
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2078–2093
December 7-11, 2022 ©2022 Association for Computational Linguistics

Entailer: Answering Questions with Faithful and Truthful Chains of
Reasoning

Oyvind Tafjord, Bhavana Dalvi Mishra, Peter Clark
Allen Institute for AI, Seattle, WA

{oyvindt,bhavanad,peterc}@allenai.org

Abstract
Our goal is a question-answering (QA) system
that can show how its answers are implied by
its own internal beliefs via a systematic chain
of reasoning. Such a capability would allow
better understanding of why a model produced
the answer it did. Our approach is to recur-
sively combine a trained backward-chaining
model, capable of generating a set of premises
entailing an answer hypothesis, with a verifier
that checks that the model itself believes those
premises (and the entailment itself) through
self-querying. To our knowledge, this is the
first system to generate multistep chains that
are both faithful (the answer follows from the
reasoning) and truthful (the chain reflects the
system’s own internal beliefs). In evaluation
using two different datasets, users judge that
a majority (70%+) of generated chains clearly
show how an answer follows from a set of facts
- substantially better than a high-performance
baseline - while preserving answer accuracy.
By materializing model beliefs that systemat-
ically support an answer, new opportunities
arise for understanding the model’s system of
belief, and diagnosing and correcting its misun-
derstandings when an answer is wrong.

1 Introduction

Although pretrained language models (PTLMs)
have shown remarkable question-answering (QA)
performance, it is often unclear why their answers
follow from what they know. While there has been
substantial work on training models to also gener-
ate explanations for their answers (Wiegreffe and
Marasović, 2021), or produce them via few-shot
prompting, e.g., “chains of thought” (Wei et al.,
2022), those explanations may not be faithful (the
answer does not necessarily follow from them) and
may not be truthful, in the sense that the language
model itself does not believe1 the explanation state-

1We here adopt a simple operational definition of belief,
namely that a model believes X if it answers "yes" to the
question "Is X true?". Other definitions could also be used.

Figure 1: Given a question, Entailer searches for an
answer hypothesis that is supported by an entailment
proof. First it over-generates candidate proofs, then it
removes those that the model itself does not “believe”
(i.e., confirms via self-querying that it considers all the
generated proof elements to be true). Finally it selects
the best verified proof. Multistep proofs are generated
by iteratively backward chaining on the premises (Sec-
tion 3.2).

ments that it generated. Rather, our goal is to gen-
erate answers that systematically follow from the
model’s own internal beliefs, materializing those
beliefs as explicit statements that can then be in-
spected. Such a capability offers new opportunities
for understanding, diagnosing, and ultimately cor-
recting errors in a language model’s behavior.

Our approach uses a combination of generation
and verification, implemented in a system called
Entailer2. Chains are constructed by backward
chaining from candidate answers, recursively us-
ing a language model (LM) trained for a single
backward-chaining step. For each step, Entailer
over-generates candidate entailments, then filters

2Entailer data and models are available at https://allenai.
org/data/entailer

2078

https://allenai.org/data/entailer
https://allenai.org/data/entailer

Q: A magnet will stick to (A) a belt buckle (B) a wooden table (C) a plastic cup (D) a paper plate
A: (A) A magnet will stick to a belt buckle because

A belt buckle is sometimes magnetic. because
Metal is sometimes magnetic.
A belt buckle is made of metal.

A magnet will stick to magnetic metals.

Q: You can make a telescope with a (A) straw (B) Glass (C) Candle (D) mailing tube
A: (D) You can make a telescope with a mailing tube. because

A telescope is made of a tube for observing / seeing.
A mailing tube is a kind of tube.

Q: Quartz may produce rainbows when light is shined (A) around the crystal’s area (B) through any of its sides (C)
in the room its in (D) in to a mirror at it
A: (B) Quartz may produce rainbows when light is shined through any of its sides. because

A rainbow is produced when light shines through a prism. because
The rainbow is made of all different colors in visible light.
A prism can split light into different colors.

A quartz is a kind of prism.

Figure 2: Questions (from the OBQA dataset) and Entailer’s answers, showing its chain of reasoning.

out those that do not conform to its own internal
knowledge (“beliefs”) by self-querying, asking it-
self whether (a) the generated premises (leaves of
the proof step) are true, and (b) each entailment step
is valid (Figure 1). It then recursively backward-
chains on premises until the overall proof confi-
dence cannot be further improved (or a depth limit
d is reached). Finally, the candidate answer sup-
ported by the highest-scoring chain of a reasoning
is returned. As a result, the system has material-
ized some of its latent knowledge from which the
selected answer follows. Most significantly, the
resulting proof is thus both faithful (the answer fol-
lows from the proof) and truthful (the proof reflects
the system’s beliefs), providing a previously un-
available window into the model’s beliefs about the
world and their implications, e.g., Figure 2.

To train the Entailer model, we use a combina-
tion of the existing EntailmentBank dataset (Dalvi
et al., 2021), plus a new crowd-annotated dataset
that we construct by bootstrapping (train an ini-
tial model, generate candidate entailment examples
with it, then annotate those examples as extra train-
ing data). The model is then frozen, and Entailer
is then applied zero-shot to new datasets, i.e., En-
tailer is a treated as a general-purpose, fixed model
specialized for reasoning, rather than requiring fine-
tuning for new tasks.

We evaluate Entailer on two existing datasets,
OBQA (Mihaylov et al., 2018) and QuaRTz
(Tafjord et al., 2019). We find that its reasoning-
based QA accuracy is similar to its direct QA ac-
curacy, with the advantage that a supporting chain
of reasoning is also produced. We also perform a

human evaluation, and find that 70% of time users
judge the chains to clearly show how an answer
followed from their premises, substantially higher
than for explanations produced by a comparable
high-performance QA system, Macaw (Tafjord and
Clark, 2021). Our contributions are thus:

1. The first system to generate chains of reason-
ing showing how answers are systematically
implied by a model’s own internal beliefs,
making relevant model beliefs explicit. The
chains are both faithful (the answer follows
from the reasoning) and truthful (the chain
reflects the system’s own beliefs).

2. A new, crowdsourced dataset of multi-premise
entailments, doubling the amount of data
available in EntailmentBank (Dalvi et al.,
2021), and including examples of both pos-
itive and negative entailments (Entailment-
Bank only includes positive examples)3.

2 Related Work

Systematic Reasoning: Several recent systems
have demonstrated the ability to perform system-
atic reasoning directly over natural language (Natu-
ral Language Inference (Manning and MacCartney,
2009)), namely deriving conclusions from known
facts via step-wise application of well-defined infer-
ence operations. One approach is to retrain a black-
box model end-to-end (Clark et al., 2020), but has
been limited to small rulebases. An alternative ap-
proach, which we follow here, is to have an outside
loop around a model, where the model generates
individual inference steps (i.e., rules), and a con-

3The dataset is provided in the supplementary material.

2079

troller chains them together. SCSearch (Bostrom
et al., 2022), NLProofS (Yang et al., 2022), IRGR
(Ribeiro et al., 2022), ProofWriter (iterative ver-
sion) (Tafjord et al., 2020), and Selection-Inference
(Creswell et al., 2022) do this in a forward-chaining
fashion, MetGen (Hong et al., 2022) does this bidi-
rectionally, while Braid (Kalyanpur et al., 2020)
(like us) does this in a backward-chaining fashion.
In all these systems, the required facts were ex-
pected to be provided explicitly to the model. In
contrast, Entailer’s reasoning uses its own inter-
nal, latent knowledge, as well as (optionally) exter-
nally provided facts. LeapOfThought (Talmor et al.,
2020) demonstrated that reasoning with a combina-
tion of implicit and explicit knowledge was possi-
ble for simple 1-step inferences. We expand this for
multi-step inference, and (unlike LeapOfThought)
have the system also explicitly articulate the im-
plicit knowledge it uses, and its chain of reasoning.

Recent work has shown that generating a free-
form explanation (“chain of thought”) before an
answer can also improve performance on a variety
of tasks (Wei et al., 2022; Cobbe et al., 2021; Nye
et al., 2021). In these works, however, the expla-
nations are unstructured, and there are no claims
of faithfulness that the answer follows from the
generation, nor that the explanations themselves
represent model beliefs.

Materializing a Model’s Internal Knowledge:
Pretrained LMs contain a vast amount of knowl-
edge, and can be thought of as a kind of knowledge
base to tap into (Petroni et al., 2019). Recent work
has shown that this latent knowledge can be materi-
alized as explicit English sentences or a knowledge
graph using generative techniques, e.g., COMeT
(Bosselut et al., 2019), ParaCOMET (Gabriel et al.,
2021). Our work with Entailer similarly mate-
rializes its latent knowledge, but here in a goal-
directed way, namely by producing a faithful chain
of reasoning from facts it validates (“believes”) as
true to an answer. This articulation can be seen as
a kind of self-talk, where a self-generated context
can improve QA (Shwartz et al., 2020). However,
here our generations are not used as context for
opaque problem-solving, but are assembled into a
well-defined chain of reasoning.

Beliefs: We refer to the model’s factual opinions
as “beliefs” rather than “knowledge” because those
opinions may be wrong. In general, an agent can
be said to believe p if it acts as if p was true
(Schwitzgebel, 2019). Following (Kassner et al.,

Figure 3: An entailment tree is a set of multi-premise,
1-step entailments (red boxes) showing how the hypoth-
esis (root node, green) is entailed from the leaf nodes
(white). If all the leaf nodes are true, and all the 1-step
entailment relations are valid, then we say the tree is a
valid chain of reasoning for the hypothesis.

2021), we take a simple, syntactic operationaliza-
tion of this, namely the agent answers “yes” to the
question “p?”, but also note that more semantic
versions could be used, e.g., the agent also answers
“yes” to paraphrases and implications of p. In gen-
eral, models can sometimes be inconsistent in their
beliefs (Elazar et al., 2021; Kassner and Schütze,
2020; Ribeiro et al., 2019). For our purposes here,
we simply note that such inconsistencies may oc-
casionally exist, and that techniques for inconsis-
tency resolution could be applied in future to re-
duce these, e.g., (Kassner et al., 2021; Li et al.,
2019).

3 Approach

Like several previous systems (Section 2), Entailer
treats reasoning as Natural Language Inference
(NLI). In NLI, the basic unit of knowledge is (rep-
resented as) a sentence rather than a structure, and
a proof4 is a tree of multi-step, multi-premise en-
tailments, e.g., Figures 2 and 3.

Within this framework, given a question, En-
tailer first generates candidate answers, then tries
to prove each one, selecting the answer with the
highest-scoring proof. We now describe these steps.

3.1 Hypothesis Generation

Given a question, Entailer first generates candi-
date answers and converts these into declarative
hypotheses (e.g., “Is the sky (A) blue (B) yellow”
→ { H1 = “The sky is blue.”, H2 = “The sky is
yellow.”).5 An N -way multiple choice question
yields N hypotheses. A true/false question yields

4We use the word “proof” for convenience but note that
the term is somewhat approximate, as entailment “proofs” do
not have the guarantees of formal, deductive proofs.

5Conversion of a QA pair to a declarative hypothesis D
uses a custom T5-11B model trained on the QA2D dataset
(Demszky et al., 2018).

2080

Angle Input → Output (example)
H → P "H: A paperclip is made of metal. P:" → "[PREMISE] A paperclip is made of steel. [PREMISE] Steel is a metal."
H → Sd "H: A paperclip is made of steel. V:" → 0.995
PH → Se "H: A paperclip is made of metal. P: [PREMISE] A paperclip is made of steel. [PREMISE] Steel is a metal. I:"

→ 0.998

Table 1: Examples of the three input/output angles used by Entailer. The first generates a candidate entailment rule
P⊢H given H. The second and third score whether each premise, and the entailment itself, is valid, using tokens V/I
in the input to indicate that Sd/Se is the desired output.

Figure 4: The entailment tree is grown recursively, the algorithm looking for the best tree (maximizes the overall
score of the root node). Each node has a fixed, direct (“fast”) score (in red), and (for internal nodes) a proof
(“slow”) score (in blue) computed from its children. The overall node score (highlighted) is the highest of the two.
If expanding a node increases its overall score (e.g., step 3), that increase is propagated upwards and recursion
continues. If expansions cannot improve a node’s score further (e.g., steps 2 and 4), the expansions are pruned and
that node becomes a leaf (red bars).

2 hypotheses. For open-ended questions, Entailer
first collects N candidate answers generated by an
external source (Macaw (Tafjord and Clark, 2021)
using nucleus sampling (Holtzman et al., 2019))
then forms N hypotheses from them.

3.2 Generating Entailment Trees

3.2.1 Generating a Backward-Chaining Step
Models:
The core of Entailer is generating and validating a
single entailment step that entails a hypothesis. We
define the following data types:
H: A hypothesis (English statement) to prove.
P: A set of premises {p1,...,pi} (sentences) that

together may entail the hypothesis H. To-
gether, P and H form a one-deep entailment
step, denoted by P ⊢ H.

Q: A question posed to Entailer.
A: A candidate answer for consideration.
C: An optional context (set of sentences) relevant

to the problem. This allows Entailer to also
use external knowledge, if available, when
generating a tree.

We train a model (details in Section 4) with the
three input/output behaviors below (optional inputs
shown in parentheses):
(QAC)H → P : Given a hypothesis H, generate a

set of premises P that may entail H
(QAC)H → Sd: Score whether the model be-

lieves that a hypothesis H (or premise pi) is
true (Sd > 0.5) or not, (i.e. perform yes/no
QA). We call this the direct score (range 0-1).

(QAC)PH → Se: Score whether the model be-
lieves a candidate entailment (P ⊢ H) is valid
(Se > 0.5) or not, i.e., P validly entails H
(range 0-1).

Examples of these three angles are in Table 1.

Algorithm:
To generate a single backward-chaining step we
adopt an overgenerate-and-filter approach, also
found useful elsewhere (Yang et al., 2022; Cobbe
et al., 2021; Li et al., 2022). First, given H , we use
the angle H → P to generate a set of premises
P that may entail H . We then check that the
model believes all the premises pi ∈ P using the
H(= pi) → Sd angle, and that it also believes the
inference step P ⊢ H itself is valid (independent of
whether the pi are true or not) using the PH → Se

angle. The proof score, denoting how well the 1-
step proof supports the hypothesis, is the product
of the premises’ and entailment scores:

sr-1deep(H) = (Πisd(pi)).se(P ⊢ H)

We repeat this k times using nucleus sampling to
obtain a diversity of alternative proof steps, and
then select the highest-scoring one P ⊢ H , as
illustrated in Figure 1.

2081

3.2.2 Backward Chaining

This one-step backward chainer is embedded in
a larger control algorithm that grows a multi-step
entailment tree, searching for the best tree. This
algorithm is illustrated in Figure 4 and described
below. The full algorithm is in Appendix A.

Each node N in the tree has two associated
scores, the direct (“fast”) score sd, denoting the
model’s direct belief in N (in red in Figure 4), and
(for internal nodes) the proof (“slow”) score sr,
denoting how confidently the model can prove N
(in blue), computed from its children. The overall
score s is the max of the two. The proof score sr is
recursively defined as the product of its children’s
overall scores times the entailment score:

sr(N) = (Πis(pi)).se(P ⊢ N)

The algorithm starts with an initial hypothesis node
H , then iteratively expands each leaf node N , look-
ing for a proof that scores higher than the direct
score sd of that node. In other words, can the sys-
tem prove N with a more confidence than simply
“guessing” if N is true? If it can, the node’s overall
score s (max of the two) will increase, that increase
is be propagated up the tree, and the expansion is
retained, e.g., step 3 in Figure 4. If expansions
cannot improve a node’s score further (e.g., steps
2 and 4), the expansions are pruned and that node
becomes a leaf (red bars in Figure 4).

Note that because premises are self-generated
rather than externally provided, this stopping con-
dition has a different semantics to earlier work,
e.g., (Kalyanpur et al., 2020; Bostrom et al., 2021):
Rather than stopping when externally known facts
are reached, Entailer stops when strongly believed
facts are reached, and more backward chaining can
no longer improve a hypothesis’ confidence.

This whole procedure is repeated for each can-
didate answer hypothesis (Section 3.1). Finally
the system selects the answer corresponding to the
hypothesis with the top-scoring proof s(H).

4 Model Training

The core of Entailer is the model for one-step infer-
ence (Section 3.2.1), with the three functionalities
listed in Table 1. As Entailer is intended to be a
general-purpose system, the model is trained one-
time for these three functionalities, and then frozen.
It is then applied zero-shot to new datasets, e.g.,
the evaluation in Section 5.

4.1 Data Sources

4.1.1 EntailmentBank
To train Entailer’s model, we leverage (the train-
ing partition of) the EntailmentBank dataset (Dalvi
et al., 2021). EntailmentBank contains 1840
multiple-choice science questions (1313 in the
training partition) along with their correct answer,
a hypothesis expressing the question and answer in
declarative form, and a multistep entailment tree
expressing how the hypothesis follows from a set
of facts drawn from a corpus of science facts (the
WorldTree corpus (Xie et al., 2020)). Using the
notation introduced earlier, each EntailmentBank
example is of the form:

< Q,A,H0, { (Pi ⊢ Hi) ∗ } >

where (Pi ⊢ Hi)* denotes a set of entailment steps
forming a tree (with root Hi = H0), describing
how the corpus facts entail the hypothesis H0.

4.1.2 Crowdsourced Data
EntailmentBank only contains positive examples of
entailments. To obtain negative examples, we first
ran an earlier, positive-only-trained version of En-
tailer to generate 1-step proofs of (hypotheses for)
incorrect answer options in EntailmentBank’s ques-
tions (4-way multiple choice), resulting in (neces-
sarily bad) proofs for the three false hypotheses.
(This was done using just the H→P angle, without
verification). Note that Entailer will generate some
kind of proof even for false hypotheses, e.g.,

A rabbit has six legs because:
1. A rabbit is an animal
2. Animals have six legs

These invalid proofs will be incorrect either be-
cause a generated fact is false, and/or because
the inference itself is not a valid entailment. To
distinguish these, we use crowdworkers to assess
whether the generated facts were true, and if the en-
tailment itself was valid. The 1313 questions result
in 3939 proofs for false hypotheses. Dropping the
few with more than two premises (to simplify the
crowdsourcing interface), crowdworkers annotated
3673 proofs, using labels T/F/? for each premise
and T/F/? for the entailment itself. Each proof
was annotated by 3 crowdworkers, then an addi-
tional 3 workers provided additional annotations
for cases with no initial majority verdict. Drop-
ping premises/entailments without a final majority
verdict, we end up with 7013 additional labeled
premises for the H → Sd angle, and 3391 addi-
tional labeled entailments for the PH → Se angle.

2082

The crowdworker interface is in Appendix B.

4.1.3 Optional Fields
We also augment the training data with duplicate
examples but with additional, optional input fields:
QA: The input QA question/answer-option pair,

as well as the hypothesis H
C: A context consisting of up to 5 relevant sen-

tences, allowing explicit external knowledge
to be provided if available.

To generate examples of C during training, we use
a mixture of sentences drawn from (a) the gold
(target) entailment (i.e., the gold premises), and (b)
sentences retrieved from a corpus of similar-styled
knowledge (namely all the leaf sentences used in
the EntailmentBank entailment trees), mixed in
different ratios so the model is exposed to a mixture
of high and medium relevance sentences.

In this work we do not use any context C at
test time, but it is utilized in concurrent work for
providing feedback to the overall system (Mishra
et al., 2022).

Further details of training are given in Ap-
pendix C1.

4.2 Model Details
We train a T5-11B multi-angle model, Entailer,
following the multi-task setup similar to Macaw
(Tafjord and Clark, 2021) for the three function-
alities described in Table 1.6 Details of hyperpa-
rameters and other settings are provided in Ap-
pendix C2.

5 Evaluation

Our goal is to generate answers supported by faith-
ful, truthful chains of reasoning, without signif-
icantly impacting performance. Our two corre-
sponding reserach questions are:

1. How does Entailer’s proof-based answer ac-
curacy compare with the direct QA accuracy
(both zero-shot)?

2. How good are the generated entailment-based
proofs? And are they better than those pro-
duced by a purely generative model?

For the first question, we evaluate using two exist-
ing multiple-choice datasets, namely OBQA (Mi-
haylov et al., 2018) and QuaRTz (Tafjord et al.,
2019). These datasets contain multiple-choice
questions that (typically) require multihop reason-
ing, rather than being simple lookup questions. We

6The scores use the token probability of generated "true"
or "false" output text.

Figure 5: QA accuracy of Direct QA, Entailer, and the
two combined on two datasets.

use the test partitions7 with sizes 500 questions
(OBQA) and 557 questions (QuaRTz).

For the second question, we collect human judge-
ments of whether the hypothesis clearly follows
from facts in the proof, and compare its proofs with
explanations generated by a high-quality baseline
model, Macaw (Tafjord and Clark, 2021).

5.1 QA Accuracy

We evaluate Entailer’s proof-based QA accura-
cies under various conditions, and compare them
against its direct QA accuracy:
1. Direct QA: Here we measure the model’s ability
to directly answer the test questions (zero shot) us-
ing the H → Sd angle. One can think of this as the
“fast thinking” answer. Note that this capability of
the frozen model was trained on the same data as
the rest of Entailer, so is a fair comparison.
2. Entailer: Here we measure Entailer’s ability to
answer the test questions (again zero shot) by gen-
erating, scoring, and comparing entailment proofs
for each answer option. One can think of this as
the “slow thinking” answer. We vary:

• maximum proof depth d = 1 (blue in Fig-
ure 5) or 3 (green)

• degree of search: (a) greedy: use the first
(k = 1) generated entailment at each step, or

7For QuaRTz, for synchronization with other work (Mishra
et al., 2022), we use a portion of the training set as our test
partition here. As we are applying Entailer zero-shot, this
makes no material difference experimentally.

2083

(b) sampled top level: pick the best of k = 6
entailments for expanding the root hypothe-
sis node. (≈ six times more computationally
expensive than (a)).

Note that these proofs are are faithful explanations
of why an answer was chosen, as the selected
answer by definition is always the one with the
highest-scoring proof.
3. Entailer + Direct: Here we combine the two
by selecting the overall most confident answer of
Direct and Entailer (using cd(H) or cr(H), Ap-
pendix A). Here, the proofs are not always faithful
explanations of an answer, as the chosen answer
may not be the one with the highest-scoring proof.

5.2 Results
The results are shown in Figure 5, and suggest that:
Proof Scores are competitive with direct an-
swer scores. In Entailer’s best configuration (sam-
pled top-level k = 6, max depth d = 3, last
bar), its reason-based answers have an accuracy of
75.2/75.4 for OBQA/QuaRTz respectively, not sig-
nificantly different to the Direct scores of 75.2/74.1.
This is important, as it suggests there is no signifi-
cant accuracy penalty for proof-based answers.
Sampling proofs helps: Using sampling for the
top-level proofs (last 4 bars) always outperforms
greedy proof selection by a small amount.
Allowing deeper proofs does not significantly af-
fect accuracy: Although deeper proofs8 slightly
help in the combination of Entailer+Direct, and
may provide more information to a user, the accu-
racy differences are not significant.

When Entailer + Direct are combined, by select-
ing the most confident answer (last two columns),
we lose the guarantee of faithfulness, as the se-
lected answer may not be the one with the highest-
scoring proof. In practice, this occurs for 16.8%
of the questions (OBQA), 14.2% (QuaRTz). In
addition, we find this combination does not have
significant performance gains, so has no obvious
advantage in these experiments.

Note that we are measuring zero-shot perfor-
mance on our test datasets, so our results are not
comparable with leaderboard entries.9 More im-

8The distribution of proofs with different depths 1, 2, and
3 was 162, 232, and 106 respectively for OBQA, and 123, 256,
and 178 respectively for QuaRTz.

9For a comparable datapoint on OBQA, (Brown et al.,
2020) report zero-shot GPT3 scores of 57.6% and few-shot
65.4% on OBQA, so Entailer’s ∼75% scores are a strong
zero-shot baseline for an 11B model. More recent work us-

portantly, though, our goal is not a state-of-the-art
zero-shot model, but rather a model that can show
how answers systematically follow from its own
internal beliefs. Our results suggest this is possible
with high reliability, and, as an additional bonus,
without loss of zero-shot accuracy. Thus, rather
than just answers, we now get answers supported
by faithful chains of reasoning.

5.3 Human Judgements

For our second question of evaluating the quality of
Entailer’s proofs, we compare against explanations
generated by Macaw,10 a public, state-of-the-art
QA system with explanation capability (Tafjord
and Clark, 2021). Examples of explanations from
both systems are in Appendix D. Six annotators
compared 1-deep Entailer proofs with explanations
from Macaw, scoring each along four dimensions,
and then comparing the two:

1. Does the conclusion clearly follow from the
premises?

2. Are all the premises correct?
3. Are all of the premises relevant?
4. Does the explanation introduce something

new and useful, i.e., does more than just re-
state the conclusion in different words?

5. Which explanation do you prefer?
Answer options for questions 1-4 were
yes/somewhat/no, and for question 5 were
first/similar/second. The ordering of explanations
were scrambled so the annotators did not know
which explanation was which, and in fact they
were unaware that the different explanations
had been generated by different systems. We
collected annotations for 100 pairs of explanations
for correct answers to 100 OBQA dev questions.
The annotators were recruited from our institute,
spanning a broad range of age (20-60) and
experience.

The results (Figure 6) suggest several findings:
1. In absolute terms, Entailer’s conclusions were

ing rationale-augmented prompt ensembling with much larger
models (Wang et al., 2022) has reached few-shot (with ratio-
nales) scores of 91.0% (PaLM-540B) and 88.4% (GPT3-175B)
on OBQA.

10Note that comparing with a baseline explanation genera-
tor trained on our data, i.e., just using H → P angle without
verification, would not be informative, as such explanations
would necessarily be worse: By definition, the verifiers re-
move explanations with either (believed to be) false premises
and/or bad inferences, hence removing the verifiers will in-
crease the frequency of false premises and bad inferences
(confirmed through sample analysis). Hence we instead use a
strong, external system as a comparative reference point.

2084

Figure 6: Users’ assessments of Entailer’s proofs (red),
compared to Macaw’s explanations (blue), showing per-
cent of times annotators answered “Yes”. Entailer’s
conclusions were judged to “clearly follow from the
premises” in over 70% of the proofs (first bar), substan-
tially more than Macaw’s explanations (34%).

judged to clearly follow from the premises in the
large majority (over 70%) of the explanations,
and substantially more than Macaw’s explanations
(34%). This potentially contributes to system trust-
worthiness, where understanding how evidence sup-
ports a conclusion is critical.
2. ≈90% of Entailer’s self-verified premises were
judged correct by users. Of the remainder, virtu-
ally all were labeled “unsure” (only 1 Entailer fact
was labeled not correct), indicating that the there
are few false beliefs in proofs for correct answers.
Rather, vague facts (e.g., “Claws are used for crack-
ing open shells”) make up the remainder.
3. Entailer’s explanations were clearly preferred
(57% to 23%, last bar) over Macaw’s. In particular,
Entailer’s arrangement of facts into a tree discour-
ages irrelevant information (bar #3).
Finally we note Entailer’s proofs are faithful (show-
ing how an answer was derived) and truthful (re-
flecting the system’s own beliefs), while Macaw’s
explanations are post-hoc generated text. These all
suggest the value of entailment trees as trustable
explanations of a system’s behavior.

5.4 Analysis

5.4.1 Failure Analysis

If Entailer answers a question incorrectly, either a
model belief (belief error) and/or the reasoning
itself (reasoning error) must necessarily be
incorrect, unless the question itself is malformed
(dataset error). To better understand these,
we classified the 51/500 cases in OBQA where
Entailer selected the wrong answer while the
Direct answer was correct, and found:

Figure 7: Causes of Entailer’s failures (%) among belief
(blue), reasoning (red shades), and dataset (purple).

1. belief errors (33%), where an incorrect belief
led to a wrong answer, for example:
In a desert... plants grow closer together because
1. A desert...contains a low amount of water.
2. As the amount of water decreases, plants are forced
to grow closer together to conserve water.

Note that here the reasoning is correct but the
second is premise is false.
2. dataset errors (20%). In several cases, the
question was ambiguous (e.g., does “animal”
include humans?) or more than one answer option
was valid (OBQA is a crowdsourced dataset).
3. reasoning errors (47%):
3a. Near-tautologies (20%): of the form “X
because 1. X ′, 2. ...”, where X ′ is a near-repeat of
the hypothesis. In such cases, the proof offers little
new information.
3b. Basic reasoning errors (10%):, e.g.,
During ...fall, new leaves begin to grow because
1. During fall, old leaves begin to fall.
2. New leaves begin to grow.

Here entailment is simply invalid.
3c. Incorrect abductive inferences (9%): of
the form A because (A → B) and B. While
sometimes useful, these inferences are not sound
and can produce incorrect conclusions, e.g.,
Cooking food requires a fire to be built because
1. Cooking food requires heating the food.
2. Fire can be used to heat things.

3d. Quantification and exceptions (8%):
where both beliefs and reasoning seem reason-
able, but the specific case does not hold, e.g.,
Seeds are often found inside a strawberry because
1. Seeds are often found inside fruits.
2. A strawberry is a kind of fruit.

5.4.2 When do proofs do better?
At its best, Entailer decomposes an uncertain
hypothesis H into premises P which it is very
confident about. For example, Entailer is unsure

2085

whether A suit of armor conducts electricity, but it
confidently believes the generated premises:
A suit of armor conducts electricty because
1. A suit of armor is made of metal
2. Metals conduct electricity

Thus an uncertain conclusion is replaced by more
certain premises, and we see Entailer performing
particularly well for such questions. However,
there are questions that are largely “fact lookup”,
where a proof may be less helpful. For example,
the model is already very confident about the
hypothesis Jupiter is the largest planet in the Solar
System; decomposing this into 1. The largest
planet has the greatest mass plus 2. Jupiter has
the greatest mass in the solar system has not obvi-
ously made answering easier. In fact, Entailer’s
algorithm is specifically designed to account for
this, only growing a proof when the confidence in
the premises improves the confidence in H , thus
tailoring its degree of reasoning to the complexity
of the problem at hand.

6 Towards Teachable Systems

If a system can show how its answers systemat-
ically follows from its own beliefs, articulating
those beliefs in the process, then this opens a win-
dow into the model’s internal state for the user. As
a result, new opportunities arise for identifying and
correcting the model’s misunderstandings, so the
system gradually improves over time (sometimes
referred to as explanatory interactive machine learn-
ing (XIL) (Teso and Kersting, 2019)). One vehicle
for doing this is to use Entailer’s (currently un-
used) context field C at runtime: If the user asks
a question, receives a wrong answer, and sees an
incorrect belief in the proof, they would provide
the corrected belief, then re-ask the question with
the corrected belief in the context. This encourages
the model to use the corrected belief in its new an-
swer and proof, rather than just repeat the same bad
belief. Such overrides would then be stored and
retrieved from a persistent memory to use for future
questions also. A simple, hypothetical dialog illus-
trating this is shown in Figure 8. This is an exciting
avenue made possible by this work, currently used
by the TeachMe system(Mishra et al., 2022).

7 Conclusion

Our goal is a system that can show how its an-
swers systematically follow from its own internal
beliefs, and materialize those beliefs in the pro-
cess. Entailer is, to our knowledge, the first sys-

U: Can a magnet attract a penny?
Entailer tries to prove H (A magnet attracts a penny)
and the negation neg(H), and reports the best proof

E: A magnet can attract a penny because:
1. A penny is made of copper
2. Copper is magnetic
Do you agree?
Here Entailer gives the wrong answer, arising from an
incorrect belief #2. The user offers a correction:

U: No. Copper is not magnetic
System tries again, trying to prove H and neg(H) with
context C = “Copper is not magnetic”. C biases the
model away from its prior mistake, effectively chang-
ing the model’s belief. The new best proof is reported.

E: A magnet cannot attract a penny because:
1. A penny is made of copper.
2. Copper is not magnetic
Do you agree?
The system now gets the right answer, having learned
that copper is not magnetic from the user. C is added
to memory for use in future questions, via information
retrieva.

U: Yes

Figure 8: A hypothetical dialog illustrating how a
user (U) might identify and correct Entailer’s (E) incor-
rect beliefs through interaction. Here Entailer initially
gets the wrong answer due to an incorrect model belief
(“Copper is magnetic”). The user offers a correction,
which is then provided as context when re-asking the
question, effectively overriding the prior bad belief (the
user has “taught” the model). By storing such correc-
tions in a memory, such belief updates persist over time.

tem to demonstrate this capability, achieved using
an “over-generate and verify” approach for each
backward-chaining step. Our evaluation suggests
that Entailer’s proof-based answer accuracy is simi-
lar to the “direct” QA accuracy, with the additional
benefit of providing a faithful, truthful chain of
reasoning showing how its answers follow from
its internal beliefs. The significance of this is that
these chains provide a window into the model’s in-
ternal beliefs and their relationships, allowing users
to both verify a system’s answer, or if the system
provides an incorrect answer, to identify the incor-
rect belief leading to that error. This in turn offers
new opportunities for a user to correct the system’s
misunderstanding by overriding a faulty belief, e.g.,
by adding a memory of user corrections/overrides
(Tandon et al., 2022), or by editing the model pa-
rameters directly (Mitchell et al., 2021), a step to-
wards interactive systems that can both explain
to, and learn from, users over time (Mishra et al.,
2022). Entailer data and models are available at
https://allenai.org/data/entailer. We look forward
to future developments in these directions.

2086

https://allenai.org/data/entailer

Limitations

We have shown how a neural system can expose
how its answers systematically follow from its
own internal beliefs, providing a window into the
model’s system of beliefs. While exciting, there
are several limitations with the current work and
opportunities for the future.

First, the system is not perfect at generating co-
herent chains of reasoning, sometimes producing
entailments that are invalid or nearly tautologous
(Section 5.4.1 and Figure 7). Improved proof gen-
eration and scoring techniques would help address
this.

Second, like others, we use textual entailment
as the basic reasoning operation, but the definition
of entailment remains somewhat imprecise (a valid
entailment is one that “a person would typically
infer.” (Dagan et al., 2013)), contributing to noise
in the model’s training data. A more precise charac-
terization of reasoning validity would help in both
generation and evaluation of reasoning chains.

Third, we assume the model is generally consis-
tent about its beliefs, but in some cases the model
may verify contradictory statements, making it less
clear what the model actually believes in such cases.
We currently do not handle such situations. Use
of a global notion of belief (rather than per ques-
tion) would be a valuable avenue to explore, e.g.,
(Kassner et al., 2021).

Fourth, as a practical matter, recursive construc-
tion of proofs is computationally expensive (≈360
seconds/question for up to depth-3 proofs for 4-way
multiple-choice, Appendix A.2). Improvements to
the search algorithm would allow faster experimen-
tation, and also help deploy the model in a practical
setting.

Finally, we have speculated that showing users
faithful, truthful chains of reasoning might be a ba-
sis for a conversational system, where users could
correct and teach the system in cases where it was
wrong. However, this is currently just a conjecture -
futures explorations into how this might be realized
would be valuable.

Ethics Statement

Like any other large-scale language model, despite
the best intentions, there is a risk of our model
producing biased or offensive statements as part
of its explanations. We release our models for
research purposes only.

Acknowledgements

This research was made possible, in part, by fund-
ing from Open Philanthropy. We also thank Google
for providing the TPUs for conducting experi-
ments.

References
Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-

tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In ACL.

Kaj Bostrom, Zayne Sprague, Swarat Chaudhuri, and
Greg Durrett. 2022. Natural language deduction
through search over statement compositions. ArXiv,
abs/2201.06028.

Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, and Greg
Durrett. 2021. Flexible generation of natural lan-
guage deductions. In EMNLP.

Tom B. Brown et al. 2020. Language models are few-
shot learners. In NeurIPS.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In
IJCAI’20.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. ArXiv, abs/2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. ArXiv,
abs/2205.09712.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual
Entailment: Models and Applications. Morgan and
Claypool.

Bhavana Dalvi, Peter A. Jansen, Oyvind Tafjord, Zheng-
nan Xie, Hannah Smith, Leighanna Pipatanangkura,
and Peter Clark. 2021. Explaining answers with en-
tailment trees. In EMNLP.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. ArXiv,
abs/1809.02922.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha
Ravichander, E. Hovy, H. Schutze, and Yoav Gold-
berg. 2021. Measuring and improving consistency in
pretrained language models. ArXiv, abs/2102.01017.

Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz,
Ronan Le Bras, Maxwell Forbes, and Yejin Choi.
2021. Paragraph-level commonsense transformers
with recurrent memory. In AAAI.

2087

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degener-
ation. In ICLR.

Ruixin Hong, Hongming Zhang, Xintong Yu, and
Changshui Zhang. 2022. Metgen: A module-based
entailment tree generation framework for answer ex-
planation. ArXiv, abs/2205.02593.

Aditya Kalyanpur, Tom Breloff, and David A. Fer-
rucci. 2020. Braid: Weaving symbolic and neural
knowledge into coherent logical explanations. arXiv:
Computation and Language.

Nora Kassner and H. Schütze. 2020. Negated and mis-
primed probes for pretrained language models: Birds
can talk, but cannot fly. In ACL.

Nora Kassner, Oyvind Tafjord, Hinrich Schutze, and
Peter Clark. 2021. BeliefBank: Adding memory to a
pre-trained language model for a systematic notion
of belief. In EMNLP.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Sriku-
mar. 2019. A logic-driven framework for consistency
of neural models. In EMNLP.

Yujia Li, David H. Choi, et al. 2022. Competition-
level code generation with alphacode. ArXiv,
abs/2203.07814.

Christopher D. Manning and Bill MacCartney. 2009.
Natural language inference. Stanford University.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In EMNLP.

Bhavana Dalvi Mishra, Oyvind Tafjord, and Peter Clark.
2022. Towards teachable reasoning systems: Using
a dynamic memory of user feedback for continual
system improvement. In EMNLP.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2021. Fast model
editing at scale. ArXiv, abs/2110.11309.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. ArXiv,
abs/2112.00114.

F. Petroni, Tim Rocktäschel, Patrick Lewis, A. Bakhtin,
Y. Wu, Alexander H. Miller, and S. Riedel. 2019.
Language models as knowledge bases? In EMNLP.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Rui
Dong, Xiaokai Wei, Henry Zhu, Xinchi Chen, Zhi-
heng Huang, Peng Xu, Andrew O. Arnold, and
Dan Roth. 2022. Entailment tree explanations
via iterative retrieval-generation reasoner. ArXiv,
abs/2205.09224.

Marco Tulio Ribeiro, Carlos Guestrin, and Sameer
Singh. 2019. Are red roses red? Evaluating con-
sistency of question-answering models. In ACL.

Eric Schwitzgebel. 2019. Belief.
Stanford Encyclopedia of Philosophy.
Https://plato.stanford.edu/entries/belief/.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
EMNLP, pages 4615–4629.

Oyvind Tafjord and Peter Clark. 2021. General-
purpose question-answering with Macaw. ArXiv,
abs/2109.02593.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Pe-
ter Clark. 2019. QuaRTz: An open-domain
dataset of qualitative relationship questions. ArXiv,
abs/1909.03553.

Oyvind Tafjord, B. D. Mishra, and P. Clark. 2020.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. ArXiv,
abs/2012.13048.

Alon Talmor, Oyvind Tafjord, P. Clark, Y. Goldberg,
and Jonathan Berant. 2020. LeapOfThought: Teach-
ing pre-trained models to systematically reason over
implicit knowledge. In NeurIPS.

Niket Tandon, Aman Madaan, Peter Clark, and Yiming
Yang. 2022. Memory-assisted prompt editing to im-
prove GPT-3 after deployment. In ACL Workshop
on Commonsense Representation and Reasoning
(CSRR’22). (also arxiv:2201.06009).

Stefano Teso and Kristian Kersting. 2019. Explana-
tory interactive machine learning. Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and
Society.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, and Denny Zhou. 2022. Rationale-
augmented ensembles in language models. ArXiv,
abs/2207.00747.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. ArXiv, abs/2201.11903.

Sarah Wiegreffe and Ana Marasović. 2021. Teach me
to explain: A review of datasets for explainable NLP.
ArXiv, abs/2102.12060.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz-
abeth Wainwright, Steven Marmorstein, and Peter
Jansen. 2020. WorldTree V2: A corpus of science-
domain structured explanations and inference pat-
terns supporting multi-hop inference. In LREC.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. ArXiv, abs/2205.12443.

2088

Appendix A. Entailer’s Backward Chaining Algorithm

Algorithm 1 Entailer’s backchaining algorithm for searching for the best proof tree(H) with score s(H)
for a hypothesis H .

1: procedure PROVE(H) → score s(H) & proof tree(H):
2: i. find direct score sd(H) & confidence cd(H):
3: direct score sd(H) = call model H→Sd

4: direct confidence cd(H) = max(sd(H), (1− sd(H))) // confidence of predicted label
5: ii. find reasoned score sr(H), confidence cr(H), & subtrees tree(pi):
6: call 1STEP(H) →P to find best premises P that entail H
7: find se(P ⊢ H) via model PH → Se // score the entailment
8: if se(P ⊢ H) > cd(H) or H=H†

0 // if reasoning conf cr(H) might beat direct conf cd(H) (lines 13,11), backchain
9: then forall pi ∈ P do

10: call PROVE(pi) to find s(pi), tree(pi) // get scores and subtrees for each pi
11: reasoned score sr(H) = (Πis(pi)).se(P ⊢ H) // overall score for reasoned answer
12: else sr(H) = 0
13: reasoning confidence cr(H) = sr(H) // reason confidence = score
14: iii. return direct or reasoned answer (pick most confident):
15: if cr(H) > cd(H) or H=H†

0 // if reasoning confidence is higher (or top level)
16: then return s(H)=sr(H) & tree(H)=({tree(pi)} ⊢ H) // reasoned score + subtrees
17: else return s(H)=sd(H) & tree(H)=H // direct score + H as terminal node (the subtrees are discarded)
18:
19: procedure 1STEP(H) → premises P // Find premises P that together entail H
20: repeat k times: // over-generate with nucleus sampling
21: a. find premises P via model H → P // find premises
22: b. find {sd(pi ∈ P)} via model H(= pi) → Sd // score those premises
23: c. find se(P ⊢ H) via model PH → Se // score the entailment itself
24: d. discard if any of {sd(pi)}, se(P ⊢ H) < 0.5 // now filter
25: e. sr-1deep(H) = (Πisd(pi)).se(P ⊢ H) // Final score for the 1-deep proof
26: select premises P with highest sr-1deep(H) // Pick the best of the k proofs
†We insist on at least a 1-deep tree by, for the top-level hypothesis H=H0, ensuring that lines 8 and 15 succeed.

A.1 Generating One Backward-Chaining Step
The procedure to find a 1-step inference is called
1STEP(H) in Algorithm 1 (line 19). Given a hy-
pothesis H , we use the angle H → P to over-
generate a set of k alternative backward-chaining
steps P ⊢ H using nucleus sampling (line 21). We
then check that the model believes all the premises
pi ∈ P using the H(= pi) → Sd angle, and that it
believes the inference step P ⊢ H itself is valid (in-
dependent of whether the pi are true or not) using
the PH → Se angle (line 24). The overall score,
denoting how well the 1-step proof supports the
hypothesis, combines the premise end entailment
scores as follows (line 25):

sr-1deep(H) = (Πisd(pi)).se(P ⊢ H)

The highest-scoring proof P ⊢ H is returned.

A.2 Backward Chaining
Procedure PROVE(H) in Algorithm 1 generalizes
this to multi-step entailments by recursively gen-

erating support for each premise pi in P (line 10).
The stopping condition is when the model’s direct
confidence11 in pi is greater than the proof-derived
confidence in pi, i.e., cd(pi) > cr(pi). When this
condition is met, the subtree P ′ ⊢ pi for pi is dis-
carded and pi becomes a leaf node of the tree (line
17). We also impose a maximum depth d on the
tree.

This whole procedure is repeated for each can-
didate answer hypothesis (Section 3.1). Finally
the system selects the answer corresponding to the
hypothesis with the top-scoring proof s(H).

On our datasets, the average runtime per ques-
tion (4-way multiple-choice) is ≈80 seconds (depth
1 proofs, sample size k=6) or ≈360 seconds (up
to depth 3 proofs, sample size k=6) on a 48GB
GPU, due to the large number of candidate infer-
ence steps generated during the search.

11As the direct score sd(pi) in pi ranges from 0 (definitely false) to 1 (definitely true), we define the corresponding confidence
to with respect to the predicted label, i.e., cd(pi) = 1− sd(pi) when sd(pi) < 0.5, otherwise cd(pi) = sd(pi). In contrast, the
proof score ranges from 0 (no proof) to 1 (perfect proof), hence the proof confidence is simply the proof score, cr(pi) = sr(pi).
Note that unlike sd(pi), sr(pi) = 0 means no proof, not false.

2089

Appendix B. Crowdsourcing Instructions for Verifying Entailments (Section 4.1.2)

Instructions (click here to collapse/expand instructions)

We have a computer program that tries to answer multiple-choice science questions by reasoning. To do this, it tries to combine two
facts that it thinks are true, to deduce the answer to the question. For example, consider this question:

Which of the following conducts electricity?
(A) a pencil (B) a nail [CORRECT] (C) a book

Here the system got the right answer (B), and explains its reasoning as follows:

BECAUSE a nail is made of metal
AND metals conduct electricity
IT FOLLOWS THAT a nail conducts electricity;

This is an example of a correct line of reasoning: if nails are metal, and metals conduct electricity, then nails will conduct too.

However, the computer often makes mistakes! All the examples in this HIT are when the computer chose the wrong answer to the
question!

This HIT is to diagnose where the computer went wrong. It could be that

one of the facts the computer started with was wrong, and/or
its reasoning was wrong (i.e., the conclusion simply doesn't follow from the facts) and/or
in the special case where the facts and the reasoning look correct, there could be some additional, missing fact which the
computer forgot to take into account.

Simply check the boxes to help us diagnose the problem! Here are three examples of the HIT:

EXAMPLE 1:

First read this SCIENCE QUESTION:

Which animal can fly?
(1) eagle [CORRECT] (2) dog (3) cat

Here, (1) is the correct answer. But the system got it wrong, and thought the answer was (2)! Here is its line of reasoning - please help
debug it! First, let's check the individual facts that the system guessed:

Is the sentence generally true?
Yes No Unsure

BECAUSE dogs are animals
AND animals can fly Note this is not generally true! So select "No"
IT FOLLOWS THAT dogs can fly ← This one is false!

Now let's check the system's reasoning. IMAGINE that all the facts were true:

IF IT WERE TRUE THAT dogs are animals
AND IT WERE TRUE THAT animals can fly
THEN WOULD IT FOLLOW THAT dogs can fly

Would the conclusion follow IF all the facts were true?
 yes no it depends unsure/incomprehensible

Finally: If all the facts are correct, and the reasoning is correct, then where did the system go wrong?

 Not applicable - some of the system's facts and/or reasoning were wrong.
 I don't see a problem - this "wrong" answer actually looks correct to me!
 While the facts are generally correct, they don't hold for this particular situation
 There's some additional, missing fact the system should have used (enter it below):

Comment: Here, this special condition (facts and reasoning both correct) doesn't apply, as the second fact ("animals can fly") is not
generally true. Hence select "Not applicable".

[EXAMPLES 2 and 3 ommited here for brevity]

Some important notes:

Please answer with care: Some HITs will be checked by hand, and work may be rejected if there are to many errors
Feel free to use the Internet/Google to make sense of the science question and what the correct answer is.
To select "Yes", the sentence only needs to be generally true (in a commonsense way), not absolutely always true.
Feel free to use the Internet/Google to check if a fact's true or not.
If a fact is ungrammatical but you can still understand it, score it as if it were ungrammatical.
If the sentence doesn't make sense / is incomprehensible / is very ambiguous, select "Unsure".
Ignore upper-case/lower-case differences. For example, you would mark the fact:

BECAUSE: o is the chemical symbol for oxygen...
as generally true ("Yes"), even though strictly it should say "O" (upper-case) rather than "o" (lower-case) for oxygen.
To check the reasoning, imagine someone convinces you that all the facts are true (even if they are not). If they convinced you,
would you therefore believe the conclusion? If yes, then the reasoning is good. Otherwise it is not!
Or to put it another way: Checking the reasoning requires "suspending disbelief" in incorrect facts. Does the chain of reasoning
seem convincing, if the facts were correct?
All the conclusions ("IT FOLLOWS THAT") are intended to be false ("This one is false!"). If you see one which looks true to you,
and the facts and reasoning are correct, then select "I don't see a problem" for the last question!

Thank you for your help! You rock!

2090

Appendix C: Model Training

C.1 Dataset Preparation
Here we describe in detail how Entailer’s training
data is assembled.

1. We start with the training partition of the
EntailmentBank dataset, containining 1313
multiple choice questions each with an entail-
ment tree for their correct answer choice.

2. We convert the question + each answer option
to a hypothesis using four different, alternative
methods:

• Entailer’s current QA2D model, a re-
construction of that by (Demszky et al.,
2018) (Section 3.1).

• An in-house, rule-based QA2D utility
• An earlier version of Entailer’s QA2D

model.
• The original hand-written hypothesis

supplied in the EntailmentBank dataset.

If a source generates the same hypothesis for
two different answer choices, we choose not
to trust it for that question and discard it.

3. We “shred” the EntailmentBank entailment
trees into individual 1-step P ⊢ H entailments,
producing 4175 1-step (valid) entailments us-
ing ≈9000 true premises.

4. The crowdsourced P ⊢ H instances, with an-
notations on whether premises are true and en-
tailment is true, are also added (Section 4.1.2).

5. Each EntailmentBank proof also comes with
a set of associated relevant facts (sentences),
only some of which are used in the entailment
proofs. We use these to create a "relevant
context" containing these sentences, sorted
into two buckets:
high-relevance: sentences actually used in

the proof of the correct answer
medium-relevance: the remaining sentences

This context is the same across all answer
options at this point.

6. For every hypothesis and premise appearing in
this dataset, we run a simple BM25 IR search
against a larger science text corpus (about
1.5 million sentences from a science-filtered
Wikipedia) to obtain noisier sentences to use
as a low-relevance context.

7. For the final training dataset, we create 4 dif-
ferent contexts, using 4 sampling strategies.
First we create a "full" context of sentences
sorted into three buckets, with added noise:
high: high-relevance facts + 10% chance of

a random sentence from medium/low
medium: medium-relevance facts + 20%

chance of random sentences from
high/low

low: 5 low-relevance facts + 20% chance of
random sentence from high/medium

Then, we use four sampling strategies to cre-
ate actual contexts for the Entailer training
data. Each strategy is defined by the per-
sentence chance of a sentence coming from
one of the high/medium/low buckets. For
example, a context sampled with 0.2/0.4/0.6
means that 20% of its sentences came from
high, 40% from medium, an 60% from low.
If no sentence is selectable (e.g., a bucket is
exhausted), we use one from low. The final
context is syntactically expressed as “[HIGH]
<high sentences> [MEDIUM] <medium sen-
tences> [LOW] <low sentences>”. The 4
sampling strategies are:
1/1/1 (full context, all available sentences)
0.5/0.5/0.5 (half of sentences from each cate-

gory)
0.2/0.4/0.6 (more emphasis on lower cate-

gories)
0/0/1 (only low sentences)

For the training set we store these as a list of
contexts, to be sampled at random when gen-
erating the training instances. We do the same
for hypotheses, so these are also sampled at
random.

8. The model is trained across the following
angles, each sampled equally: {H→P, H→V,
HP→I, QAH→P, QAH→V, QAHP→I,
HC→P, HC→V, HPC→I, QAHC→P,
QAHC→V, QAHPC→I}

This is just the core angles H→P, H→V,
HP→I, with optional QA and/or C added. The
individual premise verification (leaves) uses
the H→V angle (where H is now a premise),
for those angles we don’t have associated
proofs P so we limit to the angles: H→V,
QAH→V, HC→V, QAHC→V

The full dataset is provided in the supplemen-
tary material, and will be released publically.

2091

C.2 Model Details
We train a T5-11B multi-angle model, Entailer,
following the multi-task setup similar to (Tafjord
and Clark, 2021) for the three functionalities de-
scribed in Table 1. We used the default hyperpa-
rameters (including the Adafactor optimizer) in the
T5 library,fine-tune the model for 20K steps with
batch size of 8, selecting the checkpoint with high-
est validation score (usually the final step).

At inference time, Entailer’s primary function is
to generate candidate entailments for each answer
choice for a given question, which are then scored
by the same model using its two verification angles.
To generate multiple explanations for a single in-
put (answer hypothesis, IR retrieved context), in
addition to the greedy decoding we use nucleus
sampling (Holtzman et al., 2019). For the experi-
ments in this paper we set “temperature= 2.0”, and
“top_p= 0.95”.

2092

Appendix D. Examples of Macaw Explanations and Entailer Proofs

A random selection of explanations, both good and bad, from the two systems (Section 5.3).

2093

