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Abstract

Quantitative reasoning is an important aspect of
question answering, especially when numeric
and verbal cues interact to indicate sophisti-
cated, multi-step programs. In this paper, we
demonstrate how modeling the compositional
nature of quantitative text can enhance the per-
formance and robustness of QA models, allow-
ing them to capture arithmetic logic that is ex-
pressed verbally. Borrowing from the literature
on semantic parsing, we propose a method that
encourages the QA models to adjust their at-
tention patterns and capture input/output align-
ments that are meaningful to the reasoning task.
We show how this strategy improves program
accuracy and renders the models more robust
against overfitting as the number of reasoning
steps grows. Our approach is designed as a
standalone module which can be prepended to
many existing models and trained in an end-
to-end fashion without the need for additional
supervisory signal. As part of this exercise, we
also create a unified dataset building on four
previously released numerical QA datasets over
tabular data 1.

1 Introduction

Any natural language system that processes or in-
teracts with numeric data requires quantitative rea-
soning to function. This has inspired research in
several NLP domains, including reading compre-
hension (Andor et al., 2019; Mishra et al., 2022),
textual entailment (Roy et al., 2015; Ravichander
et al., 2019), data-to-text generation (Parikh et al.,
2020; Suadaa et al., 2021), and question answering
(Chen et al., 2020; Zhang et al., 2021). A major
challenge in quantitative reasoning is the interplay
between numeric expressions and natural language
(Roy et al., 2015). Standard neural approaches rely
heavily on lexical matching, leading to overfitting
over spurious verbal patterns. In contrast, a purely

1The dataset and code are available at https://github.
com/ArmiNouri/CompAQT

symbolic approach excels at numerical reasoning,
but struggles when sophisticated verbal reasoning
is required (Ravichander et al., 2019). In this pa-
per we introduce a novel attention strategy that
captures the interplay between numeric and verbal
modalities, which improves program accuracy and
renders models more robust to overfitting.

Focusing on the question answering task, we
show how our proposed method, named Com-
pAQT (COMPositional Attention for QuanTitative
reasoning), enables the model to attend to relevant
parts of text at each reasoning step. CompAQT
enhances the performance of state of the art models
on several recently released QA datasets, especially
for multi-step programs. It is implemented as a
plug-and-play module that can be added to existing
models with minimal effort and without the need
for any additional supervision.

Concretely, we offer the following contributions:

• We propose a compositional attention module
equipped with an alignment loss that improves
SOTA performance on numeric QA tasks.

• We demonstrate how the proposed approach
improves the models’ program accuracy and
renders them more robust in multi-step rea-
soning tasks.

• We combine and refine four recently released
datasets on QA over tabular data. We unify
their annotation schema so that they can be
used interchangeably.

2 Related work

Studies that have tackled quantitative reasoning
in QA tasks fall into two categories. Some stud-
ies have explored quantitative reasoning for an-
swering questions over real-world data such as sta-
tistical records (Cheng et al., 2022), Wiki entries
(Chen et al., 2020), enterprise documents (Katsis
et al., 2021), and financial reports (Zhu et al., 2021).
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Since numeric data is very often expressed in tabu-
lar structures, this category often involves question
answering over tabular data, or hybrid table/text
passages. Other studies have explored Math Word
Problems (Ling et al., 2017), which require mod-
eling abstractions and mapping arithmetic logic
between language and math symbols (Kim et al.,
2020; Wu et al., 2021).

2.1 QA over tabular data

As with many modern QA models, most tabular
QA approaches use a retriever-generator architec-
ture (Jurafsy and Martin, 2021), where the retriever
identifies relevant table cells and encodes them us-
ing tabular encoding (Yin et al., 2020; Herzig et al.,
2020) or verbalization (Chen et al., 2021). The gen-
erator produces the program necessary to derive the
answer. This provides the opportunity to measure
model performance in terms of program accuracy
as well as execution accuracy.

Numerous studies have tackled quantitative rea-
soning in retriever-generator models. Retriever-
focused studies have proposed structure and num-
ber aware representations that model the mag-
nitude, polarity, or relationship among quanti-
ties (Wang et al., 2017; Herzig et al., 2020; Wu
et al., 2021)2. The need for large-scale in-domain
datasets limits the applicability of these methods.
Hence generator-focused studies have attempted to
enhance quantitative reasoning at generation time,
using graph-based reasoning (Zhang et al., 2021),
knowledge infusion (Nararatwong et al., 2022), log-
ical programming (Kurosawa and Yanaka, 2022),
and causal reasoning (Li et al., 2022).

Despite major improvements, quantitative rea-
soning remains a challenge (Al-Negheimish et al.,
2021). The challenge stems from the memorization
of spurious lexical patterns by the model, espe-
cially in the absence of large-scale training data
(Ravichander et al., 2019). This is reminiscent of
the problem of compositional generalization, which
has been studied in-depth in numerous NLU fields
including semantic parsing (Furrer et al., 2020),
visual question answering (Saqur and Narasimhan,
2020), data-to-text generation (Mehta et al., 2022),
and learning from instruction (Li et al., 2019). Our
study adapts key findings from these domains and
extends them to the quantitative QA task.

2Please refer to Appendix E for a detailed review of our
experiments on creating operator-aware and operand-aware
representations. While showing promise, they do not improve
multi-step reasoning for the QA task.

2.2 Compositional generalization

Compositional generalization is a model’s ability
to recognize new structures that are novel, but
made up of previously seen components (Mon-
tague, 1973). Oren et al. (2020) explore several
methods to improve compositional generalization
for semantic parsing tasks, including the downsam-
pling of repetitive patterns, using grammar-based
decoding, and supervising the attention weights to
ensure proper alignments are maintained between
input and output terms. A method that consistently
outperforms other approaches in text-to-SQL and
tabular QA tasks is attention coverage. Coverage
is a penalty term that encourages the model not to
pay too much attention to familiar (i.e. frequently
seen) terms and focus its attention weights on new,
unseen terms at test time.

Yin et al. (2021) propose a simple yet effective
method to supervise attention weights for a seman-
tic parser using a small number of samples. They
first find span-level alignments between the natu-
ral language input and the program output using a
heuristic algorithm. Next, they encourage attention
weights to follow the alignments by adding a super-
vised attention loss. The loss can be thought of as
a regularization term that prevents the model from
overfitting to spurious patterns.

In a quantitative QA task, the input is a natu-
ral language question and the output is a program
made up of arithmetic operators and operands. As
such, the problem is similar to the semantic pars-
ing task. Using this intuition, our study adapts
some of the key findings from the aforementioned
studies and extends them to the quantitative QA
setting. We demonstrate how attention supervision
and coverage penalty can be combined to improve
performance on the tabular QA task, especially
for multi-step programs. In contrast to Yin et al.
(2021), our approach does not require any addi-
tional supervision. To the best of our knowledge,
our study is the first to position and address quan-
titative reasoning in the context of compositional
generalization.

3 Problem statement

In the retriever-generator configuration of a QA
model, our goal is to improve quantitative reason-
ing in the generator component. Figure 1 illus-
trates the typical architecture of a generator as an
encoder-decoder model. The encoder uses a contex-
tual representation model such as RoBERTa (Liu
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Question Evidence Program

1
What was the net change in
revenue from 2019 to 2020?

2019 revenue was $80M
2020 revenue was $60M

subtract(80, 60)

2
What was the net change in
expenses between 2018 and 2021?

2018 expenses were $20M
2021 expenses were $30M

subtract(20, 30)

3
What was the percent change in
revenue from 2019 to 2020?

2019 revenue was $80M
2020 revenue was $60M

subtract(80, 60)
divide(#0, 80)
multiply(#1, 100)

4
What was the percent change in
expenses between 2018 and 2021?

2018 expenses were $20M
2021 expenses were $30M

subtract(20, 30)
divide(#0, 20)
multiply(#1, 100)

Table 1: Example of compositional alignments between
input questions and output programs in the financial QA
task. Blue underlined text indicates terms that relate to
arithmetic operators. Red italicized text indicates terms
that relate to operands. Bold italicized text indicates
terms that are shared between the question and evidence.

et al., 2019). The decoder combines a recurrent
module with one or more cross-attention heads be-
tween the natural language input and the program
output. As the output is generated step by step, it is
crucial for the cross-attention module(s) to capture
relevant components of the input, otherwise they
can simply memorize spurious verbal patterns and
fail to generalize, especially as the number of steps
grows in the output.

Figure 1: The typical encoder-decoder architecture of a
quantitative QA generator. We introduce the composi-
tional attention component (middle, enclosed in dotted
line) to enhance the alignments between natural lan-
guage input and program output.

Table 1 illustrates this phenomenon with four
examples from a QA task. Each row displays a
natural language question, the set of facts that can
be used as evidence to answer the question, and the
program to arrive at the correct answer. Presented
with the first three examples, it is conceivable that
a human would be able to extrapolate that “percent
change” is calculated by first measuring the net
change (i.e. subtraction) and then scaling the num-
ber as a percentage. Humans are able to do this by
recognizing components in the question that have
been previously encountered (e.g. “percent change”
and “expenses”) even if they were not encountered
in this particular arrangement.

Many neural models struggle to exhibit the same
behavior, due to overfitting to spurious patterns
in natural language, or in the output. As we will

later discuss in Section 5.1, quantitative reasoning
datasets can exhibit a long-tail distribution, biased
towards simpler patterns. Figure 2 illustrates how
this phenomenon takes place in the training split of
one such dataset. The figure shows the prominence
of the most common sequences of arithmetic oper-
ators in the FinQA training set (Chen et al., 2021).
As the number of steps grows, the tail grows longer
and the sample size smaller, thus providing less
information to the model and forcing it to rely on
repetitively encountered patterns in the past.

Figure 2: The long-tail effect in multi-step programs in
the FinQA training set (Chen et al., 2021).

Our goal is to encourage the model to focus its
attention on relevant components of the input dur-
ing generation. Figure 3 illustrates the expected
attention patterns for the fourth example from Ta-
ble 1. The figure illustrates two key points: 1)
During program generation, the terms that overlap
between the question and the evidence do not mat-
ter as much as non-overlapping terms. 2) When
generating operators (such as subtract or divide)
attention should be focused on terms that are ex-
clusive to the question. Whereas when generating
the operands (such as 80 or 20), attention should
be focused on terms that are exclusive to the evi-
dence. Constants such as 100 or #0 may depend on
the question, the facts, or the previously generated
steps.

Using this insight, we encourage the model to
adjust its attention patterns accordingly. Ideally,
we would like to implement a cross-attention mech-
anism that mimics the alignments shown in Figure
3. However, doing so would require additional
training data with gold alignments between the in-
put and the output, akin to Yin et al. (2021). To
avoid this, instead of using a cross-attention mod-
ule, we propose a self-attention module applied to
the input alone. The output of this self-attention
module will be served as input to any downstream
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Figure 3: Semantic alignments between the natural lan-
guage input from a financial QA task, and the corre-
sponding program output.

cross-attention modules.
The self-attention module primes the input in

such a way that downstream cross-attention can
achieve the desired alignments. This means that
the self-attention module attends most to tokens
in the input that are non-repetitive (in Figure 3
these would be non-bold tokens such as “percent”
or “change”). We hypothesize that this would
make it easier for any downstream cross-attention
module to distinguish between primed tokens and
unprimed tokens, and use this information to dis-
tribute its attention mass more accurately, ignoring
non-operative tokens.

The remaining sections describe our methodol-
ogy and experimental results in detail.

4 Methodology

Let Q be a question made up of a sequence of
tokens q1, · · · , qn. Let F be the evidence ob-
tained by the retriever, made up of a sequence
of tokens f1, · · · , fm. Note that the evidence can
be composed of one or more concatenated facts,
as illustrated in Table 1. Consistent with Chen
et al. (2021), we represent the output program S
as a sequence of steps s1, · · · , sl. Each step si
is composed of an operator oi (such as divide
or subtract) and exactly two operands, ai,1 and
ai,2

3. An operand can have one of three values:
1) It can be one of the tokens in F . 2) It can be
a constant used in scaling or counting operations,
e.g. const_100. The list of possible constants is
pre-defined. 3) It can be a reference to a previous
step, e.g. #0. The maximum number of steps is
pre-defined.

3We follow the notation used by FinQA, where programs
are modeled as right-expanding binary trees with each opera-
tion having two operands. If necessary, one or more operands
are set to NONE. Here, NONE is a special constant.

Given a retriever-generator model, we prepend a
self-attention module to the generator, as illustrated
by the red dotted box in Figure 1. First, we encode
Q||F using a contextual embedding model such
as RoBERTa (Liu et al., 2019) with embedding
size denc. This results in an embedding matrix
U ∈ Rdenc×(n+m). At each generation step i, we
apply scaled dot-product self-attention (Vaswani
et al., 2017) to U , resulting in the attention grid
A(i) ∈ R(n+m)×(n+m) and the attention output
X (i) ∈ Rdenc×(n+m). Our goal is to encourage
A(i) to focus its alignments properly, such that
X (i) supplies relevant information to the generator.

We follow a similar strategy to Yin et al. (2021),
but in the absence of gold alignments, use the
heuristics described in Section 3. Concretely, we
add the below term to the loss:

L(i)align =

1

n+m

n+m∑

k=1

n+m∑

j=1

(a
(i)
j,k − pprior(u

(i)
j |u

(i)
k ))2 (1)

where a
(i)
j,k is the attention weight between the

jth and kth tokens in A(i), and pprior(u
(i)
j |u

(i)
k ) is

defined as:

max{0, min
j′ ̸=k

(dist(u (i)
j′ ,u

(i)
k ))− a

(i−1)
j,k }

where dist is the cosine distance between two
vectors, scaled between 0 and 1, and a

(0)
j,k = 0 for

all j and k.
The term min

j′ ̸=k
(dist(u (i)

j′ ,u
(i)
k )) encourages the

model to distribute attention to each token based
on its closest similarity to any other token in the
input. This is balanced against the previous atten-
tion distribution a

(i−1)
j,k , leading to the following

behavior:

1. For tokens that are repeated more than once
(e.g. those tokens shared between the question
and the evidence), lower attention is encour-
aged. This helps the model to disregard tokens
such as “expenses” and “2018” illustrated in
Figure 3.

2. For terms that are unique to the question or
the evidence, high attention is encouraged in
early steps. This helps the model to focus on
tokens such as “percent” and “20”.
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3. In later steps, the model is discouraged from
focusing on previously well-attended tokens.
For instance after the model attends to the
word “change” in order to generate subtract,
it learns to shift its focus away.

(1) and (2) emulate the regularization strategy
proposed by Yin et al. (2021), while (3) emulates
the concept of coverage proposed by Oren et al.
(2020) with the contrast that it tracks tokens seen
in previous generation steps for the same sample.
The total alignment loss for a sample is calculated
as an aggregation over all steps, with linear decay:

Lalign =
1

l

l∑

i=1

L(i)align − αi (2)

The linear decay term helps the model assign a
higher penalty to earlier generation steps. Suppose
the gold program is:

• subtract(20, 30), divide(#0, 20)

and the output generated by the model is either
one of the below options:

• subtract(20, 30), multiply(#0, 20)

• add(20, 30), multiply(#0, 20)

In the absence of linear decay, both predictions
would receive the same penalty. The decay term
assigns a lower penalty to the first prediction, since
it gets the first operation correct.

Finally, the alignment loss can be added to the
default loss of the generator:

Ltotal = λLalign + (1− λ)Lgenerator (3)

5 Experiments

In this section, we describe our experimental set
up, including the datasets and the baseline models.

5.1 Datasets
We use four datasets that focus on numerical rea-
soning over hybrid table/text context, all released
within a year of this publication.

FinQA (Chen et al., 2021) is based on a collec-
tion of financial reports published by U.S. compa-
nies that were released as part of FinTabNet (Zheng
et al., 2021). Each passage is composed of a table
and a few sentences that surround the table, describ-
ing its content. The questions, designed by domain
experts, all require numerical reasoning.

TAT-QA (Zhu et al., 2021) is also focused on
financial reports, but includes documents from non-
U.S. companies. As such, the reports do not con-
form to a standard format and include a more di-
verse set of metrics. The dataset includes span-
based and multi-span questions as well as questions
requiring arithmetic reasoning. In our experiments,
we focus on the latter category.

HiTab (Cheng et al., 2022) is a collection of
tables that include statistical data, collected from
various national agencies. The tables have com-
plex hierarchical or nested structure, and answering
them requires spatial as well as numerical reason-
ing. As with TAT-QA, we discard questions that do
not require any arithmetic operations.

MULTIHIERTT (Zhao et al., 2022), which is
also based on FinTabNet, combines the challenges
of the above-mentioned datasets, bringing together
complex tabular structures and hybrid table/text
contexts. Again, we filter the dataset down to those
samples that require numerical reasoning.

All four datasets provide the reasoning program
required to derive the answers, allowing any model
to be evaluated on program accuracy. Since our
study is focused on multi-step generation, we use
program accuracy as our evaluation metric.

5.1.1 Unified dataset

Of the datasets mentioned above, FinQA is exclu-
sively focused on multi-step quantitative reasoning.
The remaining datasets tackle additional challenges
such as extractive QA, spatial reasoning, and table
representation. Therefore we filter TAT-QA, HiTab,
and MULTIHIERTT down to those samples that re-
quire quantitative reasoning. We also transform
each sample so that it conforms to the standard
FinQA format. This helps us bypass the challenge
of addressing complex tabular structures, which is
out of scope for this study. Please refer to Appendix
A for further details.

Table 2 shows statistics for each dataset, as well
as the distribution of 1 step, 2 step, and 3+ step
programs.

4TAT-QA samples include a flag to distinguish arithmetic
questions from span-based questions. However, this flag is
only available in the train and dev sets, but not in the test set.
Therefore we split the dev set into 230 dev examples and 307
test examples.

5MULTIHIERTT does not include an annotated test set.
Therefore we split the validation set into 100 dev examples
and 108 test examples.
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Dataset # passages # QA pairs used # steps in program
Train Dev Test 1 step 2 steps 3+ steps

FinQA 2,789 6,251 883 1,147 4,894 2,709 678
TAT-QA4 2,479 4,355 230 307 2,721 616 1,555
HiTab 513 879 186 199 1,075 120 69
MULTIHIERTT5 2,291 2,083 100 108 560 862 869
Combined 8,071 13,568 1,349 1,761 9,520 4,388 3,171

Table 2: Statistics of the four datasets, and the combined
dataset. Note that with the exception of FinQA, only
a subset of samples (involving multi-step quantitative
reasoning) is used from each dataset.

5.2 Baselines
To establish baselines, we use the following models
that have demonstrated SOTA performance on the
datasets mentioned in the previous section6.

FinQANet was proposed by Chen et al. (2021)
and applied to the FinQA dataset. The architecture
is similar to that illustrated in Figure 1 but missing
the compositional self-attention module.

TAGOP was proposed by Zhu et al. (2021) and
applied to the TAT-QA dataset. A crucial difference
between TAGOP and FinQANet is that the former
is not designed to perform multi-step reasoning, but
approaches the task as a classification problem. As
an example, it may predict that a change ratio
calculation is required, which implies a subtrac-
tion followed by a division. Seven such arithmetic
operations are permitted.

In addition to the above, we use a pointer-
verbalizer network (PVN) as a universal baseline
against all four datasets. The model is inspired by
the Expression-Pointer Transformer proposed by
Kim et al. (2020). The authors argue that generat-
ing an arithmetic program as a disjoint sequence of
operators and operands is not consistent with how
humans approach quantitative reasoning. Instead,
they propose the concept of an “Expression Token”,
which represents a full operation autonomously
(e.g. instead of generating divide, 20, 30 as a se-
quence, they recommend generating divide(20,
30) as one token). Following this idea, PVN also
generates Expression Tokens, but uses two pointer
mechanisms—one to select operators from the list
of all possible options, and one to select operands
from the list of numbers expressed in the evidence,
or a predetermined list of possible constants. In ad-
dition, it uses verbalization to map operators from

6The creators of HiTab and MULTIHIERTT have proposed
baseline models that were not included in our experiments.
This is because the HiTab model is focused on encoding tabu-
lar data rather than quantitative reasoning. The MULTIHIERTT
model, named MT2Net, is similar to FinQANet, but includes
an additional sub-module that only applies to span-based
questions—again, out of the scope of this study.

a symbolic space (e.g. +) into the semantic space
(e.g. “divide”). Please refer to Appendix B for
implementation details.

We use the above three models as baselines, and
measure their performance before and after adding
CompAQT. To remain as consistent as possible
with the initial settings of these models, we use the
same hyperparameters and settings described in the
original papers. We also use RoBERTa-large (Liu
et al., 2019) to encode the input, since all models
report best performance on this model. We per-
form grid search on the development set of FinQA
to tune the values for α and λ, which are subse-
quently both set to 0.1. We use the same values
throughout all of our experiments. Please refer to
Appendix C for additional details and the full list
of hyperparameters for each baseline.

Note that TAGOP has been designed for single-
step programs. Therefore we apply it to the original
version of the TAT-QA dataset, but analyze the
results based on the actual number of steps in each
program. When adding CompAQT to TAGOP, we
prepend it once, and instead of using the multi-
step loss with linear decay, we only calculate the
alignment loss once per program. Further, note that
since our study is only focused on generation and
not retrieval, we use gold facts provided by each
dataset. Please refer to Appendix D to see details
of experiments using retrieved facts.

6 Results and discussion

In this section, we investigate the effectiveness of
CompAQT through four questions:

1. Does CompAQT improve the performance of
the baseline models on the four datasets?

2. Does CompAQT encourage compositional
generalization by enabling the models to at-
tend to relevant parts of the input?

3. Does each component of CompAQT con-
tribute to enhanced performance?

4. Can CompAQT’s performance be attributed
merely to added parameters?

Additionally, we examine whether the combined
dataset offers an advantage over the largest con-
stituent dataset.
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Model Dataset Program accuracy
1 step 2 steps 3+ steps Overall

TAGOP7
TAT-QA

45.01 39.56 42.73 43.25
+CompAQT +1.06 +0.72 +1.00 +0.63
PVN

Combined
68.14 61.33 13.54 56.64

+CompAQT +2.64 +2.12 +3.09 +2.57
FinQANet

FinQA
75.63 65.87 30.36 68.44

+CompAQT +3.05 +9.25 +5.49 +5.30
FinQANet

TAT-QA
73.33 63.76 64.88 70.71

+CompAQT -3.33 +0.00 +1.38 -0.74
FinQANet

HiTab
34.70 25.14 15.91 30.12

+CompAQT +0.03 +4.50 +1.44 +2.11
FinQANet

MULTIHIERTT
38.99 40.07 15.01 38.94

+CompAQT -0.12 +2.28 +1.76 +1.88
FinQANet

Combined
65.11 62.00 30.76 58.60

+CompAQT +1.49 +3.14 +3.40 +2.28

Table 3: Program accuracy for program generation using
baseline models. Additional performance gain/loss is
indicated after CompAQT is added to each model. Bold
numbers indicate that a gain/loss is significant at p <
0.005, based on the paired-bootstrap test proposed by
Berg-Kirkpatrick et al. (2012), with b = 103.

6.1 Model performance

Table 3 shows the program accuracy of each base-
line model, before and after adding CompAQT. As
the table illustrates, CompAQT significantly con-
tributes to performance on multi-step programs in
three of the four datasets. An interesting exception
is the TAT-QA dataset, which does not exhibit the
long-tail distribution displayed in Figure 2. As Ta-
ble 2 shows, TAT-QA is biased towards 3-step pro-
grams with repeating patterns (e.g. change ratio
is a common 3-step program). Here, CompAQT of-
fers comparable performance to the baseline, with
slightly higher robustness to multi-step programs,
sometimes at a slight cost to single-step programs.
For datasets that exhibit the long-tail distribution,
CompAQT offers improvement on all categories,
but especially on multi-step programs. This is espe-
cially noteworthy for HiTab, which is the smallest
and most skewed collection.

Among the three baselines, FinQANet outper-
forms others on individual as well as the com-
bined dataset. Adding CompAQT further im-
proves FinQANet’s performance on all datasets
with the exception of TAT-QA. Therefore we use
FinQANet+CompAQT for the remaining analyses
presented in this paper.

7Note that TAGOP cannot generate multi-step programs
and can therefore only be applied to the TAT-QA dataset,
where multi-step programs have been collapsed into single-
step operations (e.g. change ratio).

6.2 Qualitative examples

Table 4 shows four examples from the validation
set of the FinQA dataset. The first question asks
for a percentage calculation. Percentage calcula-
tions are the most common two-step operation in
the training set, and the FinQANet model is able to
produce the gold program without any additional
guidance from CompAQT. In the second example,
the model is asked to perform an operation on two
metrics that are expressed as percentages. This
time, possibly by relying heavily on memorizing
the relationship between the word “percentage” and
the subtract-divide operation, FinQANet mis-
takenly generates a subtract-divide sequence,
whereas CompAQT is able to determine that “per-
centage” refers to an operand. In the third example,
FinQANet once again performs a percentage calcu-
lation, possibly by associating the word “change”
with “percentage change”. Once again CompAQT
is able to drive attention towards the correct pro-
gram, and distinguishes between a net and a percent
change.

The final example shows a case where Com-
pAQT is not able to improve baseline performance.
This challenge here is to understand the relation-
ship between the number of shares and the average
price. This requires a level of financial literacy
that is not resolved by compositional generaliza-
tion alone. As demonstrated in Chen et al. (2021)
financial expertise plays a major role, even in hu-
man performance.

6.3 Attention patterns

To confirm whether CompAQT is assisting the
model in detecting key operational terms, we ana-
lyze the top-attended tokens within the input. Table
5 lists the top attended tokens throughout the train-
ing process for the FinQANet+CompAQT model
on the FinQA dataset.

As training progresses, CompAQT encourages
the model to attend to key terms that indicate arith-
metic operations (such as “net” and “growth”).
Swapping CompAQT with a basic self-attention
module shows a similar convergence, but the mod-
ule is not as quick to learn important terms. In
fact even at the 50th epoch, the basic self-attention
module is still encouraging attention on terms that
do not indicate an operation, such as “annual” and
“year”. This shows that the additional components
in CompAQT (alignment and coverage loss) as-
sist the model in converging to more meaningful
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Question Evidence Gold program FinQANet FinQANet + CompAQT
What was the percentage change in the
fair value from 2010 to 2011?

1) the fair value of 2011 is $99
2) the fair value of 2010 is $81

subtract(99, 81),
divide(#0, 81)

subtract(99, 81),
divide(#0, 81881)

subtract(99, 81),
divide(#0, 81)

What was the difference in operating profit
as a percentage of net sales between
2001 and 2003?

1) the company reported operating
profit as a percent of net sales
2) operating profit in 2001 is 19
3) operating profit in 2003 is 26

subtract(26, 19)
subtract(26, 19),
divide (#0, 19)

subtract(26, 19)

What is the change in the warranty reserve
from 2017 to 2018?

1) balance as of 2017 is $23
2) balance as of 2018 is $24

subtract(24, 23)
subtract(24, 23),
divide(#0, 23)

subtract(24, 23)

For the 4th quarter of 2011 approximately
how much was spent on stock repurchases?

1) total number of shares
purchased is 3915
2) total of average price paid
per share is $98

multiply(3915, 98) add(3915, 98) add(3915, 98)

Table 4: Four examples from the FinQA dataset, showing CompAQT’s success and failure in capturing compositional
expressions. Note that some numbers have been truncated to save space.

Top attended token
Epoch #1 Epoch #25 Epoch #50

Basic
self-attention

[CLS], ?,
what, and

company, what,
year, 2018

percentage, ratio,
annual, year

CompAQT the, of,
?, what

year, company,
percentage, annual

percentage, growth
lowest, net

Table 5: Top attended tokens throughout the training
process for a vanilla self-attention module versus Com-
pAQT. As training progresses, CompAQT learns to at-
tend to tokens closely associated with quantitative oper-
ations. The results are based on FinQANet+CompAQT,
applied to the FinQA dataset.

attention patterns.

6.4 Ablation study

We perform a series of experiments to examine the
impact of each component of CompAQT. Table
6 shows the results after applying FinQANet to
the FinQA dataset. “Self-attention” indicates the
addition of a plain self-attention module without
any compositional guidance. “Alignment loss” in-
dicates the addition of the minimum-distance com-
ponent in Equation 4. “Coverage term” indicates
the addition of −a(i−1)

j,k to alignment loss. “Linear
decay” indicates replacing a simple average loss
with the linear decay term in Equation 2. As the
table shows, each component contributes to the pro-
gram accuracy. The self-attention module offers an
improvement that is relatively consistent across all
programs, whereas the alignment loss and the cov-
erage term favor multi-step programs, as intended.
Lastly, linear decay further improves results for the
longest programs by a small margin.

To ensure that the effectiveness of CompAQT
is not simply due to added parameters, we also
perform a series of experiments that measure the
performance of CompAQT with additional param-
eters in the form of additional layers and atten-
tion heads. Each row in Table 7 shows how much

Model Program accuracy
1 step 2 steps 3+ steps Overall

FinQANet 75.63 65.87 30.36 68.44
+self-attention +2.95 +2.08 +2.00 +2.57
+alignment loss +0.07 +5.31 +2.01 +1.95
+coverage term +0.03 +1.97 +0.97 +0.69
+linear decay +0.00 +0.07 +0.51 +0.06

Table 6: Ablation results on the FinQA dataset using
FinQANet as the base model.

program accuracy improves over using FinQANet
without CompAQT. As the table shows, additional
parameters are not always helpful and can under-
mine the performance of the model, especially for
multi-step programs. This may also indicate that
the regularizing effect of CompAQT can be coun-
teracted by larger parameters, leading to overfitting
over smaller datasets.

6.5 Pre-training across datasets

Since the combined dataset uses the same for-
mat for all constituent datasets, it is easy to in-
vestigate the impact of pre-training on larger and
more diverse data. Figure 4 shows how Fin-
QANet+CompAQT performs on the combined test
set, as more collections are added to its training
set. As the Figure illustrates, despite providing a
sizeable number of single-step programs, TAT-QA
fails to improve the performance substantially on
multi-step programs. This is likely due to the fact
that all TAT-QA programs fall into seven categories,
which allows the model to memorize them. In con-
trast, despite its small size, adding MULTIHIERTT

improves performance on 1 step and 2 step pro-
grams. 3+ step programs remain a challenge across
all datasets, but the model shows steady progress
as the dataset size grows.
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Figure 4: Program accuracy on the combined dataset as
training datasets are added iteratively.

# heads # layers # params
# Program accuracy

(improvement over baseline)
1 step 2 steps 3+ steps

1 1 4.2M +3.05 +9.25 +5.49
4 1 4.3M +3.97 +7.30 +5.31
1 2 8.4M +4.22 +6.76 +3.12
4 2 8.6M +4.26 +5.99 +2.86

Table 7: The performance of FinQANet+CompAQT
on the FinQA dataset. As additional parameters are
added in the form of multiple heads or more layers, the
model’s performance does not increase.

7 Conclusion

In this study, we proposed a method to improve
multi-step quantitative reasoning for question an-
swering. Our method facilitates compositional gen-
eralization by encouraging the model to attend to
relevant components of the input at each genera-
tion step. We demonstrated the effectiveness of
our approach over four recently released tabular
QA datasets. Our method, named CompAQT, was
able to significantly improve program accuracy on
three of the datasets, especially for multi-step pro-
grams. We also created a collection of QA samples
for multi-step quantitative reasoning, by combining
the datasets and unifying their format.

In future studies, we hope to explore data-native
approaches to quantitative reasoning such as aug-
mentation and synthesis, as well as approaches em-
bedded in symbolic reasoning (Ravichander et al.,
2019; Shi et al., 2020).

8 Limitations

All datasets used in this study were created based
on English-language documents, with three of the
four datasets focusing on financial reports, and two
focusing specifically on regulatory disclosures pro-
vided by the United States Securities and Exchange
Commission. As such, our unified dataset is biased

towards attributes and patterns expected in such
reports, including GAAP metrics8, currency units,
and left-to-right orientation for tabular structures.

Since our study is focused on the generation
component of a QA model, we have disregarded the
challenges involves in retrieval and representation
of information such as those explored by Cheng
et al. (2022) and Zhao et al. (2022).

Lastly, our approach is not intended for settings
where complex or high-level quantitative insights
are required (e.g. anomaly or trend detection). In
such settings the large space of operations makes it
challenging to rely exclusively on soft alignments
between the input and output.
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A Dataset unification

In order to unify the datasets, we convert each of
them into the same format. We choose FinQA as
the reference format, since it encodes multi-step
programs in a standardized representation. Each
program is encoded as a right-expanding binary
tree where each operation is guaranteed to have
two operands, with one of more operands set to
NONE if necessary.

FinQA provides two versions of each data-table:
one with the raw format, and one where the content
has been normalized such that all row headers are
merged into one row header, and all column head-
ers are merged into one column header. This re-
moves discrepancies in the way tabular data is rep-
resented across different samples. The dataset also
includes gold facts from each table and surrounding
text. The facts have been tokenized and verbalized
such that the model can easily map operands to
number expressed in them.

Transforming other datasets to match the FinQA
format requires following three steps: 1) Normal-
izing the tables, 2) Normalizing the programs, and
3) Normalizing the evidence. Below, we describe
these steps in detail.

A.0.1 Normalizing the tables
In the TAT-QA and HiTab, each table is represented
as a nested array. In MULTIHIERTT, each table is
represented by the raw html code, which is easily
convertible into a nested array.

The top n rows and the left m columns of each
table form the column and row headers, respec-
tively. To find n, we follow Algorithm 1. A sim-
ilar method is applied to determine m. We then
merge the contents of the top n rows and the left
m columns to form a singular column header and
a singular row header.

A.0.2 Normalizing the programs
MULTIHIERTT represents programs in a format
that is compatible with FinQA (e.g. subtract(20,
30), divide(#0, 20)). TAT-QA and HiTab
represent them in a non-standardized format (e.g.
(20-30)/20 or 1-30/20). We use an Abstract
Syntax Parser9 to process each expression into
a tree. We then programmatically traverse the
tree to generate a FinQA-compatible program.
Next, we match each operand to the evidence. If

9We use the standard python3.7 ast module. https://
docs.python.org/3.7/library/ast.html

Algorithm 1 Column header finder
1: N ← num_rows
2: K ← num_cells_in_first_row
3: non_empty_cells← []
4: for i ∈ {1, . . . ,K} do
5: if table[1][i] ̸= empty then
6: non_empty_cells[i] = TRUE
7: else
8: non_empty_cells[i] = FALSE
9: end if

10: end for
11: n← 2
12: while n ≤ N and FALSE ∈ non_empty_cells

do
13: for i ∈ {1, . . . ,K} do
14: if table[n][i] ̸= empty then
15: non_empty_cells[i] = TRUE
16: else
17: non_empty_cells[i] = FALSE
18: end if
19: end for
20: n := n+ 1
21: end while
22:

23: return n

not found within the evidence, an operand is re-
placed by a constant (e.g. multiply(#0, 100)→
multiply(#0, const_100).

A.0.3 Normalizing the evidence

We use a tokenizer similar to the FinQA tokenizer
to process each sentence and table within each
passage. This is to ensure that the operands are
guaranteed to match the numbers mentioned in the
evidence.

Table 8 shows additional filters applied to each
dataset.

Dataset Configuration
FinQA no filters
TAT-QA arithmetic category only

HiTab
no multi-span answers
at least one operation required

MULTIHIERTT
arithmetic category only
no span-based answers

Table 8: How each dataset was filtered to include in the
unified collection.
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B Pointer Verbalizer Network

The programs are composed of two types of tokens:
1) operator tokens, which are sampled from a sym-
bolic space (i.e. math symbols), and 2) operators,
which are either numbers mentioned in the facts,
or constants such as 100 or 1,000,000 for scaling
the output. Models such as FinQANet treat the pro-
gram as a sequence of tokens, not differentiating
between operators and operands. At each step a
new token is sampled from the universe of all pos-
sible operators and operands, and a mask is used to
make sure two operands are generated after each
operator. The process stops once the EOF operator
is generated.

In contrast to FinQANet, our Pointer Verbal-
izer Network uses a two-pronged approach that
accounts for the differences between the opera-
tors and operands, and employs verbalization to
enhance performance.

B.1 Generating operators
The generator can be regarded as an encoder-
decoder model akin to sequence-to-sequence mod-
els employed in Neural Machine Translation
(NMT). However as opposed to NMT, the operators
are sampled from a symbolic space (i.e. math sym-
bols), which does not have the same distribution
or compositionality as the input space (i.e. text).
A similar problem exists in most semantic parsing
tasks, but it is sometimes alleviated by mapping
the target domain into a space that is close to the
input domain. For example in a Text-to-SQL task,
instead of referring to “table_#3.column_#1”, the
names or descriptions of the table and column are
used (e.g. “students.name”). This allows the model
to leverage compositional semantics in the target
domain as well as the source domain.

We pursue a similar strategy by mapping the pro-
gram operators into text, i.e. verbalizing them. For
example, instead of the categorical symbol divide,
the token “divide” is used to represent the divi-
sion operation. As a result, the operator generator
produces a sequence of tokens. These tokens can
be mapped to the nearest operator based on their
cosine similarity. The loss is thus calculated as:

Loperator = γLCE + (1− γ)Lreg (4)

where γ is a hyperparameter, LCE is the cross-
entropy loss between the predicted operators and
the true operators, and Lreg is a regression loss de-
fined as the sum of cosine distance and MSE loss

between predicted operator token embeddings oi
and the true operator token embeddings ai.

Lreg =
1

N

N∑

i=1

cosine(oi,ai)+MSE(oi,ai) (5)

The regression loss functions as a regularizer
to ensure that the verbalized predictions do not
stray too far from true operator tokens. In our
experiments, we set γ = 0.8.

B.2 Generating operands
As opposed to the operators, the operands are al-
ways selected from a list of existing numbers or
constants. This, along with the verbalization of op-
erators allows us to approach operand-generation
using a pointer network (Vinyals et al., 2015). At
each step, the predicted operator token embedding
oi is used as the hidden state, and the model se-
lects the top two options from the list of possible
operands.

Figure 5 illustrates the proposed architecture.
The top part of the figure shows how the sequence
of operators id generated. The cross-attention
mechanism helps augment the question with infor-
mation from the facts. The output is then attended
to by the verbalized vocabulary of operators. The
output of this step is used in a recurrent network to
predict the operator in each step.

The bottom part of the figure shows how the
operands are selected for each predicted operator.
This time, attention is used to augment the fact
representation with information from the question.
Using this, as well as the output of the operator
predictor, the model uses a pointer network to se-
lect operands from a list of possible numbers and
constants.

C Experiment details

Tables 9 lists the settings and parameters for each
baseline. The settings used for FinQANet and
TAGOP are based on (Chen et al., 2021) and (Zhu
et al., 2021), respectively. For all experiments that
involved CompAQT, α and λ were both set to 0.1.

All experiments were conducted on a machine
with 8 NVIDIA T4 GPUs with 16GBs of memory
per GPU.

D Experiments using retrieved facts

Table 10 shows ablation results similar to Table 6
but for retrieved facts (instead of gold facts). Sim-
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Figure 5: The architecture of the Pointer Verbalizer Network. The top half shows the operator predictor and the
bottom half shows the operand predictor.

Parameter FinQANet TAGOP PVN
encoder RoBERTa-large(Liu et al., 2019)
batch size 16 32 64
learning rate 2e− 5 5e− 5 2e− 5

optimizer
Adam (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.999

epochs 100 50 50

Table 9: Settings used for FinQANet experiments.

Model Program accuracy
1 step 2 steps 3+ steps Overall

FinQANet 64.13 57.03 20.56 58.30
+self-attention +3.01 +1.97 +1.95 +2.44
+alignment loss +0.01 +4.66 +1.83 +2.00
+coverage term +0.00 +2.02 +0.55 +0.31
+linear decay +0.00 +0.10 +.48 +0.00

Table 10: Ablation results on the FinQANet model,
applied to the FinQA dataset with retrieved facts.

ilar trends hold when using retrieved facts, with
CompAQT modifications having a larger impact
on multi-step programs.

E Operation-aware pre-training

The FinQANet generator performs better on ex-
amples with simpler programs which contain 1
or 2 steps compared complex programs with 3 or
more steps. We perform masked language model-
ing (MLM) finetuning on the FinQANet language
encoder over FinQA and TAT-QA data to see how

it can encourage the generator perform better on
complicated programs. First, we take the dev sets
of FinQA and TAT-QA, and split both dataset 80/20
for training and testing masked token prediction.
The resulting train and test set sizes are 1136 and
284, respectively. Second, we finetune Roberta
(Liu et al., 2019) using three masking methods.

• op: mask one operator in every program

• const: mask one constant/operand in every
program

• op+const: mask either an operator (50%) or a
constant/operand (50%) in every program

For each example in our new dataset, we encode
the natural language question, supporting facts, and
program in a sequence. For each experiment, we
finetune Roberta until it achieves 70-80% accuracy
in guessing the masked tokens. Finally, we train the
FinQANet program generator with our finetuned
Roberta model. During inference we use the fine-
tuned Roberta encoder in the FinQANet generator.

Table 11 shows the experiment results. The base-
line program out-performs most of the finetuned
program generators except on the FinQA test set.
In all experiments, masking the program operators
(e.g., add, subtract, divide) leads to better perfor-
mance compared to masking program operands or
masking both operators and operands. A possible
explanation may be that there are only 10 program
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Finetune FQA-Valid FQA-Test TQA-Valid

baseline 62.29 61.90 71.32
op 61.61 62.34 70.35
const 60.02 58.24 71.32
op+const 58.55 57.9 68.60

Table 11: Program accuracy of FinQANet program gen-
erator with baseline and finetuned Roberta encoders on
the FinQA dev set. FQA-dev: results on the FinQA dev
set at 25 epochs. FQA-test: results on the FinQA test
set at 300 epochs. TQA-dev: results on the TAT-QA dev
set at 50 epochs.

operators compared to many possible operands.
Furthermore, given the small size of our data used
for finetuning, masking different types of tokens
with a large range of values may confuse the fine-
tuned model, and impair its ability to learn ties
between text semantics and the desired output pro-
gram. This intuition is reflected in figure 6 which
shows the loss and accuracy curves of the op, const,
and op+const experiments compared to the baseline
program generator.

We conduct further analysis on the generated
programs with respect to program complexity to
better understand how finetuning the Roberta en-
coder affects the generated programs. As shown in
figure 7, the baseline program generator performs
better than most finetuned program generators in
program accuracy in 1-step and 2-step programs.
However, the finetuned program generators per-
form better than the baseline program generator in
program accuracy on ≥ 4-step programs on both
the FinQA dev and test sets. A possible explana-
tion is that while the baseline program generator
is competitive in overall program accuracy, it is
biased to performing well on shorter programs due
to the distribution of program lengths in the FinQA
dataset. Thus, finetuning the program generator
can help the model generalize better to complex
programs at a slight cost in performance on shorter
programs (as indicated by performance of≥ 4-step
programs).
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Figure 6: Loss and accuracy curves of finetuned program generators on FinQA on the validation set
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Figure 7: Program accuracy, % wrong operands, and % wrong operations with respect to number of steps of
finetuned program generators on the FinQA dev set (right column) and test (left column).
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