog from
Output: barking

1. Why did the model predict “barking”?
Can you stop the dog from

2. Why did the model predict “barking” instead of “crying”?
Can you stop the dog from

3. Why did the model predict “barking” instead of “walking”?
Can you stop the dog from

Table 1: Explanations for the GPT-2 prediction given
the input “Can you stop the dog from _____". Input to-
kens that are measured to raise or lower the probability
of “barking” are in red and blue respectively, and those
with little influence are in white. Non-contrastive ex-
planations such as gradient× input (1) usually attribute
the highest saliency to the token immediately preceding
the prediction. Contrastive explanations (2, 3) give a
more fine-grained and informative explanation on why
the model predicted one token over another.

as gradient-based saliency maps (Li et al., 2016a;
Sundararajan et al., 2017), are not as informative
for LM predictions compared to other tasks like
text classification. For example, to explain why an
LM predicts “barking” given “Can you stop the
dog from ____”, we demonstrate in experiments
that the input token preceding the prediction is of-
ten marked as the most influential token to the pre-
diction (Table 1) by instance attribution methods.
The preceding token is indeed highly important to
determine certain features of the next token, ruling
out words that would obviously violate syntax in
that context (e.g. non “-ing” verbs in the given
example). However, this does not explain why the
model made other more subtle decisions, such as
why it predicts “barking” instead of “crying” or

“walking”, which are all plausible choices if we only
look at the preceding token. In general, language
modeling has a large output space and a high com-
plexity compared to other NLP tasks; at each time
step, the LM chooses one word out of all vocabu-
lary items, and several linguistic distinctions come
into play for each language model decision.
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To better explain LM decisions, we propose inter-
preting LMs with contrastive explanations (Lipton,
1990). Contrastive explanations aim to identify
causal factors that lead the model to produce one
output instead of another output. We believe that
contrastive explanations are especially useful to
handle the complexity and the large output space
of language modeling. In Table 1, the second ex-
planation suggests that the input word “dog” makes
“barking” more likely than a verb not typical for
dogs such as “crying”, and the third explanation
suggests that the input word “stop” increases the
likelihood of “barking” over a verb without nega-
tive connotations such as “walking”.

In this paper, we first extend three interpretabil-
ity methods to compute contrastive explanations
(§3). We then perform a battery of experiments
aimed at examining to what extent these contrastive
explanations are superior to their non-contrastive
counterparts from various perspectives:

• RQ1: Are contrastive explanations better at
identifying evidence that we believe, a-priori,
to be useful to capture a variety of linguistic
phenomena (§4)?

• RQ2: Do contrastive explanations allow hu-
man observers to better simulate language
model behavior (§5)?

• RQ3: Are different types of evidence neces-
sary to disambiguate different types of words,
and does the evidence needed reflect (or un-
cover) coherent linguistic concepts (§6)?

2 Background

2.1 Model Explanation

Our work focuses on model explanations that com-
municate why a model made a certain prediction.
Particularly, we focus on methods that compute
saliency scores S(xi) over input features xi to re-
veal which input tokens are most relevant for a
prediction: the higher the saliency score, the more
xi supposedly contributed to the model output.

Despite a large body of literature examining
input feature explanations for NLP models on
tasks such as text classification (for a complete
review see Belinkov and Glass (2019); Madsen
et al. (2021)), or interpreting how language mod-
els use linguistic features such as syntax (Ravfogel
et al., 2021; Finlayson et al., 2021), few works
attempt to explain language modeling predictions

(Wallace et al., 2019). Despite the importance of
both language models and interpretability in the
NLP literature, the relative paucity of work in this
area may be somewhat surprising, and we posit that
this may be due to the large output space of lan-
guage models necessitating the use of techniques
such as contrastive explanations, which we detail
further below.

2.2 Contrastive Explanations

Contrastive explanations attempt to explain why
given an input x the model predicts a target yt
instead of a foil yf . Relatedly, counterfactual
explanations explore how to modify the input x so
that the model more likely predicts yf instead of yt
(McGill and Klein, 1993).

While contrastive and counterfactual explana-
tions have been explored to interpret model deci-
sions (see Stepin et al. (2021) for a broad survey),
they are relatively new to NLP and have not yet
been studied to explain language models.

Recently, Jacovi et al. (2021) produce counter-
factual explanations for text classification mod-
els by erasing certain features from the input and
projecting the input representation to the “con-
trastive space” that minimally separates two de-
cision classes. Then, they compare model probabil-
ities before and after the intervention.

We, on the other hand, propose contrastive ex-
planations for language modeling, where both the
number of input factors and the output space are
much larger. While we also use a counterfactual ap-
proach with erasure (§3.3), counterfactual methods
may become intractable over long input sequences
and a large foil space. We, therefore, also propose
contrastive explanations using gradient-based meth-
ods (§3.1,§3.2) that measure the saliency of input
tokens for a contrastive model decision.

3 Contrastive Explanations for
Language Models

In this section, we describe how we extend three
existing input saliency methods to the contrastive
setting. These methods can also be easily adapted
to tasks beyond language modeling, such as ma-
chine translation (Appendix A).

3.1 Gradient Norm

Simonyan et al. (2013); Li et al. (2016a) calculate
saliency scores based on the norm of the gradient of
the model prediction, such as the output logit, with
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respect to the input. Applying this method to LMs
entails first calculating the gradient as follows:

g(xi) = ∇xiq(yt|x)
where x is the input sequence embedding, yt is
the next token in the input sequence, q(yt|x) is the
model output for the token yt given the input x.

Then, we obtain the saliency score for the input
token xi by taking the L1 norm:

SGN (xi) = ||g(xi)||L1
We extend this method to the Contrastive Gra-

dient Norm defined by:

g∗(xi) = ∇xi (q(yt|x)− q(yf |x))
S∗GN (xi) = ||g∗(xi)||L1

where q(yf |x) is the model output for foil yf given
the input x. This tells us how much an input token
xi influences the model to increase the probability
of yt while decreasing the probability of yf .

3.2 Gradient × Input
For the gradient × input method (Shrikumar et al.,
2016; Denil et al., 2014), instead of taking the L1
norm of the gradient, we take the dot product of
the gradient with the input token embedding xi:

SGI(xi) = g(xi) · xi
We define the Contrastive Gradient × Input:

S∗GI(xi) = g∗(xi) · xi

3.3 Input Erasure
Erasure-based methods measure how erasing cer-
tain parts of the input affects the output (Li et al.,
2016b). This can be measured as the difference
between the model output given the input x and
given the input where xi has been zeroed out, x¬i:

SE(xi) = q(yt|x)− q(yt|x¬i)
We define the Contrastive Input Erasure:

S∗E(xi) =

(q(yt|x)− q(yt|x¬i))− (q(yf |x)− q(yf |x¬i))
This measures how much erasing xi from the input
makes the foil more likely and the target less likely.

Although erasure-based methods directly mea-
sure the change in the output due to a perturbation
in the input, while gradient-based methods approx-
imate this measurement, erasure is usually more
computationally expensive due to having to run the
model on all possible input perturbations.

4 Do Contrastive Explanations Identify
Linguistically Appropriate Evidence?

First, we ask whether contrastive explanations are
quantifiably better than non-contrastive explana-
tions in identifying evidence that we believe a pri-
ori should be important to the LM decision. In
order to do so, we develop a methodology in which
we specify certain types of evidence that indicate
how to make particular types of linguistic distinc-
tions, and measure how well each variety of expla-
nation method uncovers this specified evidence.

4.1 Linguistic Phenomena

As a source of linguistic phenomena to study, we
use the BLiMP dataset (Warstadt et al., 2020). This
dataset contains 67 sets of 1,000 pairs of minimally
different English sentences that contrast in gram-
matical acceptability. An example of a linguis-
tic paradigm may be anaphor number agreement,
where an acceptable sentence is “Many teenagers
were helping themselves.” and a minimally con-
trastive unacceptable sentence is “Many teenagers
were helping herself.” because in the latter, the
number of the reflexive pronoun does not agree
with its antecedent.

From this dataset, we chose 12 paradigms be-
longing to 5 phenomena and created a set of rules
to identify the input tokens that enforce grammat-
ical acceptability. In the previous example, the
anaphor agreement is enforced by the antecedent
“teenagers”. We show examples for each linguistic
phenomenon and its associated rule in Table 2.

Anaphor Agreement. The gender and number
of a pronoun must agree with its antecedent. We
implement the coref rule using spaCy (Honnibal
and Montani, 2017) and NeuralCoref2 to extract all
input tokens coreferent with the target token.

Argument Structure. Certain arguments can
only appear with certain verbs. For example, many
action verbs must be used with animate objects.
We implement the main_verb rule using spaCy to
extract the main verb of the input sentence.

Determiner-Noun Agreement. Demonstrative
determiners and the associated noun must agree.
We implement the det_noun rule by generating the
dependency tree using spaCy and extracting the
determiner of the target noun.

2https://github.com/huggingface/neuralcoref
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Phenomenon Acceptable Example Unacceptable Example Rule

Anaphor Agreement
Katherine can’t help herself. Katherine can’t help himself. coref
Many teenagers were helping themselves. Many teenagers were helping herself. coref

Argument Structure Amanda was respected by some waitresses. Amanda was respected by some picture. main_verb

Determiner-Noun Agreement
Phillip was lifting this mouse. Phillip was lifting this mice. det_noun
Tracy praises those lucky guys. Tracy praises those lucky guy. det_noun

NPI Licensing Even these trucks have often slowed. Even these trucks have ever slowed. npi

Subject-Verb Agreement A sketch of lights doesn’t appear. A sketch of lights don’t appear. subj_verb

Table 2: Examples of BLiMP minimal pairs. Contrastive tokens are bolded. Tokens extracted by our rules that
enforce grammatical acceptability are underlined.

NPI Licensing. Certain negative polarity items
(NPI) are only allowed to appear in certain con-
texts, e.g. “never” appears on its own, while “ever”
generally must be preceded by “not”. In all of our
examples with NPI licensing, the word “even” is
an NPI that can appear in the acceptable example
but not in the unacceptable example, so we create
the npi rule that extracts this NPI.

Subject-Verb Agreement. The number of the
subject and its verb must agree. We implement
the subj_verb rule by generating the dependency
tree using spaCy to extract the subject of the verb.

4.2 Alignment Metrics
We use three metrics to quantify the alignment
between an explanation and the known evidence
enforcing a linguistic paradigm. The explanation is
a vector S of the same size as the input x, where
the i-th element Si gives the saliency score of the
input token xi. The known evidence is represented
with a binary vector E , also of same size as the
input x, where Ei = 1 if the token xi enforces a
grammatical rule on the model decision.

Dot Product. The dot product S · E measures
the sum of saliency scores of all input tokens that
are part of the known evidence.

Probes Needed (Zhong et al., 2019; Yin et al.,
2021b). We measure the number of tokens we
need to probe, based on the explanation S, to find
a token that is in the known evidence. This corre-
sponds to the ranking of the first token xi such that
Gi = 1 after sorting tokens by descending saliency.

Mean Reciprocal Rank (MRR). We calculate
the average of the inverse of the rank of the first
token that is part of the known evidence if the to-
kens are sorted in descending saliency. This also
corresponds to the average of the inverse of the
probes needed for each sentence evaluated.

Dot Product and Probes Needed calculate align-
ment for each sentence, and we compute the aver-
age over all sentence-wise alignment scores for the
alignment score over a linguistic paradigm. MRR
calculates alignment over an entire paradigm.
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Figure 1: Alignment of GPT-2 (left) and GPT-Neo
(right) explanations to known evidence according to dot
product (top), probes needed (middle), mean reciprocal
rank (bottom) averaged over linguistic paradigms.

4.3 Results
We use GPT-2 (Radford et al., 2019) and GPT-Neo
(Black et al., 2021) to extract explanations. GPT-
2 is a large autoregressive transformer-based LM
with 1.5 billion parameters and trained on 8 mil-
lion web pages. GPT-Neo is a similar LM with 2.7
billion parameters and trained on The Pile (Gao
et al., 2020) containing 825.18GB of largely En-
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glish text. In addition to the explanation methods
described above, we also set up a random baseline
as a comparison, where we create a vector of the
same size as explanations with values randomly
sampled from a uniform distribution over [0, 1).

In Figure 1, we can see that overall, contrastive
explanations have a higher alignment with linguis-
tic paradigms than their non-contrastive counter-
parts for both GPT-2 and GPT-Neo across the differ-
ent metrics. Although non-contrastive explanations
do not always outperform the random baseline, con-
trastive explanations have a better alignment with
BLiMP than random vectors for most cases.

Correct Incorrect

DP (↑) PN (↓) MRR (↑) DP (↑) PN (↓) MRR (↑)

Rand 0.34 1.66 0.57 0.27 2.05 0.50
SGN 0.36 1.45 0.58 0.37 1.60 0.56
S∗GN 0.50 1.33 0.61 0.48 1.71 0.57
SGI 0.26 1.44 0.59 0.24 1.72 0.55
S∗GI 0.36 1.25 0.64 -0.05 1.27 0.64
SE -0.51 1.34 0.64 0.44 1.30 0.55
S∗E 0.29 1.13 0.68 0.18 1.71 0.55

Table 3: Alignment of GPT-2 explanations to known
evidence on examples where the model makes a correct
(left) and incorrect (right) prediction, according to dot
product (DP), probes needed (PN), and mean reciprocal
rank (MRR). Alignment scores that are better than the
score for the analogous explanation method with the
different contrastive setting are bolded.

In Table 3, we further examined alignment be-
tween model explanations and known evidence
on instances where the model correctly allocates
more probability to the acceptable token, or incor-
rectly selects the other token. On examples where
the model makes an incorrect prediction, it is not
clear whether non-contrastive or contrastive meth-
ods have better alignment. On examples where the
model predicts correctly, contrastive explanations
obtain better alignment than their non-contrastive
counterparts for each explanation method and align-
ment metric.

In Figure 2, we see that for most explanation
methods, the larger the distance between the known
evidence and the target token, the larger the in-
crease in alignment of contrastive explanations over
non-contrastive explanations. This suggests that
contrastive explanations particularly outperform
non-contrastive ones when the known evidence is
relatively further away from the target token, that is,
contrastive explanations can better capture model
decisions requiring longer-range context.

In Appendix B, we also provide a table with the
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Figure 2: Scatter plot of the average distance of the
known evidence to the target token across each linguis-
tic paradigm against the difference in MRR scores be-
tween the contrastive and non-contrastive versions of
each explanation method, with the Pearson correlation
for each explanation method. Statistically significant
Pearson’s r values (p < 0.05) are in bold. In most cases,
there is a positive correlation between the increase in
MRR and the distance of the evidence.

full alignment scores for each paradigm, explana-
tion method, metric and model.

5 Do Contrastive Explanations Help
Users Predict LM Behavior?

To further evaluate the quality of different explana-
tion methods, we next describe methodology and
experiments to measure to what extent explana-
tions can improve the ability of users to predict the
output of the model, namely model simulatability
(Lipton, 2018; Doshi-Velez and Kim, 2017).

5.1 Study Setup

Our user study is similar in principle to previous
works that measure model simulatability given dif-
ferent explanations (Chandrasekaran et al., 2018;
Hase and Bansal, 2020; Pruthi et al., 2020). In
our study (Figure 3), users are given the input of
a GPT-2 model, two choices for the next token,
and an explanation for the model output. They are
asked to select which of the two choices is more
likely the model output, then answer whether the
explanation was useful in making their decision3.

We compare the effect of having no explanation,
explanations with Gradient × Input, Contrastive
Gradient × Input, Erasure and Contrastive Era-
sure. We do not include Gradient Norm and Con-
trastive Gradient Norm because these methods do

3Although Hase and Bansal (2020) suggest not showing
explanations for certain methods at test time due to potential
for directly revealing the model output, this is less of a concern
for saliency-based methods as their design makes it non-trivial
to leak information in this way. We opt to show explanations
to measure whether they sufficiently help the user make a
prediction similar to the model on an individual example.
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Figure 3: Example of a prompt in our human study.

not provide information on directionality. For non-
contrastive methods, we provide the explanation for
why the model predicted a token. For contrastive
methods, we provide the explanation for why the
model predicted one token instead of another.

We include 20 pairs of highly confusable words
for our study (Appendix C). 10 of these pairs are
selected from BLiMP to reflect certain linguistic
phenomena, and the other 10 word pairs are se-
lected from pairs with the highest “confusion score”
on WikiText-103 test split (Merity et al., 2016).
We define confusion using the joint probability of
a confusion from token a to b given a corpus X:

P (xtrue = a, xmodel = b) =

1

N

∑

x∈X

∑

t∈pos(x)|xt=a

Pmodel(x̂t = b|x<t)

where x is a sentence in X , pos(x) is the set of
positions of tokens in x, N is the size of the corpus.
The confusion from a to b is the sum of the prob-
abilities assigned by the model to token b where
token a is the ground truth, normalized by the num-
ber of sentences in the corpus.

The confusion score for word pair (a, b) is the
minimum of confusion from a to b and vice-versa,
to ensure that words are mutually confusable:

C(a, b) = min(P (xtrue = a, xmodel = b),

P (xtrue = b, xmodel = a)).

We recruited 10 graduate students in machine
learning (not authors of this paper) to perform the
study. Each participant is given 10 different word
pairs. For each word pair, one explanation method
was chosen at random to generate the accompany-
ing explanations, and the participant is given 40

sentences in a row. We balance the data so that
there were an equal number of examples where
the true output xt = a and xt = b, and also by
model correctness so that the model chooses the
correct output 50% of the time, preventing users
from guessing model behavior by selecting a cer-
tain token or the true token. In total, we obtain
4000 data points for model simulatability.

5.2 Results

In Table 4, we provide the results of our user study.
For each explanation method evaluated, we com-
puted the simulation accuracy over all samples
(Acc.) as well as accuracy over samples where
the model output is equal to the ground truth (Acc.
Correct) and different from the ground truth (Acc.
Incorrect). We also computed the percentage of ex-
planations that users reported useful, as well as the
simulation accuracy over samples where the user
found the given explanation useful (Acc. Useful)
and not useful (Acc. Not Useful).

To test our results for statistical significance and
account for variance in annotator skill and word
pair difficulty, we fitted linear mixed-effects models
using Statsmodels (Seabold and Perktold, 2010)
with the annotator and word pair as random effects,
the explanation method as fixed effect, and the
answer accuracy or usefulness as the dependent
variable. In Appendix D we provide the results of
the mixed-effects models we fitted.

Acc. Acc. Acc. Acc.
Acc. Correct Incorrect Useful Useful Not Useful

None 61.38 74.50 48.25 – – –
SGI 64.00 78.25 49.75 62.12 67.20 58.75
S∗GI 65.62 79.00 52.25 63.88 69.67 58.48
SE 63.12 79.00 47.25 46.50 65.86 60.75
S∗E 64.62 77.00 52.25 64.88 70.52 53.74

Table 4: Simulation accuracy (%) in predicting GPT-
2 outputs and subjective usefulness of explanations for
various explanation methods. For each method, scores
that are statistically significantly higher (p≤ 0.05) than
the analogous method with a different contrastive set-
ting are bolded. Overall, users achieve higher simula-
tion accuracy with contrastive explanations.

Accuracy First of all, users have the lowest accu-
racy in predicting LM outputs when no explanation
is given, which suggests that all four types of ex-
planations help users simulate model behavior. For
both explanation methods, the contrastive setting
leads to a significantly higher contrastive simula-
tion accuracy than the non-contrastive setting.
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We also examined examples where annotators
incorrectly predict the model output, and for all
types of explanations given, the most human errors
are made in examples where there are no words
in the input sentence that makes one word more
likely than the other. Notably, the three word pairs
with the lowest user accuracy are “son/brother”,
“fast/super”, and “black/green”, which are often
interchangeable.

Usefulness Contrastive explanations were also
considered useful to users for model simulation
significantly more often than non-contrastive ex-
planations, with a particularly large gain in the
erasure-based setting. Answer accuracy on sam-
ples where the users found the explanation useful is
higher than the accuracy over all samples for each
explanation method, which suggests that users can
also identify useful explanations to some extent.

These results, on the whole, provide evidence
that contrastive explanations help human observers
simulate model predictions more accurately.

6 What Context Do Models Use for
Certain Decisions?

Finally, we use contrastive explanations to discover
how language models achieve various linguistic
distinctions. We hypothesize that similar evidence
is necessary to disambiguate foils that are similar
linguistically. To test this hypothesis, we propose
a methodology where we first represent each token
by a vector representing its saliency map when the
token is used as a foil in contrastive explanation of
a particular target word. Conceptually, this vector
represents the type of context that is necessary to
disambiguate the particular token from the target.
Next, we use a clustering algorithm on these vec-
tors, generating clusters of foils where similar types
of context are useful to disambiguate. We then ver-
ify whether we find clusters associated with salient
linguistic distinctions defined a-priori. Finally, we
inspect the mean vectors of explanations associated
with foils in the cluster to investigate how models
perform these linguistic distinctions.

6.1 Methodology

We generate contrastive explanations for the 10
most frequent words in WikiText-103 for each
major part of speech as the target token, and
use the 10,000 most frequent vocabulary items
as foils. For each target yt, we randomly select

500 sentences from WikiText-103 and obtain a sen-
tence set X . For each foil yf and each sentence
xi ∈ X , we generate a single contrastive explana-
tion e(xi, yt, yf ). Then, for each target yt and foil
yf , we generate an aggregate explanation vector
e(yt, yf ) =

⊕
xi∈X e(xi, yt, yf ) by concatenating

the single explanation vectors for each sentence in
the corpus.

Then, for a given target yt, we apply k-means
clustering on the concatenated contrastive expla-
nations across different foils yf to cluster foils by
explanation similarity. We use GPT-2 to extract
all the contrastive explanations due to its better
alignment with linguistic phenomena than GPT-
Neo (§4). We only extract contrastive explanations
with gradient norm and gradient×input due to the
computational complexity of input erasure (§3.3).

In Table 5, we show examples of the obtained
clusters. Foils in each cluster are sorted in descend-
ing frequency in training data. For the first foil in
each cluster, we also retrieve its 20 nearest neigh-
bors in the word embedding space according to
Euclidean distance for comparison, to disentangle
the effect of word embeddings from the effect of
linguistic distinctions on foil clusters.

6.2 Foil Clusters

First, we verify that linguistically similar foils are
indeed clustered together: we discover clusters re-
lating to a variety of previously studied linguistic
phenomena, a few of which we detail below and
give examples in Table 5. Moreover, foil clusters
reflect linguistic distinctions that are not found in
the nearest neighbors of word embeddings. This
suggests that the model use similar types of input
features to make certain decisions.

Anaphor agreement: To predict anaphor agree-
ment, models must contrast pronouns from other
pronouns with different gender or number. We find
that indeed, when the target is a pronoun, other
pronouns of a different gender or number are often
clustered together: when the target is a male pro-
noun, we find a cluster of female pronouns. The
foil cluster containing “she” includes several types
of pronouns that are all of the female gender. On
the other hand, the nearest neighbors of “she” are
mostly limited to subject and object pronouns, and
they are of various genders and numbers.

Animacy: In certain verb phrases, the main verb
enforces that the subject is animate. Reflecting
this, when the target is an animate noun, inanimate
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Phenomenon / POS Target Foil Cluster Embd Nearest Neighbors Example

Anaphor
Agreement

he she, her, She, Her, herself, hers she,She, her, She, he, they, Her, we, it,she, I,
that,Her, you, was, there,He, is, as, in’

That night , Ilsa confronts Rick in the
deserted café . When he refuses to give
her the letters , _____

Animate
Subject

man fruit, mouse, ship, acid, glass, water, tree,
honey, sea, ice, smoke, wood, rock, sugar,
sand, cherry, dirt, fish, wind, snow

fruit, fruits, Fruit, meat, flower,fruit, tomato,
vegetables, fish, apple, berries, food, citrus,
banana, vegetable, strawberry, fru, delicious,
juice, foods

You may not be surprised to learn that
Kelly Pool was neither invented by a
_____

Determiner-Noun
Agreement

page tabs, pages, icons, stops, boxes, doors, short-
cuts, bags, flavours, locks, teeth, ears, tastes,
permissions, stairs, tickets, touches, cages,
saves, suburbs

tabs, tab, Tab, apps, files, bags, tags, websites,
sections, browsers, browser, icons, buttons,
pages, keeps, clips, updates, 28, insists, 14

Immediately after "Heavy Competition"
first aired, NBC created a sub- _____

Subject-Verb
Agreement

go doesn, causes, looks, needs, makes, isn, says,
seems, seeks, displays, gives, wants, takes,
uses, fav, contains, keeps, sees, tries, sounds

doesn, isn, didn, does, hasn, wasn, don,
wouldn, makes, gets, has, is, aren, gives,
Doesn, couldn, seems, takes, keeps,doesn

Mala and the Eskimos _____

ADJ black Black, white, black, White, red, BLACK,
green, brown, dark, orange, African, blue, yel-
low, pink, purple, gray, grey, whites, Brown,
silver

Black,Black, black,black, White, BLACK,
white, Blue, Red,White, In, B, The,The, It,
red, Dark, 7, Green, African

Although general relativity can be used
to perform a semi @-@ classical calcu-
lation of _____

ADJ black Asian, Chinese, English, Italian, American,
Indian, East, South, British, Japanese, Euro-
pean, African, Eastern, North, Washington,
US, West, Australian, California, London

Asian,Asian, Asia, Asians, Chinese, African,
Japanese, Korean, China, European, Indian,
ethnic,Chinese, Japan, American, Caucasian,
Australian, Hispanic, white, Arab

While taking part in the American Ne-
gro Academy (ANA) in 1897 , Du Bois
presented a paper in which he rejected
Frederick Douglass ’s plea for _____

ADP for to, in, and, on, with, for, when, from, at, (,
if, as, after, by, over, because, while, without,
before, through

to, in, for, on, and, as, with, of, a, at, that,
the, from, by, an, (, To, is, it, or

The war of words would continue _____

ADV back the, to, a, in, and, on, of, it, ", not, that, with,
for, this, from, up, just, at, (, all

the, a, an, it, this, that, in, The, to,The, all,
and, their, as, for, on, his, at, some, what

One would have thought that claims dat-
ing _____

DET his the, you, it, not, that, my, [, this, your, he, all,
so, what, there, her, some, his, time, him, He

the, a, an, it, this, that, in, The, to,The, all,
and, their, as, for, on, his, at, some, what

A preview screening of Sweet Smell of
Success was poorly received , as Tony
Curtis fans were expecting him to play
one of _____

NOUN girl Guy, Jack, Jones, Robin, James, David, Tom,
Todd, Frank, Mike, Jimmy, Michael, Peter,
George, William, Bill, Smith, Tony, Harry,
Jackson

Guy,Guy, guy,guy, Gu, Dave, Man, dude, Girl,
Guys, John, Steve, \x00, \xef \xbf \xbd, \xef
\xbf \xbd, \x1b, \xef \xbf \xbd, \x12, \x1c, \x16

Veronica talks to to Sean Friedrich and
tells him about the _____

NUM five the, to, a, in, and, on, of, is, it, ", not, that, 1,
with, for, 2, this, up, just, at

the, a, an, it, this, that, in, The, to,The, all,
and, their, as, for, on, his, at, some, what

From the age of _____

VERB going got, didn, won, opened, told, went, heard, saw,
wanted, lost, came, started, took, gave, hap-
pened, tried, couldn, died, turned, looked

got, gets, get, had, went, gave, took, came,
didn, did, getting, been, became, has, was,
made, started, have, gotten, showed

Truman had dreamed of _____

Table 5: Examples of foil clusters obtained by clustering contrastive explanations of GPT-2. For each cluster, the
20 most frequent foils are shown, as well as the 20 nearest neighbors in the word embedding space of the first foil,
and an example is included for the contrastive explanation of the target token vs. the underlined foil in the cluster.
In each explanation, the two most salient input tokens are highlighted in decreasing intensity of red.

nouns form a cluster. While the foil cluster in Table
5 contains a variety of singular inanimate nouns,
the nearest neighbors of “fruit” are mostly both
singular and plural nouns related to produce.

Plurality: For determiner-noun agreement, sin-
gular nouns are contrasted with clusters of plural
noun foils, and vice-versa. We find examples of
clusters of plural nouns when the target is a singular
noun, whereas the nearest neighbors of “tabs” are
both singular and plural nouns. To verify subject-
verb agreement, when the target is a plural verb,
singular verbs are clustered together, but the near-
est neighbors of “doesn” contain both singular and
plural verbs, especially negative contractions.

6.3 Explanation Analysis Results

By analyzing the explanations associated with dif-
ferent clusters, we are also able to learn interesting
properties of how GPT-2 makes certain predictions.
We provide our full analysis results in Appendix E.

To distinguish between adjectives, the model of-
ten relies on input words that are semantically sim-
ilar to the target (e.g. “relativity” to distinguish
“black” from other colors). To contrast adposi-
tions and adverbs from other words with the same
POS, verbs in the input that are associated with
the target word are useful: for example, the verbs
“dating” and “traced” are useful when the target
is “back”. To choose the correct gender for deter-
miners, nouns and pronouns, the model often uses
gendered proper nouns and pronouns in the input.
To disambiguate numbers from non-number words,
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input words related to enumeration or measurement
(e.g. “age”, “consists”, “least”) are useful.

Our analysis also reveals why the model may
have made certain mistakes. For example, when
the model generates a pronoun of the incorrect
gender, it was often influenced by proper nouns
and pronouns of a different gender in the input.

Overall, our methodology for clustering con-
trastive explanations provides an aggregate anal-
ysis of linguistic distinctions to understand general
properties of language model decisions.

7 Conclusion and Future Work

In this work, we interpreted language model de-
cisions using contrastive explanations by extend-
ing three existing input saliency methods to the
contrastive setting. We also proposed three new
methods to evaluate and explore the quality of con-
trastive explanations: an alignment evaluation to
verify whether explanations capture linguistically
appropriate evidence, a user evaluation to mea-
sure model simulatability of explanations, and a
clustering-based aggregate analysis to investigate
model properties using contrastive explanations.

We find that contrastive explanations are better
aligned to known evidence related to major gram-
matical phenomena than their non-contrastive coun-
terparts. Moreover, contrastive explanations allow
better contrastive simulatability of models for users.
From there, we studied what kinds of decisions
require similar evidence and we used contrastive
explanations to characterize how models make cer-
tain linguistic distinctions. Overall, contrastive
explanations give a more intuitive and fine-grained
interpretation of language models.

Future work could explore the application of
these contrastive explanations to other machine
learning models and tasks, extending other inter-
pretability methods to the contrastive setting, as
well as using what we learn about models through
contrastive explanations to improve them.

8 Limitations

The experiments and methodology described in
this paper have some limitations, notably their ex-
tensions to other explanation methods, other lan-
guages, and their resource requirements.

First, the applicability of the contrastive set-
ting to other explanation methods may be limited.
While extending gradient-based explanation meth-
ods to the contrastive setting is relatively straight-

forward (we can simply perform the same op-
erations on the gradient over the difference be-
tween model probabilities for the target and foil
tokens), it is nontrivial to design contrastive expla-
nations based on other explanation methods such
as attention-based input saliency.

Second, many of our experiments would not be
easily reproduced in languages other than English
that lack sufficient linguistic resources. All the
experiments in our paper aimed at exploring the ca-
pabilities of contrastive explanations are performed
using GPT-2 and GPT-Neo language models, that
have been trained on large amounts of English data.
To reproduce experiments in other languages, we
would need a language model in the other language
of sufficient power, which is not available for most
languages. The experiments in Section 4 address
only a subset of types of grammatical acceptability,
and require a dataset of minimal pairs along differ-
ent types of grammatical acceptability, which may
not be available for most languages. Moreover, to
automatically extract the expected evidence, we
rely on core NLP tools such as coreference resolu-
tion, POS tagger and dependency parsers. Again,
these tools are not available for most languages.
Furthermore, the accuracy of the extracted evi-
dence depends of the aforementioned tools, which
have fairly high but not perfect accuracy. While
our experiments are not easily extendable to lan-
guages other than English, our method itself of
contrastive explanations is language agnostic and
can be readily applied to models of any language.

In Section 5, we perform a human study to eval-
uate explanation methods. This evaluation method
require human annotators and is therefore more re-
source intensive than automatic evaluation methods.
We were motivated to perform this study neverthe-
less as model simulatability for human users is one
important aspect of interpretability.

The experiments in Section 6 are also resource
intensive. In total, we computed: 2 explanation
methods × 8 parts of speech × 10 target words ×
10,000 foils × 500 input sentences = 800,000,000
contrastive explanations. For this reason, we omit-
ted the slower contrastive erasure explanation from
this experiment, but generating all the contrastive
explanations using the relatively faster explanation
methods, then clustering them required about 48
hours of computation on 8 RTX 8000 GPUs.

192



References
Yonatan Belinkov and James Glass. 2019. Analysis

methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav,
Prithvijit Chattopadhyay, and Devi Parikh. 2018. Do
explanations make VQA models more predictable to
a human? In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1036–1042, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Misha Denil, Alban Demiraj, and Nando De Freitas.
2014. Extraction of salient sentences from labelled
documents. arXiv preprint arXiv:1412.6815.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Matthew Finlayson, Aaron Mueller, Sebastian
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. 2021. Causal analysis of syntactic
agreement mechanisms in neural language models.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1828–1843, Online. Association for Computational
Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Peter Hase and Mohit Bansal. 2020. Evaluating ex-
plainable AI: Which algorithmic explanations help
users predict model behavior? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5540–5552, Online. As-
sociation for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel,
Yanai Elazar, Yejin Choi, and Yoav Goldberg. 2021.
Contrastive explanations for model interpretability.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1597–1611, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016a. Visualizing and understanding neural mod-
els in NLP. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 681–691, San Diego, California.
Association for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Peter Lipton. 1990. Contrastive explanation. Royal
Institute of Philosophy Supplement, 27:247–266.

Zachary C. Lipton. 2018. The mythos of model inter-
pretability: In machine learning, the concept of in-
terpretability is both important and slippery. Queue,
16(3):31–57.

Andreas Madsen, Siva Reddy, and Sarath Chandar.
2021. Post-hoc interpretability for neural nlp: A sur-
vey. arXiv preprint arXiv:2108.04840.

Ann L McGill and Jill G Klein. 1993. Contrastive and
counterfactual reasoning in causal judgment. Jour-
nal of Personality and Social Psychology, 64(6):897.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Danish Pruthi, Bhuwan Dhingra, Livio Baldini Soares,
Michael Collins, Zachary C Lipton, Graham Neubig,
and William W Cohen. 2020. Evaluating explana-
tions: How much do explanations from the teacher
aid students? arXiv preprint arXiv:2012.00893.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog.

Shauli Ravfogel, Grusha Prasad, Tal Linzen, and Yoav
Goldberg. 2021. Counterfactual interventions re-
veal the causal effect of relative clause represen-
tations on agreement prediction. arXiv preprint
arXiv:2105.06965.

Skipper Seabold and Josef Perktold. 2010. Statsmod-
els: Econometric and statistical modeling with
python. In Proceedings of the 9th Python in Science
Conference, volume 57, page 61. Austin, TX.

193

https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/D18-1128
https://doi.org/10.18653/v1/D18-1128
https://doi.org/10.18653/v1/D18-1128
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://aclanthology.org/2021.emnlp-main.120
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.1017/S1358246100005130
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340


Avanti Shrikumar, Peyton Greenside, Anna Shcherbina,
and Anshul Kundaje. 2016. Not just a black
box: Learning important features through prop-
agating activation differences. arXiv preprint
arXiv:1605.01713.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Ilia Stepin, Jose M Alonso, Alejandro Catala, and
Martín Pereira-Fariña. 2021. A survey of contrastive
and counterfactual explanation generation methods
for explainable artificial intelligence. IEEE Access,
9:11974–12001.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Inter-
national Conference on Machine Learning, pages
3319–3328. PMLR.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matt Gardner, and Sameer Singh. 2019. Al-
lenNLP Interpret: A framework for explaining pre-
dictions of NLP models. In Empirical Methods in
Natural Language Processing.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the As-
sociation for Computational Linguistics, 8:377–392.

Kayo Yin, Patrick Fernandes, André F. T. Martins, and
Graham Neubig. 2021a. When does translation re-
quire context? a data-driven, multilingual explo-
ration. arXiv preprint arXiv:2109.07446.

Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi
Chaudhary, André F. T. Martins, and Graham Neu-
big. 2021b. Do context-aware translation models
pay the right attention? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 788–801, Online. As-
sociation for Computational Linguistics.

Ruiqi Zhong, Steven Shao, and Kathleen R. McKeown.
2019. Fine-grained sentiment analysis with faithful
attention. CoRR, abs/1908.06870.

A Contrastive Explanations for Neural
Machine Translation (NMT) Models

A.1 Extending Contrastive Explanations to
NMT

Machine translation can be thought of as a specific
type of language models where the model is condi-
tioned on both the source sentence and the partial
translation. It has similar complexities as mono-
lingual language modeling that make interpreting

neural machine translation (NMT) models difficult.
We therefore also extend contrastive explanations
to NMT models.

We compute the contrastive gradient norm
saliency for an NMT model by first calculating
the gradient over the encoder input (the source sen-
tence) and over the decoder input (the partial trans-
lation) as:

g∗(xei ) = ∇xe
i

(
q(yt|xe,xd)− q(yf |xe,xd)

)

g∗(xdi ) = ∇xd
i

(
q(yt|xe,xd)− q(yf |xe,xd)

)

where xe is the encoder input, xd is the decoder
input, and the other notations follow the ones in
§3.1.

Then, the contrastive gradient norm for each xei
and xdi are:

S∗GN (xei ) = ||g∗(xei )||L1

S∗GN (xdi ) = ||g∗(xdi )||L1
Similarly, the contrastive gradient × input are:

S∗GI(x
e
i ) = g∗(xei ) · xei

S∗GI(x
d
i ) = g∗(xdi ) · xdi

We define the input erasure for each xei and xdi
as:

S∗E(x
e
i ) =

(
q(yt|xe,xd)− q(yt|xe

¬i,x
d)
)

−
(
q(yf |xe,xd)− q(yf |xe

¬i,x
d)
)

S∗E(x
d
i ) =

(
q(yt|xe,xd)− q(yt|xe,xd

¬i)
)

−
(
q(yf |xe,xd)− q(yf |xe,xd

¬i)
)

A.2 Qualitative Results
In Table 6, we provide examples of non-contrastive
and contrastive explanations for NMT decisions.
We use MarianMT (Junczys-Dowmunt et al., 2018)
with pre-trained weights from the model trained
to translate from English to Romance languages4

to extract explanations. Each example reflects a
decision associated with one of the five types of
linguistic ambiguities during translation identified
in Yin et al. (2021a).

4https://github.com/Helsinki-NLP/Tatoeba-Challenge/
blob/master/models/eng-roa/README.md
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Why did the model predict "il" ?
en: I ordered a new vase and it arrived today
fr: J ’ ai commandé un nouveau vase et
Why did the model predict "il" instead of "elle" ?
en: I ordered a new vase and it arrived today
fr: J ’ ai commandé un nouveau vase et

2. Why did the model predict "votre" ?
en: You cannot bring your dog here .
fr: Vous ne pouvez pas amener
Why did the model predict "votre" instead of "ton" ?
en: You cannot bring your dog here .
fr: Vous ne pouvez pas amener

3. Why did the model predict "apprenais" ?
en: I liked school because I learned a lot there .
fr: J ’ aimais l ’ école parce que j ’
Why did the model predict "apprenais" instead of "ai" ?
en: I liked school because I learned a lot there .
fr: J ’ aimais l ’ école parce que j ’

4. Why did the model predict "sais" ?
en: They know what to do , I don ’ t .
fr: Ils savent quoi faire , je ne
Why did the model predict "sais" instead of "veux" ?
en: They know what to do , I don ’ t .
fr: Ils savent quoi faire , je ne

5. Why did the model predict "carnet" ?
en: I like my old notebook better than my new notebook
fr: J ’ aime mieux mon ancien carnet que mon nouveau
Why did the model predict "carnet" instead of "ordinateur" ?
en: I like my old notebook better than my new notebook
fr: J ’ aime mieux mon ancien carnet que mon nouveau

Table 6: Examples of non-contrastive and contrastive
explanations for NMT models translating from English
to French using input × gradient. Input tokens that are
measured to raise or lower the probability of each de-
cision are in red and blue respectively, and those with
little influence are in white.

In the first example, the model must translate
the gender neutral English pronoun “it” into the
masculine French pronoun “il”. In both non-
contrastive and contrastive explanations, the En-
glish antecedent “vase” influences the model to
predict “il”, however to disambiguate “il” from the
feminine pronoun “elle”, the model also relies on
the french antecedent and its masculine adjective
“nouveau vase”.

In the second example, the model must translate
“your” with the formality level consistent with the
partial translation. While in the non-contrastive
explanation, only tokens in the source sentence are
salient which do not explain the model’s choice
of formality level, in the contrastive explanation,
other French words in the polite formality level
such as “Vous” and “pouvez” are salient.

In the third example, the model must translate
“learned” using the verb form that is consistent with
the partial translation. Similarly to the previous
example, only the contrastive explanation contains
salient tokens in the same verb from as the target
token such as “aimais”.

In the fourth example, the model needs to re-
solve the elided verb in “I don’t know” to translate
into French. The contrastive explanation with a
different verb as a foil shows that the elided verb in
the target side makes the correct verb more likely
than another verb.

In the fifth example, the model must choose the
translation that is lexically cohesive with the partial
translation, where “carnet” refers to a book with
paper pages and “ordinateur” refers to a computer
notebook. In the non-contrastive explanation, the
word “notebook” and the target token preceding the
prediction are the most salient. In the contrastive
explanation, the word “carnet” in the partial trans-
lation also becomes salient.

B Alignment of Contrastive
Explanations to Linguistic Paradigms

In Table 7, we present the full alignment scores of
contrastive explanations from GPT-2 and GPT-Neo
models with the known evidence to disambiguate
linguistic paradigms in the BLiMP dataset.

C Highly Confusable Word Pairs

In Table 8, we provide the list of contrastive word
pairs used in our human study for model simulata-
bility (§5). The first 10 pairs are taken from BLiMP
linguistic paradigms and we provide the associated
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GPT-2 GPT-Neo
Paradigm Dist Explanation Dot Product (↑) Probes Needed (↓) MRR (↑) Dot Product (↑) Probes Needed (↓) MRR (↑)

anaphor_gender_agreement

Random 0.528 0.706 0.718 0.548 0.618 0.762
SGN 0.429 1.384 0.478 0.480 0.828 0.622
S∗GN 0.834 0.472 0.809 0.785 0.432 0.815

2.94 SGI 0.078 1.402 0.468 -0.054 0.526 0.786
S∗GI -0.019 0.502 0.791 -0.133 0.684 0.747
SE -0.350 0.564 0.764 0.645 0.078 0.963
S∗E 0.603 0.090 0.964 0.637 0.156 0.903

anaphor_number_agreement

Random 0.554 0.666 0.741 0.568 0.598 0.756
SGN 0.463 1.268 0.512 0.508 0.784 0.639
S∗GN 0.841 0.702 0.677 0.816 0.524 0.763

2.90 SGI 0.084 1.346 0.497 -0.095 0.510 0.797
S∗GI 0.084 0.408 0.860 -0.068 0.636 0.775
SE -0.349 0.704 0.728 0.618 0.128 0.940
S∗E 0.604 0.136 0.951 0.666 0.106 0.956

animate_subject_passive

Random 0.155 2.940 0.378 0.150 2.976 0.379
SGN 0.211 1.080 0.699 0.236 0.828 0.727
S∗GN 0.463 0.754 0.749 0.452 0.862 0.721

3.27 SGI 0.016 4.004 0.233 0.020 2.780 0.416
S∗GI 0.069 2.782 0.412 0.016 2.844 0.409
SE -0.036 3.214 0.362 0.168 2.024 0.444
S∗E 0.125 2.122 0.500 0.123 2.120 0.517

determiner_noun_agreement_1

Random 0.208 2.202 0.449 0.207 2.142 0.461
SGN 0.239 1.320 0.598 0.150 2.954 0.287
S∗GN 0.275 2.680 0.406 0.258 2.906 0.302

1.00 SGI 0.560 0.038 0.983 -0.042 2.384 0.380
S∗GI 0.162 1.558 0.603 -0.056 2.554 0.371
SE 0.022 1.150 0.604 0.234 1.290 0.543
S∗E 0.031 2.598 0.363 0.362 0.612 0.811

determiner_noun_agreement_irregular_1

Random 0.198 2.248 0.437 0.202 2.110 0.456
SGN 0.236 1.228 0.616 0.160 2.716 0.324
S∗GN 0.286 2.578 0.380 0.266 2.826 0.310

1.00 SGI 0.559 0.034 0.984 -0.035 2.160 0.419
S∗GI 0.046 2.038 0.507 -0.046 2.428 0.374
SE 0.020 1.082 0.628 0.205 1.360 0.548
S∗E 0.026 2.502 0.352 0.306 0.784 0.755

determiner_noun_agreement_with_adjective_1

Random 0.167 2.672 0.406 0.168 2.672 0.405
SGN 0.118 3.914 0.237 0.120 3.902 0.230
S∗GN 0.210 3.532 0.267 0.228 3.814 0.245

2.05 SGI 0.118 2.426 0.354 -0.010 2.736 0.356
S∗GI 0.141 2.012 0.482 -0.051 2.950 0.342
SE 0.042 1.730 0.583 0.092 2.748 0.333
S∗E 0.305 1.084 0.680 0.260 1.176 0.697

determiner_noun_agreement_with_adj_irregular_1

Random 0.167 2.620 0.401 0.158 2.820 0.392
SGN 0.116 3.920 0.240 0.125 3.620 0.248
S∗GN 0.205 3.664 0.256 0.228 3.718 0.243

2.07 SGI 0.106 2.620 0.345 -0.007 2.754 0.358
S∗GI 0.111 2.244 0.448 -0.047 3.126 0.316
SE 0.048 1.688 0.586 0.103 2.644 0.347
S∗E 0.313 1.024 0.686 0.263 1.066 0.683

npi_present_1

Random 0.336 1.080 0.604 0.350 0.984 0.632
SGN 0.294 1.160 0.510 0.376 0.454 0.778
S∗GN 0.456 0.450 0.787 0.449 0.382 0.812

3.19 SGI 0.100 1.374 0.463 -0.160 1.288 0.575
S∗GI 0.144 0.570 0.759 0.202 0.766 0.752
SE -0.336 1.514 0.556 0.624 0.086 0.960
S∗E 0.160 0.902 0.684 0.062 1.204 0.556

distractor_agreement_relational_noun

Random 0.230 1.936 0.494 0.227 2.106 0.463
SGN 0.266 1.199 0.584 0.269 0.965 0.646
S∗GN 0.408 1.092 0.619 0.392 1.000 0.649

3.94 SGI 0.044 2.291 0.369 -0.066 2.326 0.434
S∗GI 0.223 1.057 0.631 0.051 1.383 0.591
SE -0.023 1.922 0.434 0.120 2.007 0.400
S∗E 0.190 1.709 0.502 0.186 1.617 0.544

irregular_plural_subject_verb_agreement_1

Random 0.561 0.539 0.760 0.545 0.494 0.769
SGN 0.652 0.242 0.917 0.610 0.348 0.860
S∗GN 0.676 0.315 0.843 0.644 0.376 0.817

1.11 SGI 0.590 0.253 0.912 0.067 0.472 0.783
S∗GI 0.348 0.298 0.864 0.021 0.489 0.750
SE -0.570 0.787 0.617 -0.021 0.893 0.553
S∗E 0.264 0.635 0.673 0.267 0.584 0.734

regular_plural_subject_verb_agreement_1

Random 0.694 0.316 0.853 0.693 0.336 0.849
SGN 0.740 0.194 0.946 0.724 0.268 0.906
S∗GN 0.756 0.251 0.909 0.747 0.274 0.898

1.13 SGI 0.748 0.202 0.944 -0.039 0.333 0.852
S∗GI 0.371 0.242 0.889 0.039 0.262 0.879
SE -0.614 0.610 0.718 0.303 0.632 0.694
S∗E 0.584 0.353 0.836 0.568 0.313 0.842

Table 7: Alignment of GPT-2 and GPT-Neo explanations with BLiMP. Scores better than their (non-)contrastive
counterparts are bolded. “Dist” gives the average distance from the target to the important context token.
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unique identifier for each pair. The last 10 pairs are
chosen from word pairs with the highest confusion
score.

Word 1 Word 2 BLiMP UID

actor actress anaphor_gender_agreement
herself himself anaphor_gender_agreement

themselves herself anaphor_number_agreement
women pictures animate_subject_passive

boy dog animate_subject_passive
cat cats determiner_noun_agreement_1
is are irregular_plural_subject_verb_agreement_1

has have regular_plural_subject_verb_agreement_1
him himself principle_A_domain_1
he who wh_island

Word 1 Word 2 Confusion Score

black green 0.0008
Bruce Beth 0.0021
fast super 0.0011

health hospital 0.0012
red bright 0.0007

snow winter 0.0005
son brother 0.0027

summer winter 0.0003
white blue 0.0034
wine grape 0.0106

Table 8: List of highly confusable words pairs chosen
for our user study.

Dependent Variable Intercept Effect P-Value

Accuracy 0.624 0.015 0.050
Acc. Correct 0.744 0.026 0.005

Acc. Incorrect 0.530 -0.010 0.460
Useful 0.570 0.063 0.000

Acc. Useful 0.677 -0.020 0.513
Acc. Useful 0.450 -0.009 0.444

Table 9: The dependent variables, intercepts, the effect
of the explanation method on the dependent variable
and its p-value in the linear mixed-effects models fitted
to model simulatability results.

D Mixed Effects Models Results

In Table 9, we show the results of fitting linear
mixed-effects models to the results of our user
study for model simulatability (§5).

E Analysis of Foil Clusters

In Figure 5, we give a few examples of clusters and
explanations we obtain for each part of speech. For
each part of speech, we describe our findings in
more detail in the following.

Adjectives. When the target word is an adjective,
other foil adjectives that are semantically similar to

the target are often clustered together. For example,
when the target is “black”, we find one cluster
with various color adjectives, and we also find a
different cluster with various adjectives relating to
the race or nationality of a person.

We find that to distinguish between different
adjectives, input words that are semantically close
to the correct adjective are salient. For example
to disambiguate the adjective “black” from other
colors, words such as “venom” and “relativity” are
important.

Adpositions. When the target is an adposition,
other adpositions are often in the same cluster.

To distinguish between different adpositions, the
verb associated with the adposition is often useful
to the LM. For example, when the target word is

“from”, verbs such as “garnered” and “released”
helps the model distinguish the target from other
adpositions that are less commonly paired with
these verbs (e.g. “for”, “of”). As another example,
for the target word “for”, verbs that indicate a long-
lasting action such as “continue” and “lived” help
the model disambiguate.

Adverbs. When the target is an adverb, other
adverbs are often clustered together. Sometimes,
when the target is a specific type of adverb, such as
an adverb of place, we can find a cluster with other
adverbs of the same type.

Similarly to adpositions, LMs often use the verb
associated with the target adverb to contrast it from
other adverbs. For example, the verbs “dating” and

“traced” are useful when the target is “back”, and
the verbs “torn” and “lower” are useful when the
target is “down”.

Determiners. Other determiners are often clus-
tered together when the target is a determiner. Par-
ticularly, when the target is a possessive determiner,
we find clusters with other possessive determiners,
and when the target is a demonstrative determiner,
we find clusters with demonstrative determiners.

When the determiner is a gendered possessive
determiner such as “his”, proper nouns of the same
gender, such as “John” and “George”, are often
useful. For demonstrative determiners, such as

“this”, verbs that are usually associated with a tar-
geted object, such as “achieve” and “angered” are
useful.

Nouns. When the target noun refers to a person,
for example, “girl”, foil nouns that also refer to
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a person form one cluster (e.g. “woman”, “man-
ager”, “friend”), commonly male proper nouns
form another (e.g. “Jack”, “Robin”, “James”),
commonly female proper nouns form another (e.g.

“Sarah”, “Elizabeth”, “Susan”), and inanimate
objects form a fourth (e.g. “window”, “fruit”,

“box”).
When the target noun is an inanimate object,

there are often two notable clusters: a cluster with
singular inanimate nouns and a cluster with plu-
ral inanimate nouns. This suggests how clustering
foils by explanations confirm that certain grammat-
ical phenomena require similar evidence for disam-
biguation; in this case, determiner-noun agreement.

To predict a target animate noun such as “girl”
instead of foil nouns that refer to a non-female or
older person, input words that are female names
(e.g. “Meredith”) or that refer to youth (e.g.

“young”) are useful. To disambiguate from male
proper nouns, input words that refer to female peo-
ple (e.g. “Veronica”, “she”) or adjectives related
to the target (e.g. “tall”) influence the model to
generate a female common noun. To disambiguate
from female proper nouns, adjectives and determin-
ers are useful. To disambiguate from inanimate
objects, words that describe a human or a human
action (e.g. “delegate”, “invented”) are useful.

To predict a target inanimate noun such as “page”
instead of nouns that are also singular, input words
with similar semantics are important such as “sheet”
and “clicking” are important. For plural noun foils,
the determiner (e.g. “a”) is important.

Numbers. When the target is a number, non-
number words often form one cluster and other
numbers form another cluster.

To disambiguate numbers from non-number
words, input words related to enumeration or mea-
surement are useful (e.g. “age”, “consists”, “least”).
To disambiguate words like “hundred” and “thou-
sand” from other numbers such as “20” or “five”,
input words used for counting (e.g. “two”, “sev-
eral”) are useful, because “hundred”s are count-
able in English (i.e. “two hundreds”, “several hun-
dreds”).

Pronouns. When the target word is a gendered
pronoun, foil pronouns of a different gender from
the target form one cluster, foils with proper nouns
of a different gender form a second cluster, and
foils with proper nouns of the same gender as the
target form a third cluster. This shows that the

model uses similar evidence to make decisions to
verify anaphor gender agreement. We also did not
find foil clusters associated with distinguishing the
number of the pronoun: often, these decisions fol-
low directly from deciding between a pronoun and
a proper noun, or deciding between a male and
female pronoun.

To disambiguate a gendered pronoun such as
such as “he”, from pronouns or proper nouns
with different genders (e.g. “she” or “Anna”),
proper nouns of the same gender as the target (e.g.

“James”) and other gendered pronouns or determin-
ers (e.g. “his”) are useful. To disambiguate from
proper nouns of the same gender as the target, inter-
estingly, the same proper noun as the foil appearing
in the input is positively salient; GPT-2 is often in-
fluenced by previously appearing proper nouns to
generate a pronoun instead.

Verbs. When the target word is a verb, foil verbs
that have a different verb form are often clustered
together. This suggests that the model uses similar
input features to verify subject-verb agreement.

When the target verb is in present participle form,
auxiliary verbs in the input are useful (e.g. “is”,

“been”) to distinguish from verbs in other forms.
Similarly, when the target verb is in infinitive form,
verbs in the same compound as the target verb are
important.
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