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Abstract

Answering factual questions with temporal in-
tent over knowledge graphs (temporal KGQA)
attracts rising attention in recent years. In the
generation of temporal queries, existing KGQA
methods ignore the fact that some intrinsic con-
nections between events can make them tem-
porally related, which may limit their capabil-
ity. We systematically analyze the possible
interpretation of temporal constraints and con-
clude the interpretation structures as the Seman-
tic Framework of Temporal Constraints, SF-
TCons. Based on the semantic framework, we
propose a temporal question answering method,
SE-TQA, which generates query graphs by ex-
ploring the relevant facts of mentioned entities,
where the exploring process is restricted by SF-
TCons. Our evaluations show that SF-TQA sig-
nificantly outperforms existing methods on two
benchmarks over different knowledge graphs.

1 Introduction

With the rapid growth of knowledge graphs, tem-
poral question answering over knowledge graphs
(temporal KGQA) is attracting rising attention in
recent years (Jia et al., 2018b, 2021). In tempo-
ral KGQA, a common phenomenon is that ques-
tions express temporal relations between events
or time expressions, while knowledge graphs de-
scribe the facts resulting from each event. Existing
methods handle the heterogeneity between natural
language and knowledge graph representation in
two ways. Some systems express temporal intents
by constructing executable queries, some apply
time-sensitive neural models to rank candidate an-
swers. Considering that neural models are difficult
to characterize the clear boundaries of concepts
(e.g., exactly filter all events that occur “before
2022”), this paper focuses on generating queries
that correspond to the meaning of questions.
From the logic perspective, formulated queries
are actually logical restrictions about KG facts. The
answers to a question is a set of KG objects, each

of which satisfies the corresponding logical restric-
tions. In previous studies (e.g., Jia et al., 2018b),
temporal intents are converted into restrictions over
KG facts with quantitative time values. Example 1
illustrates a typical conversion from a temporal
question to such restriction.

Example 1. “Who was the president of the U.S.
when John Lennon was shot?”

The corresponding query on Wikidata can be
Sformulated as the following logical restriction:

T} = time(position_held(AN S, U.S._president))
A Ty = time(Murder_of_John_Lennon)
A OVERLAPS(17, 7).

However, the idea of constructing queries with
quantitative restrictions can not exhaust all possible
scenarios. As illustrated in Example 2, facts with
time values are not a necessary premise to introduce
a temporal relation.

Example 2. “Where was John Lennon standing
when he was shot?”

To construct a comparison restriction, we need
to enumerate the “standing” of J.L. (i.e. all the
experiences of his life). The enumeration is hard
to implement and might introduce errors." In fact,
the temporal intent does not rely on any time value.
The two events occur simultaneously just because
they are different aspects of the same entity (wd:
Q2341090), the murder of John Lennon.

The above example reveals that intrinsic connec-
tions can also make events temporally related. We
argue that the neglect of such cases may limit the
capability of existing methods. Therefore, the pos-
sible temporal constraints, especially those that do
not rely on explicit time values, need to be specifi-
cally studied. The main challenges in concluding

"For example, Wikidata says that J.L.’s “residence”(wd:
P551) includes Liverpool and New York, but does not provide
the corresponding time duration.
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such constraints come from the complexity of nat-
ural language and the lack of supervision signals.
Practical KGQA tasks often provide only question-
answer pairs. i.e., the constraints on the relevant
facts are unknown. Manually enumerating all possi-
ble constraint structures in a huge search space will
be cumbersome or even infeasible. Thus, there is a
need for a lightweight method to model the various
constraints that correspond to possible temporal
intents.

Inspired by the basic idea of frame semantics
that “one cannot understand the meaning of a word
without access to all the encyclopedic knowledge
that relates to that word.” (Fillmore et al., 2006),
we assume that temporal intents are expressed as
certain constraints about corresponding knowledge
and could be interpreted by some structures over
KG facts. Specifically, the events involved in a tem-
poral constraint should provide certain KG facts,
which support a possible interpretation of it. We
conclude the temporal constraints and their corre-
sponding interpretation structures as the Semantic
Framework of Temporal Constraints, SF-TCons.
SF-TCons describes what kinds of knowledge are
needed and how they are composed in the poten-
tial interpretations. It consists of 6 interpretation
structures, which will be presented in Section 2. To
the best of our knowledge, SF-TCons is the first
work to systematically summarize the interpreta-
tion structures for temporal KGQA tasks.

Based on SF-TCons, we propose a semantic-
framework-based question answering method, SF-
TQA, to convert SF-TCons into executable queries.
SF-TQA generates query graphs by exploring
the relevant facts of mentioned entities, where
the query graph is a graph representation of ex-
ecutable logical queries that resembles subgraphs
of KG (Yih et al., 2015). SF-TQA improves the ac-
curacy of query generation by regarding SF-TCons
as restrictions in the exploration. SF-TQA firstly
evokes possible interpretations of temporal intents
according to TimeML (Pustejovsky et al., 2010) an-
notations. It then grounds the temporal elements in
corresponding interpretation structures by the rele-
vant KG facts. The grounding phase will generate
multiple candidate queries, the best candidate will
be distinguished by ranking the pairs of questions
and serialized queries with a BERT model.

The rest of this paper is organized as follows:
Section 2 discusses the SF-TCons in detail. Sec-
tion 3 presents SF-TQA. Section 4 evaluates the SF-

TQA with two benchmarks over different knowl-
edge graphs. Section 5 summarizes the related
work. The last section concludes this paper.

2  Semantic Framework of Temporal
Constraints

As previously introduced, temporal intents reflect
constraints on events and time expressions. We
argue that what really supports the constraints is
the essential knowledge underlying the involved
elements. For example, in a comparison like “be-
fore WWI”, what is needed is its start time “/97/4”
rather than the named entity wd: Q361 in KG. There-
fore, temporal constraints can be interpreted by de-
scribing what kind of knowledge is needed and how
they are composed. The interpretation structures
of the constraints are presented as SF-TCons, the
Semantic Framework of Temporal Constraints.

2.1 Temporal Constraints in Questions

Depending on whether the constraints concern
quantitative attributes of a single event or the re-
lations between events, we classify the temporal
constraints as follows.

Value Constraints. The intentions about quan-
titative values are often expressed with time values
or ordinals (e.g., “first president”). They require
certain events to have corresponding temporal or
ordinal attributes. Thus, they could be denoted as
follow.

HASVALUE(E1, Ty),
HASVALUE(Ey, Oy),

(VC-1)
(VC-2)

where F, T, O denotes events, time expressions
and ordinals respectively. As an example, the
intent “first president” could be denoted as
HASVALUE( “president”, “first”).  Specifically,
temporal interrogatives (e.g., “when did sth. hap-
pen?”) are denoted as HASVALUE(E1,T'7), which
declare the existence of the temporal attributes but
has no restrict on the specific value.

Relation Constraints. The possible relations
between time and events have been well studied in
the AI area. We follow TimeML, the most com-
monly used annotation specification, to model the
relation constraints.

Example 3. TimeML-style annotations for the
question in Example 2 :
Where was John Lennon [gyent; standing] [signal,
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when] he was [gyent, shot]?
(TLINK reltype=SIMULTANEOUS target=EVENT;
relatedTo=EVENT, signal=SIGNAL /)

As illustrated in Example 3, temporal relations
are triggered by certain signals (e.g., “when”) and
classified into pre-defined reltypes. For the practi-
cal demand of QA tasks, we formalized the relation
constraints as

RELATION(Tg, E1, T1),
RELATION(TR, E1, Es),

(RC-1)
(RC-2)

where Tr denotes the 13 temporal reltypes in
TimeML (Pustejovsky et al., 2003), £ and T de-
notes events and time expressions respectively. The
TimeML-style annotation in the example question
corresponds the following RC-2 constraint:

RELATION(SIMULTANEOUS, “standing”, “shot”)

2.2 Interpretation Structure for Temporal
Constraints

As previously mentioned, one temporal constraint
could be supported by various interpretations. We
summarize 6 interpretation structures (IS) accord-
ing to whether the involved event expressions are in-
trinsically connected and what connector between
them can correspond to the expected meanings. In
order to enhance the generality of the IS as much
as possible, we do not restrict the specific semantic
representations of involved events, but only focus
on the key knowledge that they can provide. The 6
IS are presented as follows.

IS-1 Comparison structure

HASVALUE(E1,T1) | RELATION(T;, Ey, T1|Es)
= COMPARE(o, time(E ), time(7T1|E2))

This structure interprets VC-1 and RC, where o
denotes algebraic predicate for time values (Allen,
1983; Jia et al., 2018b). Specifically, the predicate o
is required to be EQUAL in VC-1 and is determined
according to the identified type 7, in RC. This
structure supposes that the involved events provides
certain time values.

For example, the question: “Which movie did
Alfred Hitchcock [gyent, direct] [signal; in] [Time,
1960]?” corresponds to the following constraint
and KG facts, where the “direct” event provides
the value “1960-10-7".

COMPARE(INCLUDES, time( “direct”), “1960”)

director (F1)
Alfred_Hitchcock | —— | Psycho (ANS)

in_timei
“1960” (T1) | —INCLUDES— [ “1960-10-7"

IS-2 Ordering Structure
HASVALUE(E1, O1) = ORDER(attr(E), Oq)

This structure interprets VC-2 by ordering entities
(or facts) that are described by F/;. It supposes that
E describes a common attribute of certain objects
to be ordered. For example, the question: “When
did Henry the VIII [gyent,; marry] his [Ordinal, first]
wife?” corresponds to

ORDER(attr(“marry”), “first”)

Cathe...Aragon | | Cathe...Parr ||
(T=15006, 1st (O1)) (T=1543, 6th) |

!

IS-3 Direct Query Structure
HASVALUE(E}, X ) = FIND(ent(E), attr(X))

In some cases, the expected values are directly
represented in KG facts. This structure interprets
VC by directly finding the expected value X in
certain attributes of some related entity. It supposes
that the entity is related to the mentioned event Fj.

For example, the description: “...did the
[ordinal; 7th] [Event, Harry Potter book] ... " cor-
responds to the following representation and KG
facts, where the entity “Harry Potter and the
Deathly Hallows” has some attribute with the value

‘67’7'
FIND (ent(“...book”), attr(“7th”))

IS-4 Same Entity Structure

RELATION(7;, E1, E2)
= SAMEENTITY (e, attr(E7), attr(Es))
This structure interprets simultaneous cases of RC-

2. It supposes that the events should be attributes
of a certain entity e.
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For example, the previously introduced question
“Where was John Lennon [gyent, standing] [signal,
when] he was [Eyent, shot]?” corresponds to

SAMEENTITY (e,attr( “standing”),
attr(“shot”))

| 1
: lom (The_Dakota(ans))!

IS-5 Part-of Structure
RELATION(T, E1, E2) = PARTOF(rp, B, E»)

This structure interprets including cases of RC-2.
It does not restrict the representation of events Fy
and E» in KG, but requires that their representation
must be connected by a relation r}, which implies
“part-of”.

For example, the question “What award did Lau-
rence Fishburne [gyent, received] [signal, at] [Event,
the 46th Tony Awards]?” corresponds to the fol-
lowing representation and KG facts, where E; cor-
responds to a statement” and E» corresponds to a
named entity.

PARTOF(rp,, “received”, ... Awards”)

[46thi_Tony_Awards (EZ)J

o _/%ubject_of (rp)

|
|
|
|
|
award_received
I
I
I
I
|
\

[Best_Featured_Actor(ANS)J

|
!
!
-

IS-6 Sequent Structure

RELATION(7;, E1, E2)
= SEQUENT(r,ent(E7), ent(E»))

This structure interprets before/after cases of RC-
2. It supposes the events make a pair of related
entities to be sequential in KG, where the entities
are involved in E; and E5 respectively and they
must be connected by a relation < which indicates
a preceding (or succeeding) relation.

“Statement is a Wikidata format for representing complex
items. It can be roughly considered as RDF blank node.

For example, the question “Who [gyent, became]
the president [signal, after] J.F. Kennedy was [Eyent,
shot]?” corresponds to

SEQUENT(r<, ent( “became”), ent( “shot”))

[Assassination. . Kennedy] murder.of (E5)

[John_F._ Kennedyj

[Lyndon_B._Johnson(ANS)]/'

..replaces (r<)

In summary, IS 1 to 3 interpret the temporal con-
straints via temporal facts with explicit quantitative
values. IS 4 to 6 model the intrinsic connections
that can make events temporally related. It is worth
noting that SF-TCons only expresses the expected
form of corresponding knowledge, how to obtain
the specific knowledge is left to the implementation
of question-answering systems.

3 Semantic-Framework-Based Temporal
Question Answering

Figure 1 illustrates the question-answering process
of the semantic-framework-Based temporal ques-
tion answering method, SF-TQA. The query gen-
eration consists of two steps, 1) evoking the con-
straints and their possible interpretations (i.e., con-
straint evocation) and 2) grounding the constraints
by exploring the relevant KG facts (i.e., constraint
grounding). The generated candidate queries will
be ranked by a BERT model, and the execution re-
sults of the highest-scored query will be considered
as answers.

3.1 Constraint Evocation

The first step of SF-TQA is to determine the pos-
sible constraints. We fine-tune a BERT model to
annotate the temporal elements. The correspond-
ing constraints and interpretation structures are
evoked according to recognized signals. The el-
ements that involve certain constraints are deter-
mined by TimeML relations or by simply taking
the temporal elements that are directly described
by the signals (i.e., the nearest neighbor of the cor-
responding signals). The algebraic predicates in
the comparison structure are determined by nor-
malizing the TimeML relation types, while other
implicit elements are left to the grounding phase.

3.2 Constraint Grounding

In general query graph generation, basic query
graphs are constructed as 1 or 2 hop paths from
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Figure 1: The question-answering process of SF-TQA.

mentioned entities to answers, and they are ex-
tended by pre-defined expanding action (Yih et al.,
2015) or fixed interpretation structures of con-
straints (Bao et al., 2016). In temporal KGQA,
the main issue is that events could have various
representations in KG. As illustrated by the exam-
ples in Section 2.2, they could be represented by
named entities, triplet facts, or attributes of their
participants. Therefore, we treat the generation of
query graphs as grounding the temporal elements
in the interpretations of SF-TCons. We divide the
descriptions of events into nominal and predica-
tive. We suppose that nominal descriptions could
be the event themselves, and predicative descrip-
tions reflect certain aspects of the events, such as
their participants or their post-effect. Therefore,
nominal events could be linked entities and others
correspond to the neighboring nodes or facts of the
explored subgraph(s) or linked entities. The corre-
sponding nodes or facts must provide the knowl-
edge required by corresponding interpolation struc-
tures.

We illustrate the above process by the example
in Figure 2. In this example, the entity linking
module will provide John_Lennon as a linked en-
tity, and the grounding start with the “shot” event
which contains the only linked entity. We will ex-
plore all the neighboring facts of John_Lennon
(as illustrated in Figure 2) as candidates for the
event. Since “shot” is a predicative event and
the SAME_ENTITY constraint requires it to pro-
vide an attribute, we will find a triplet that con-
tains John_Lennon and take the other entity in it

(i.e., Murder_of_John_Lennon) as the expected
e. Similarly, we explore the neighboring facts and
select one relation that matches with the question
meaning (i.e., location for “standing”). When there
are multiple candidate relations, we will rank the
candidates by scoring their serializations with a
BERT model. The highest-scored one will be filled
in the corresponding slot.

In the specific implementation, which candidates
satisfy the question meanings best are determined
by neural models. In the training process, we take
relations that appear on shortest paths between men-
tioned entities and answers as positive samples. In
particular, the relation that entails part of or pre-
cedes are filtered according to the KG schema in the
training process and are predicted by neural models
during the test process. Queries for the questions
of multiple constraints are the conjunction of the
grounding result of each constraint and queries for
the questions with no temporal constraints are un-
restricted basic query graphs.

3.3 Query Ranking

SF-TQA usually generates multiple candidate
queries for one question. We select one of the can-
didates via neural ranking models. Specifically, we
express the generated queries via SPARQL * and
serialize the queries by dropping auxiliary symbols
(e.g., “{”). We use the BERT model with cross-
entropy loss to score the pair of the input question
and serialized queries. For each question, we use
the candidate queries with the highest F} score as
the positive samples and select k£ others as nega-
tive samples. In order to make our model more
robust, we classify the negatives samples as con-
fusing queries and irrelevant queries. Confusing
queries are those that can find partial answers but
of lower F} scores than the positive samples. Ir-
relevant queries are those whose outputs have no
intersection with the correct answers. The ratio
of confusing queries to irrelevant queries is 1 : 1.
The necessity of classifying the negative sample is
presented in Appendix A.

4 Evaluation

4.1 Datasets

We evaluate our method on TempQuestions (Jia
et al., 2018a) and TimeQuestions (Jia et al., 2021)
with the 2015-08-09 dumps of Freebase* and the

3https: //www.w3.org/TR/sparql11-query/
4https: //developers.google.com/freebase
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Figure 2: The possible generation process for question in Example 2. The linked entity and expected answer are
colored in gray and the facts that can satisfies the evoked interpretation are highlighted in blue.

2019-01-28 dumps of Wikidata®, respectively. The
statistics of the benchmarks are described in Ta-
ble 1. Since TempQuestions does not give the
partition between training data and test data, we
randomly divided it with the same ratio as Time-
Questions.

Dataset Train Dev. Test
TempQuestions 762 254 255
TimeQuestions 9,708 3,236 3,237

Table 1: The statistics of questions in benchmarks.

4.2 Evaluation Metrics

We report the Hit@1 (denoted as H@1), Precision
(denoted as Pr) , Recall (denoted as Re) and F}
score of the evaluation results. Our computation
follows Jia et al.’s (2021)°®, where the precision is
considered 1 if the output of a question is empty
and the F score on a dataset is computed as the
average of the scores of each question.

4.3 Compared Methods

On TempQuestions, we compare our results with
general KGQA methods AQQU (Bast and Hauss-
mann, 2015), QUINT (Abujabal et al., 2017)
and their improved version(Jia et al., 2018b) by
incorporating the temporal question decomposi-
tion method TEQUILA, QUINT+TEQUILA and
AQQU+TEQUILA. On TimeQuestions, we com-
pare our results with general KGQA methods Pull-
Net (Sun et al., 2019), GraftNet (Sun et al., 2018),

5https ://archive.org/download/
wikibase-wikidatawiki-20190128
®Their script could be downloaded from here.

UNIQORN (Pramanik et al., 2021) and the tempo-
ral KGQA method EXAQT (Jia et al., 2021).

4.4 Implementation Details

Our results are obtained on a workstation with an
Intel Xeon Gold 5222 CPU, 32 GB of RAM, and
NVIDIA RTX3090 GPUs. The hyper-parameters
of the ranking models are listed in Table 2. They
are determined according to the F; scores on the
development sets. We use ELQ (Li et al., 2020) for
entity linking. We randomly sample 5,000 ques-
tions from the training set of TimeQuestions to
fine-tune a BERT model for TimeML annotations.
The questions are firstly automatically annotated
by simple regex according to their POS-tags and
surface forms (e.g., verb tokens may indicate event)
then corrected by human annotators. The types of
TimeML relations are determined by normalizing
the signals via manual rules (e.g., “during” corre-
sponds to INCLUDES).

TempQ. TimeQ.

Learning Rate 5e — 5 5e — 5
Batch size 8 8
Epochs 10 15

Pos./Neg. Ratio 1:20 1:25

Table 2: Hyper parameters for the ranking model.

4.5 Main Results

Table 3 and 4 report the results of compared meth-
ods on TempQuestions and TimeQuestions respec-
tively.7 Our method, SF-TQA, achieves the best

"The execution results of compared methods on Tem-
pQuestions are obtained from Jia et al.’s (2018b) homepage
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Method H@1 Pr Re F
QUINT 27.0 30.3 51.2 28.8
+TEQUILA  31.7 40.7 422 32.0
AQQU 24.9 26.6  48.8 27.2
+TEQUILA 362 403 434 375
SF-TQA 41.2 42.2 48.8 41.1

Table 3: Results (%) on TempQuestions. The best
results are in bold and the second bests are underlined.

Method H@1 Pr Re F,
PullNet 10.5 54 19.2 7.6
GraftNet 45.2 52.7 452 37.8
UNIQORN 33.1 14.8 454 19.5
EXAQT 56.5 59.3 56.9 45.6
SF-TQA 539 551 62.1 52.7

Table 4: Results (%) on TimeQuestions. The best
results are in bold and the second bests are underlined.

results on both two benchmarks. Specially, we im-
prove the F; scores by +3.6 and +7.1 points on
TempQuestions and TimeQuestions respectively.
On TempQuestions, SF-TQA improves the Hit@1
and precision by +5.0 and +1.9 respectively. On
TimeQuestions, SF-TQA achieves better recall (5.2
points higher) while EXAQT achieves better preci-
sion (4.2 points higher). The reason could be the
different strategies when dealing with unsolvable
problems. EXAQT tends to output empty answers
(which correspond to 1 in precision) and SF-TQA
degrades to the unrestricted generation of basic
query graphs (which capture incomplete question
meanings). The Hit@1 of SF-TQA is 2.6 points
lower than EXAQT might because EXAQT ranks
all candidate answers while SF-TQA just randomly
returns one candidate that satisfies the generated

query.

4.6 Ablation Studies

We conduct ablations on the necessity of interpre-
tations for intrinsic connections (i.e., IS-4 to 6).
We analyze the result on questions with only rela-
tion constraints. The ablation results are illustrated
in Table 5. The 2nd row shows that without IS
4 to 6 the F; scores drop 1.5 and 3.8 points re-
spectively on the benchmarks. The 3rd row shows
that results obtained by generating only basic query

and the reported results of compared methods on TimeQues-
tions are provided by the authors of EXAQT (Jia et al., 2021).

graphs without any restriction will decrease the F;
scores by 14.1 and 4.7 points respectively. The
differences between the results on the two bench-
marks might reflect the differences between under-
lying KGs. SF-TQA without IS 4 to 6 achieves
acceptable results on TempQuestions, which might
indicate that Freebase can provide sufficient tem-
poral facts for comparisons. SF-TQA with only
basic query graphs on TimeQuestions performs
much better than on TempQuestions, which might
indicate that Wikidata provides richer and finer
relations between entities, thus the connections be-
tween mentioned entities and answers are more
likely to be satisfied via simple relation paths.

Method TempQ. TimeQ.
He@l F; H@l F;
Full System 375 381 413 40.7
w/o IS-4to 6 375 36.6 354 369
w/o IS 29.2 24.0 347 36.0

Table 5: Results (%) for the effectiveness of interpreta-
tion structures on relation constraints.

4.7 Error Analysis

We analyze the main errors of 100 questions of
which the F; scores are less than 1. The results are
illustrated in Table 6.

Main Error TempQ. TimeQ.
Recognition Errors 12% 36%
Uncovered Constraints 14% 20%
Ranking Errors 26% 2%
Inconsistent Answers 10% 8%
Incomplete Knowledge 38% 34%

Table 6: The statistics of main errors of sampled ques-
tions.

The 1st row counts the questions with incor-
rectly recognized entities or temporal constraints,
which reveals that SF-TQA severely suffers from
error propagations on TimeQuestions. The 2nd
row counts the questions whose meaning can not
be perfectly expressed by generated constraints
(e.g., questions with multi-hop non-temporal prop-
erty paths like “wife of the actor who played
in the movie pinball wizard”). The 3rd row
shows that our ranking model is hard to train
with limited data (TempQuestions contains less
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than 1,000 training samples). Besides, data qual-
ity appears to be an important issue. In about
10% of the sample questions, the provided an-
swers are inconsistent with the knowledge in the
given KG. For example, TimeQuestions annotate
2010_F1_Championship (wd:Q69934) as the an-
swer of “Who won the 2010 fl championship?”.
For over 1/3 of the sampled questions, KG can not
provide sufficient evidence (e.g., occurrence times
of the corresponding facts are not provided) for
obtaining all answers.

5 Related work

Temporal Information in Natural Language.
Temporal information has attracted the attention
of Al and linguistics communities for a long
time. Allen presents an interval-based temporal
logic for reasoning the relation between time du-
ration (Allen, 1983) and a computation theory for
action and time (Allen, 1984). He concludes 13
possible interval relations with their transitivity ta-
ble. Mani and Wilson (2000) introduces an annota-
tion scheme for temporal expression in news and
discusses its possible application in event ordering
and event time alignment. TimeML (Pustejovsky
et al., 2003, 2010) is a specification for annotating
temporal information from narratives. TimeML
has become the de facto standard in the NLP com-
munity. It annotates time expressions, events, the
relations between them, and the signals that trigger
the relations in XML form.

Temporal KGQA. Early KGQA systems usu-
ally do not handle temporal constraints (e.g., Berant
and Liang, 2014) or apply simple heuristics about
their surface forms (Berant et al., 2013; Bast and
Haussmann, 2015; Bao et al., 2016). Some bench-
marks that specifically focus on temporal intents
in KGQA emerge in recent years, including Tem-
pQuestions (Jia et al., 2018b), TimeQuestions (Jia
et al.,, 2021) and TempQA-WD (Neelam et al.,
2022). In terms of the technologies for temporal
KGQA, Jia et al. (2018a) proposes TEQUILA. It
relies on limited hand-crafted rules to decompose
complex temporal relations and solves composed
simple questions via underlying general KGQA
systems. EXAQT (Jia et al., 2021) uses Group
Steiner Trees to anchor a KG sub-graph for each
question, retrieving answers in the sub-graph with
augmented temporal facts by an RGCN model.
Besides, there are also some researches specifi-
cally focus on question event-centric or temporal

knowledge graphs. Costa et al. (2020) proposes
a question answering benchmark Event-QA over
EventKG (Gottschalk and Demidova, 2018, 2019).
Saxena et al. (2021) proposes CronQuestion over
a sub-graph of Wikidata with a limited subset of
relations for evaluating temporal KG embeddings.

In summary, existing temporal KGQA methods
either analyze only the surface form of temporal
constraints or rely on end-to-end neural models.
While neural models might be robust to diversi-
fied representations of knowledge, they are hard
to characterize the clear boundaries of temporal
constraints (e.g., accurately filtering all events that
occur before 2022).

KGQA via Query Graph Generation. Con-
structing queries via exploring the relevant facts of
mentioned entities is a common practice in KGQA,
especially in the situations where only question-
answers pairs are provided. Yih et al. (2015) de-
fines query graphs that can be straightforwardly
mapped to an executable logical query. They model
the generation of query graphs as a staged search
problem, where the query graphs are expanded by
exploring legitimate predicate sequences starting
from mentioned entities. Bao et al. (2016) expands
basic query graphs with 6 kinds of manually de-
signed constraints including quantitative temporal
and ordinal constraints. Luo et al. (2018) encodes
query graphs of complex structures into a uniform
vector representation for complex questions. Lan
and Jiang (2020) prunes the search space via early
incorporation of constraints.

The existing query graph generation methods are
not specifically designed for temporal constraints,
they simply suppose that temporal or ordinal sig-
nals correspond to quantitative constraints. Specifi-
cally, Bao et al. (2016), Luo et al. (2018), and Lan
and Jiang (2020) recognize time constraints via
syntax signals and simply interpret them as general
aggregation functions (e.g., greater than X, max at
N), i.e., their interpretations of temporal constraints
are similar to "SF-TQA w/o IS-4 to 6” (referring
to Table 5). In contrast, we systematically analyze
the interpretation structure of temporal constraints,
including the analysis of what kind of intrinsic con-
nection can make events temporally related.

6 Conclusion and Future work

In this paper, we study the logical constraint that
corresponds to temporal intents in questions. Our
main contributions can be summarized as follows:
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* We propose the idea of analyzing temporal
intents via possible interpretation structures.
We conclude the interpretation structures as
SE-TCons, which allows one constraint ex-
pression has various interpretations.

* We propose the semantic-framework-based
temporal question answering method, SF-
TQA. SF-TQA mitigates the heterogeneity be-
tween expressions of temporal intents and KG
facts. It enhances the query generation via
structural restrictions provided by SF-TCons.

¢ Our implementation of SF-TQA establishes
new SOTAs on two benchmarks and improves
the Fy scores by 3.6 and +7.1 points respec-
tively.

In the near future, it is worth exploring to alle-
viate the possible knowledge incompleteness in
practical KG by developing a hybrid question-
answering method on both knowledge graphs and
web texts. In addition, this paper focuses only on
temporal intent, while problems in real configura-
tions may contain both complex non-temporal and
temporal intents. Therefore, it would be helpful to
combine SF-TCons with general KGQA systems
for complex questions.

Limitations

* Due to the compositionality of natural lan-
guage, a temporal question could be very com-
plex, which is beyond the ability of our im-
plemented QA system. For example, The
following question is syntactically legitimate
but can not be handled by SF-TQA: “What
year did the second president of the United
States, elected after the last spouse of the au-
thor of ‘Wish Tree for Washington, DC’ was
shot, marry his wife?”

While the linguistic and entity annotations
help SF-TQA alleviate the lack of structured
supervision, they make it hard to apply SF-
TQA to low-resource languages or questions
with no named entities (e.g., “What are the im-
portant events that will happen at the turn of
the century?”). Besides, as a pipeline method,
SF-TQA suffers from possible error propaga-
tions.
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A Appendix for Different Training

Strategies

We also evaluated the effects of different training
strategies as illustrated in Table 7. The results in
2 to 4 rows are obtained by simply using the irrel-
evant negatives, confusing negatives or randomly
sampling negatives without classification respec-
tively. The results show that both of the two types
of negative sample are needed for training. The
balanced sampling of the two types effectively im-
proves SE-TQA on the smaller dataset, TempQues-

tions.
Method TempQ. TimeQ.
H@l F; H@l F;
Full System 41.2 411 539 527
w/o confusing 349 359 495 493
w/o irrelevant 10.6 104 375 36.0
random neg. 37.3 374 535 526

Table 7: Results (%) of different sampling strategies for

the negative samples.

1877


https://doi.org/10.3115/v1/p15-1128
https://doi.org/10.3115/v1/p15-1128
https://doi.org/10.3115/v1/p15-1128

