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Abstract

While large pre-trained language models are
powerful, their predictions often lack logical
consistency across test inputs. For example,
a state-of-the-art Macaw question-answering
(QA) model answers Yes to Is a sparrow a
bird? and Does a bird have feet? but answers
No to Does a sparrow have feet?. To address
this failure mode, we propose a framework,
Consistency Correction through Relation De-
tection, or ConCoRD, for boosting the consis-
tency and accuracy of pre-trained NLP models
using pre-trained natural language inference
(NLI) models without fine-tuning or re-training.
Given a batch of test inputs, ConCoRD sam-
ples several candidate outputs for each input
and instantiates a factor graph that accounts
for both the model’s belief about the likeli-
hood of each answer choice in isolation and
the NLI model’s beliefs about pair-wise answer
choice compatibility. We show that a weighted
MaxSAT solver can efficiently compute high-
quality answer choices under this factor graph,
improving over the raw model’s predictions.
Our experiments demonstrate that ConCoRD
consistently boosts accuracy and consistency of
off-the-shelf closed-book QA and VQA mod-
els using off-the-shelf NLI models, notably in-
creasing accuracy of LXMERT on ConVQA
by 5% absolute. See the project website! for
code and data.

1 Introduction

Reliable and trustworthy Al systems should demon-
strate internal self-consistency, in the sense that
their predictions across inputs should imply logi-
cally compatible beliefs about the world. However,
even powerful large language models are known
to lack self-consistency (Ray et al., 2019; Elazar
et al., 2021; Kassner et al., 2021). For example, a
question-answering (QA) model that answers the
question Is a sparrow a bird? and Does a bird have
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Figure 1: ConCoRD first generates candidate outputs from
the base pre-trained model, then estimates soft pairwise con-
straints between output choices, and finally finds the most
satisfactory choices of answers accounting for both the base
model and NLI model’s beliefs.

feet? with Yes is implicitly expressing the belief
that A sparrow is a bird and A bird has feet. If the
same model answers the question Does a sparrow
have feet? with No, the model expresses the logi-
cally incompatible belief A sparrow does not have
feet. In such cases, ascertaining the model’s “true”
belief is difficult, making interpreting and validat-

ing its behavior correspondingly challenging.

Prior work has improved model self-consistency
by training with specialized loss functions (Elazar
etal., 2021) or data augmentation (Ray et al., 2019),
or alternatively re-ranking model predictions based
on their mutual self-consistency using pre-written
logical constraints, such as “all mammals have fur”
(Kassner et al., 2021). However, the first class
of methods requires expensive fine-tuning which
might be impractical for many practitioners for very
large pre-trained models, and re-ranking methods
require an explicit collection of the logical rela-
tions of interest, making scaling a challenge. Still,
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re-ranking-based approaches have the benefit of
not requiring fine-tuning, and we hypothesize that
their scalability limitations may be addressed by
estimating logical relationships between model pre-
dictions on the fly. Specifically, we hypothesize
that existing pre-trained natural language inference
(NLI) models can estimate logical relationships be-
tween an arbitrary pair of model predictions well
enough to provide an effective, scalable substitute
for explicit collection of such constraints. Leverag-
ing these estimated constraints, we can construct a
factor graph representing a probability distribution
over model outputs that incorporates both the origi-
nal model’s confidence scores and the NLI model’s
beliefs about logical relationships.

Our primary contribution is Consistency Correc-
tion through Relation Detection, or ConCoRD, a
framework to improve the consistency and perfor-
mance of a pre-trained base language model with-
out fine-tuning by using more confident and better
attested model predictions to override less confi-
dent model beliefs. See Figure 1 for an overview.
To enable propagation of model beliefs, we esti-
mate pair-wise logical relationships between model
predictions using a pre-trained NLI model. Us-
ing these pair-wise relationships, we define an
undirected graphical model representing a distribu-
tion over responses accounting for both the base
model’s beliefs and the NLI model’s estimates of
answer compatibility. We efficiently find the ap-
proximate mode of this distribution among the base
model’s top answer choices for each input as the
solution of a MaxSAT problem, which consistently
produces more accurate and self-consistent predic-
tions than using the raw model predictions. In
Section 4.1 we find that ConCoRD produces an
8.1% absolute improvement in F1 of a pre-trained
Macaw model (Tafjord and Clark, 2021) on the
BeliefBank QA dataset (Kassner et al., 2021). In
Section 4.2 we find a 5.0% absolute improvement
in accuracy of a pre-trained LXMERT model (Tan
and Bansal, 2019) on the ConVQA dataset (Ray
et al., 2019), and in Section 4.3 we find that Con-
CoRD enables test-time model editing (Sinitsin
et al., 2020; Mitchell et al., 2022), updating model
predictions at test time when presented with new
information.

2 Related Work

Prior work for maintaining consistency in the
question-answering space often involves additional

training to improve performance. Chen et al. (2021)
transform the Natural Questions (Kwiatkowski
et al., 2019) dataset question-answer pairs into
premise-hypothesis pairs, then uses an NLI model
trained on this dataset as a decider for unanswer-
able questions. Alberti et al. (2019) generate ques-
tions from unlabeled texts, then filter them to en-
sure roundtrip consistency; pre-training on this
synthetic set improves performance on SQuAD
2.0 (Rajpurkar et al., 2018) and Natural Ques-
tions. Asai and Hajishirzi (2020) augment QA-
pairs with their logically symmetric and transitive
counterparts through linguistic approaches to en-
hance cross-dataset QA performance. ConCoRD
differs significantly from these question-answering-
specific approaches because no fine-tuning of the
base model is needed and the methodology is not
specific to question-answering.

Similarly to ConCoRD, Kassner et al. (2021)
re-rank model predictions by solving an optimiza-
tion problem defined by a combination of the base
model confidence scores and pair-wise constraints
representing the logical compatibility of different
model predictions stored in a persistent memory,
which they call BeliefBank. The key distinguish-
ing property of ConCoRD is the fact that pair-wise
constraints between model predictions are dynami-
cally estimated by a pre-trained NLI model, rather
than drawn from a fixed, pre-collected set of con-
straints. Dynamically estimating the constraints
has a variety of benefits, eliminating the need for
manually collecting the logical constraints of inter-
est, automating the process of determining whether
a particular constraint applies to a particular pair of
predictions, and likely inheriting improvements in
Natural language inference (NLI, MacCartney and
Manning (2008)) models over time.

NLI has long been used to maintain logical con-
sistency in generated dialogue utterances (Welleck
et al., 2019; Dziri et al., 2019; Song et al., 2020), ra-
diology report domain entities (Miura et al., 2021),
and summarization (Laban et al., 2022; Honovich
et al., 2022). Perhaps most similarly, Jung et al.
(2022) use NLI to estimate constraints between fac-
tual statements produced by GPT-3. These prior ap-
proaches support our intuition for using NLI mod-
els to improve logical consistency among batches
of answers. While the authors explore applica-
tions of this framework to multi-step reasoning
for True/False questions or statements, our work
focuses on applying this methodology to more gen-
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Figure 2: An example factor graph for a simplified batch with two questions, g1 = What is the capital of Afghanistan? and g2 =
What is the capital of Georgia?. Although Tbilisi is the most likely answer for both questions, the assignment of variables that is
best under the estimated contradiction constraint flips the answer to the first question to Kabul. The top-2 answer choices for
each question are sampled from the base model, and a soft contradiction constraint is detected between variables z; (representing
the truth of the answer Tbilisi for q1) and z3 (representing the truth of the answer Thilisi for gz2).

eral settings, such as VQA, open-ended QA, and
model editing.

3 Consistency Correction through
Relation Detection

ConCoRD contains three key components, the base
model, a relation model (typically a pre-trained
NLI model), and an inference procedure that com-
bines the predictions of the two models into a more
accurate and self-consistent set of beliefs. Impor-
tantly, both the base model and relation model are
pre-trained, off-the-shelf models; ConCoRD does
not update any weights or require training data for
either model, using only a small validation set for
hyperparameter tuning. We next explain the func-
tion of each of these components when executing
ConCoRD.

3.1 Base Model

The core function of the base model in ConCoRD
is generating a set of candidate outputs for a given
input, which are ultimately re-ranked by the infer-
ence process (Sec. 3.3). Given a batch of N model
queries @@ = {¢; }, the first step of ConCoRD is to
generate a set of J candidate outputs for each query
A; = {@;1,...,a;;}, along with their correspond-
ing likelihoods py(a;|g;). Note that the candidate
outputs need not be an IID sample from the base
model; for example, we might use beam search
with a diversity bonus to produce a more diverse
set of candidates (Vijayakumar et al., 2018). Each
pair of query and candidate output forms a model
belief bj; = (¢;, G;;); the output of the base model
is the complete set of model beliefs B = {b;;}
and their corresponding normalized probabilities

pgj 2. The base models in our experiments are pre-
trained question-answering models based on T5-
large (Raffel et al., 2020) and pre-trained visual
question-answering models such as LXMERT (Tan
and Bansal, 2019) and ViLT (Kim et al., 2021).

3.2 Relation Model

The relation model pg(-|z,2’) estimates the
most likely logical relationship between an or-
dered pair of natural language utterances from
the choices {none, fwd-entail, contradict,
equivalence}.’ In addition to the model be-
liefs B, we define optional context statements
cij = C(bi;), K relevant statements that may
be retrieved, generated, or manually written for
each model belief. The ability to incorporate con-
text statements enables ConCoRD to modulate
model behavior independently for each input in
the test batch, rather than reasoning transductively
about pairs of test inputs. See Table 3 for exam-
ples of model beliefs and context statements. In-
puts to the relation model are either pairs of two
model beliefs (b;;, b ) or pairs of one model be-
lief and one context statement (b;;, ¢;;). We de-
fine the most likely inter-belief relation as r;; ;7 ;7 =
argmax,. pe(r|bi;, by j), and similarly for belief-
context relations 7, = argmax, pe(r|bij, Cijk)-
The output of the relation model is the set of most-
likely relations R = {7y} U {ri;s} and their
associated probabilities, which we denote as p;j’i/j /
and pfgk Our experiments use various pre-trained
NLI models based on RoBERTa (Liu et al., 2019)

*Normalized such that 3 ;pd =1

3Because relationships are estimated between ordered
pairs of utterances, we can form an equivalence relation if
fwd-entail is predicted for both orderings of the utterances.
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and ALBERT (Lan et al., 2019) as the relation
model.

Question-answer to statement conversion.
While concatenating query ¢; and candidate
output @;; to produce inputs to the relation model
is perhaps the simplest approach to estimating
soft constraints, we use a statement conversion
model to provide inputs to the relation model that
are closer to its training distribution. Instead of
defining the belief b;; = (g;, a;;) as concatenation
of ¢; and a;;, we define b;; to be the statement
fu(qi, aij), where f is the conversion model. We
fine-tune a small TS5 model on a combination of
data from (Demszky et al., 2018) and BeliefBank
(Kassner et al., 2021) to produce a model that maps
a (question, answer) pair into a natural language
statement. Details about the fine-tuning procedure
and data are provided in Appendix C.

3.3 Inference

ConCoRD’s inference procedure maps the set of
beliefs B and pair-wise relations R into a choice of
the most likely belief for each question. To define
the inference problem, we first define a binary de-
cision variable z;; representing the estimated truth
value of model belief b;;. A value of 1 for node z;;
in the maximum likelihood configuration means
that a;; is returned for query ¢;; the problem in-
cludes a constraint that exactly one candidate an-
swer is true for each query. The factor graph in-
cludes the set of variables Z = {zij}f»yj’iM and
various factors (functions mapping a subset of Z to
a non-negative scalar) derived from the base model
and relation model’s beliefs and the hard constraint
of returning only one answer per question. Factors
are defined such that more desirable configurations
of z;; yield a larger product of the individual fac-
tors. First, unary factors ¢;;(z;;) encode the base
model’s beliefs about the likelihood of specific an-
swers, and are defined as:

Pij

bij(zij) = {1%

1 otherwise

if zij =1

(D

where p;; = pg(aij|q;); in other words, the factor
takes the odds ratio if the corresponding statement
variable z;; is assigned a truth value of 1; otherwise,
the factor takes value 1. In order to encode the
hard constraint that exactly one output should be
returned for each query, we include a J-ary factor

¢i(Z;) for each group of nodes Z; = {Zij}‘j]:p

which is equal to 1 for configurations where exactly
one of the nodes takes a value of 1, and O for all
other configurations.

Binary factors ¢;; 7/ (2ij, z;) and optionally
®ijk(2ij, ciji) encode compatibility between pairs
of model beliefs (or model belief-context pairs):

1 if Tij,i’j/('zij) Zi’j’)

1_ pé)j’ilj/

i,y (ijs zirgr) = {

otherwise

where we define the relation function r;; ;- to eval-
uate to true if its arguments satisfy the underlying
relation, and false otherwise; ¢ (25, ciji) is de-
fined similarly to ¢;; ;s (25, zi7j) *. The inference
problem amounts to finding argmax , ¢(Z ), where

¢(2) =11 ¢ 11 (H ¢ij,i'j/> (H @bijk) :
i i ks

2
An approximate solution to this inference problem
can be efficiently found for most problems with a
MaxSAT solver such as RC2 (Ignatiev, 2019). We
omit arguments to the factors for conciseness. See
Figure 2 for a simple example of a factor graph
with a single inter-belief constraint and no belief-
context constraints.

Entailment correction. Consider a belief b, a
set of its entailed statements S = {s;};, unary
factors ¢(z) and {¢(zs,)}, and binary factors
P = {¢(zp, zs;) }i- Recall that an entailment re-
lation 7y, (2p, 25, 1s satisfied (and the binary fac-
tor is maximized) if either z; = O or all z5, = 1.
Consequently, as the cardinality of {z,|zs, = 0}
increases, the more likely it is that z;, = 0 will max-
imize the product of all binary factors [ [, ¢ (2, 2s,)-
This is true even if most entailed statements are true,
ie., [{zs,]2s; = 1}| > |{#s,|2s, = 0}]. If most of
the statements entailed by a belief are true, assign-
ing the belief to be false due to a small number of
(potentially spuriously) false entailed statements
may be undesirable. To mitigate this outcome,
we experiment with an additional type of factor
in which configurations satisfying entailments with
both z;, = 1 and z,; = 1 are ‘rewarded’ more than

*We use this formulation only to accommodate settings
were multiple context statements are retrieved for each query;
see Section 4.3. We do not have any ¢;;, factors if we are
only using the model’s predictions within a batch of test inputs
as the premises for reasoning.
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other configurations satisfying the entailment:

1 if 2,25, = 1

1-— p?;si if 2,25, =0

\/1— pl;’si otherwise

Applying entailment correction consistently im-
proves ConCoRD’s performance; see Appendix
Table 8 for a dataset-by-dataset breakdown.

be,si (Zba Zsi) =

3.4 Hyperparameters of ConCoRD

We introduce two key hyperparameters to Con-
CoRD. Because we do not know a priori the rel-
ative reliability of the base model and relation
model, we introduce the hyperparameter 3 € [0, 1],
corresponding to a trade-off between the predic-
tions of the base model and relation model. A
value of 8 = 1 corresponds to simply taking the
raw predictions of the base model, while § =
0 corresponds to optimizing purely for answers
that are self-consistent according to the relation
model, without considering the base model’s be-
liefs. The unary factors in the factor graph become
$ri(2i5) = (0i5(2))" and @ (25, 200) =
(qﬁij’i/j/(zij, zi/j/)) 1-5 (and similarly for gbfjk). In
addition to 3, we introduce a threshold X for rela-
tion model confidence to filter out low-confidence
relation estimates. ‘fl/"hat is, we discard a relation
Tijitj OF Tijp if p;f’”/ < \or pgk < ), respec-
tively. In practice, we find that the optimal 5 and
A vary across problems, perhaps due to the vary-
ing complexity of the model belief and context
statements (and therefore the reliability of the re-
lation model’s predictions). Therefore, we use the
hyperopt library (Bergstra et al., 2013) for auto-
mated hyperparameter optimization, using the Tree
Parzen Estimator (TPE) algorithm to tune 5 and A
jointly. We use the optimal hyperparameters found
on the validation data for each problem to compute
test performance. Appendix H.1 details hyperpa-
rameter tuning for each experiment.

4 Experiments

Our experiments are broadly designed to answer
the high-level question: can ConCoRD leverage
the relational knowledge in pre-trained NLI models
to produce more accurate, self-consistent system
behavior, without additional data or fine-tuning?
Further, we investigate ConCoRD’s applicability to
performing test-time model editing (Sinitsin et al.,

2020; Mitchell et al., 2022), or injection of new in-
formation, and ConCoRD’s sensitivity to the choice
of hyperparameters and types of relations detected.

4.1 Internal Consistency in Closed-Book
Question-Answering

Protocol. To evaluate the accuracy and consistency
of a set B of beliefs, Kassner et al. (2021) syn-
thesize a gold standard for those beliefs and the
inferred relations R. Following this prior work, we
assume the following is given:

* A set of entities s, € S

* A set of unary predicates P, € P

* A collection of “facts” (P, (sm));, whose bi-

nary truth value is known

* A directed graph of gold-standard con-

straints G(P, E'), whose edges (P,, P,/) €

E represent first-order logical formulae

Vz (Py(z) — Py(x))
From these, we construct simple yes/no questions
using natural language templates. For example,
for fact P, (sy,), if entity s,,, represents a lion and
predicate P, represents an ability to drink liquids,
the template-generated gold question answer pair
(gi,ai) is Q: Is it true that a lion is able to drink
liquids?; A: Yes.

These questions are given as input to one of two
sizes of a multi-angle question answering model
(Tafjord and Clark, 2021), given a multiple choice
angle with choices Yes. and No. The questions and
retrieved answers (g;, ;) form a set of beliefs B;
for each entity. Since these are closed-book ques-
tions, no context statements are supplied; because
they are yes/no questions, only one candidate an-
swer is obtained, i.e., J = 1. Question-answer
to statement conversion is applied to all questions
with a default answer of Yes. regardless of the an-
swer @, in order to provide the relation model with
positive natural language assertions from which to
infer sets of relations R, ; where the base model
answers a; are No. we replace node z; in the factor
graph with its complement. Configurations Z
are found for each s,, € S which maximize Equa-
tion 2 given B;, , R, and together form a global
solution Z.

Datasets. Kassner et al. (2021) provide a suitable
database with 12,636 facts (“silver facts”), each
indicating whether one of 601 predicates relates
to one of 85 entities, as well as 4,060 confidence-
weighted first-order constraints manually gathered
from ConceptNet (Speer et al., 2017), forming a
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Base ConCoRD G.C. Base ConCoRD Oracle
Model F1 Con. F1 Con. F1 Con. Model Acc. P.C. Acc. PC. Acc. PC.
Mac-Lg 0.831 0.835 0914 0920 0.862 0.934 LXM 0.656 0.360 0.706 0.409 0.824 0.572

Mac-3B  0.855 0.871 0.931 0.947 0.905 0.936

VILT  0.784 0.489 0.804 0.548 0.882 0.690

Table 1: F1 and consistency (1 - 7) for two sizes of Macaw
(Tafjord and Clark, 2021) QA models, comparing ConCoRD
to a naive QA baseline (Base) and ConCoRD with gold con-
straints (G.C.). ConCoRD significantly improves both F1 and
consistency for both models.

constraint graph G. Additionally, they provide
1,072 distinct “calibration facts”, each relating one
of 7 entities to one of 334 predicates.

We tune 3 and A using a validation set of ques-

tions generated from the calibration facts, and eval-
uate test time performance with questions gener-
ated from silver facts.
Metrics. We measure accuracy using binary F1
between elements z; of the configuration Z maxi-
mizing ¢(Z) (as in Equation 2), and the truth value
of facts (P,(sm));. As in Kassner et al. (2021);
we use F1 for evaluation because gold answers are
highly biased towards true No. answers.

We compute consistency within batches of
questions using the complement of of Li et al.
(2019)’s conditional constraint violation metric 7,
defined here as the proportion of relevant gold
constraints in G which are violated; a constraint
Vx (P, (x) — P,y (x)) is relevant iff, for some en-
tity S, there is some belief b; € B, from fact
(Pn(Sm)); such that z; = 1, and there is some be-
lief b; € B;,, that corresponds to fact (P (sm)) ;3
the constraint is violated when z; = 0.
Comparisons. ConCoRD is evaluated against a
naive baseline where only base model answers a;
and probabilities are considered. A second baseline
(G.C.) performs the inference described in Sec. 3.3,
replacing the inferred relations R with the gold
constraints from constraint graph G, rather than
those estimated by the relation model.

Results. Results are shown in Table 1. ConCoRD
provides an absolute improvement of over 8% in
F1 and consistency for Macaw-Large and 7% for
Macaw-3B compared to the baseline. Notably, the
margin of superiority of the Macaw-3B base model
is mostly preserved after applying ConCoRD, sug-
gesting that ConCoRD may provide a significant
benefit even for very large models. A surprising
result is that ConCoRD shows marked improve-
ments in F1 over the gold constraint baseline, sug-
gesting that the detection and filtering of relations
ConCoRD provides may, in this setting, be an im-

Table 2: ConVQA accuracy (Acc.) and perfect consistency
(P.C.) of LXMERT (Tan and Bansal, 2019) and ViLT (Kim
et al., 2021) VQA models with and without ConCoRD. Con-
CoRD significantly improves accuracy and consistency of both
models. Oracle performance is top-2 performance, as Con-
CoRD attempts to select the best of the top 2 answer choices
of the base model.

provement over rigid adherence to the logical con-

nections specified a priori in Kassner et al. (2021).

4.2 Internal Consistency in VQA

Protocol. The Visual Question Answering (VQA)
task involves a language model generating answers
to questions that are directly associated with im-
ages. VQA tests for robustness and generalizability
of ConCoRD as it introduces an additional layer of
difficulty; the task moves away from purely text-
based tasks while expanding the answer space to
the vocabulary of the LM being used. The ques-
tions from the ConVQA dataset (Ray et al., 2019)
and its associated images from the Visual Genome
dataset (Krishna et al., 2016) provide an apt setting
to assess ConCoRD, as the relatedness of ques-
tions for each image provide ample opportunity for
model self-inconsistency.

The ConVQA dataset consists of a set of images
each associated with a group of related questions
about the image, such as What color is the horse?
and Is the horse brown? for a picture of a brown
horse in a stable. We evaluate ConCoRD with two
VQA models, LXMERT (Tan and Bansal, 2019)
and ViLT (Kim et al., 2021). For each group of
questions @, = {qn;}i, we sample the top-2 can-
didate outputs {Gn;1, Gno} for each question, and
use a pre-trained NLI model to infer the most likely
pair-wise relations R between outputs from differ-
ent questions. We use the RC2 MaxSAT Solver to
estimate the configuration that maximizes Equation
2.

Metrics. We report accuracy as the proportion of
questions answered correctly across all groups. We
infer consistency using a metric previously used in
the literature for the ConVQA dataset called "per-
fect consistency” (Ray et al., 2019). For all groups
of related questions, a group is perfectly consistent
if all its questions are answered correctly. Perfect
consistency then reports the proportion of question
groups that were perfectly consistent. While this
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Input & Gold Answer Generations

Added context

Q: What was the first capital city

of Australia? A: Melbourne ney; Inverell

Canberra; Melbourne; Syd-

Melbourne was the initial capital following the 1901
Federation of Australia.

Q: When does the implantation
of the embryo occur?
A: around 9 days after ovulation

9 to 18 days;

lation; on the 9th week

between 6
and 12 days; after the ovu-

In humans, implantation of a fertilized ovum is most
likely to occur around 9 days after ovulation, however
this can range between 6 and 12 days.

Table 3: Success and failure in editing a model’s behavior with ConCoRD by adding new information to the context. The base
model’s highest confidence answer is Underlined. Bold shows ConCoRD’s output after inference; with Teal, bold showing a
successful edit increasing F1 and Red, bold showing an edit that reduces F1.

F1
Model Base ConCoRD Oracle
T5-Sm-NQ  0.207 0.225 0.281
T5-Lg-NQ  0.314 0.328 0.393
T5-3B-NQ  0.332 0.351 0.423

Table 4: Using ConCoRD to inject contextual information
into a model’s decisions at test time. Injecting gold Natural
Questions contexts consistently improves performance over
the base model without requiring fine-tuning.

is not a perfect measure of consistency as it ex-
cludes cases in which incorrect answers are consis-
tent with each other, it still serves as a meaningful
proxy since the dataset was designed such that any
incorrect answer in a question group implies the
presence of inconsistency.

Datasets. We divide the ConVQA dataset into a
"clean" (i.e. human verified and filtered) test set
and a non-test set (train + val + test as defined by
Ray et al. (2019)). From the non-test set, we sam-
ple 10,000 random images equivalent to 123,746
questions to be used as our validation set for tuning
our two hyperparameters. We use the clean test set
— 725 images and 6,751 questions — to report our
final results.

Comparisons. ConCoRD is compared with a naive
baseline and a top-2 oracle upper bound. The naive
baseline is the answer with the highest VQA model
probability. Top-2 oracle upper bound selects the
correct answer if present within the top-2 predic-
tions of the VQA model. Top-2 is appropriate given
our use of the top-2 candidate outputs to generate
inferences with NLI models.

Results. The final results for ConCoRD, baseline,
and oracle upper bound are shown in Table 2. Con-
CoRD increases the accuracy of LXMERT and
ViLT by 5% and 2% respectively, and the consis-
tency of LXMERT and ViLT by 4.9% and 5.9% re-
spectively. Examples in which ConCoRD correctly
and incorrectly selects a candidate output different
from the baseline output are shown in Figure 4 and
Figure 5, respectively. In particular, the incorrect

scenarios demonstrate several failure modes that
may be in part responsible for the gap between
ConCoRD and the oracle upper bound, suggesting
further improvements of the components of Con-
CoRD will also continually improve ConCoRD.

4.3 Test-Time Information Injection

Protocol. We perform an additional experiment
to evaluate ConCoRD’s ability to integrate exter-
nal factual information into its inference process,
rather than only using other predictions in the test
batch. Such an ability enables editing a model’s
behavior at test time, without re-training, as new
information becomes available. We use the Natural
Questions (NQ; Kwiatkowski et al. (2019)) dataset,
rather than BeliefBank, to provide more challeng-
ing inputs to the relation model. Given a question
from NQ, a sentence from the ground truth con-
text document containing information about the
answer is retrieved and provided as an additional
input to ConCoRD; we constrain the node repre-
senting this context variable in the factor graph to
be true. Constraints are predicted between each
answer choice and the context statement. As in the
other experimental settings, hyperparameters are
tuned on the validation set and applied on the test
set. See Appendix H for tuning procedures.

Metrics. Model performance is evaluated using
the SQuAD F1 score for overlapping tokens>, fol-
lowing the same answer normalization protocols,
including lower-casing and removing punctuation.
Datasets. The NQ development set consists of
7830 open-book question-answer pairs, with both
long and short gold annotations in their context
passages. Since the NQ test set is not available,
we create a test and validation set from the NQ
validation questions as follows: we take the first
5000 questions to form our test set, and the rest to
be our val set, which we use for hyperparameter
tuning. Then each set is filtered such that only

Shttps://worksheets.codalab.org/bundles/
0xbcd57bee@90b421c982906709c8c27el
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the answerable questions remain. “Answerable” is
defined as having a “short answer" span defined in
the annotations. This filtering process gives 2713
test entries and 1576 val entries.

Comparisons. ConCoRD is compared with a naive
baseline and an oracle upper bound. All of these
approaches operate on the fixed set of QA model
answers for a specific QA model (one of T5-Sm-
NQ, T5-Lg-NQ, and T5-3B-NQ), specifically the
set of top-4 answers for each question. The naive
baseline selects the answer with the highest QA
model probability, argmax;, - pg(@ij|g:). The ora-
cle upper bound approach selects the answer that
has the best score with the gold short answer span,
argmaxaij F1 (&ijv aij).

Results. The results on the test set using the naive
baseline, ConCoRD, and oracle upper-bound are
reported in Table 4. ConCoRD always outper-
forms the naive approach, demonstrating that the
framework is useful even when each query input is
processed independently (i.e., non-transductively).
However, despite providing a relative gain of as
high as 8.7% over the naive baseline, there is still
a gap between ConCoRD and the oracle. This gap
may be attributable to the complexity of the NQ
questions and context information compared with
the statements in prior experimental settings. Chen
et al. (2021) demonstrate a significant gain in cal-
ibration performance from training on MultiNLI
(Williams et al., 2018) to training on a combination
of MultiNLI and their NLI corpus adapted from
NQ, perhaps hinting that crucial knowledge present
in Natural Questions is not covered in MultiNLI,
partially explaining the gap between ConCoRD
and oracle F1 performance. Overall, these results
suggest that ConCoRD can reason between context
statements and model beliefs in addition to pairs of
model beliefs, improving performance even with
the increased complexity of the data.

Qualitative Analyses. Examples of “good” and
“bad” edits (edits that improve and decrease the
resulting F1-scores respectively) are presented in
Table 3, with more in Appendix F. When the cor-
rect answer is not available in the candidate outputs,
ConCoRD is capable of pushing towards more par-
tially correct answers and those that have more
overlap with the context.

4.4 Ablating Relation Types

Given that we consider two types of relations in
our experiments, contradiction and entailment, it

F1/Accuracy
Model Task ConCoRD Only cont. Only ent.
Mac-Lg BB 0.914 0.892 0.827
Mac-3B BB 0.931 0.865 0.917
LXM CVQA 0.706 0.691 0.700
ViLT CVQA 0.804 0.792 0.800
T5-Sm-NQ  NQ 0.225 0.225 0.225
T5-Lg-NQ  NQ 0.328 0.331 0.330
T5-3B-NQ  NQ 0.351 0.349 0.350

Table 5: Ablating the relation types considered in ConCoRD’s
inference procedure. The Only cont. and Only ent. are the
results of applying ConCoRD with all entailment or contradic-
tion relations removed, respectively. The ConCoRD column
is a reproduction of the results from Sections 4.1-4.3, for con-
venience. Value shown is F1 score for BeliefBank (BB) and
Natural Questions (NQ) and accuracy for ConVQA (CVQA).
Note that hyperparameters 5 and A are re-tuned on the respec-
tive validation set for each setting.

is natural to wonder the relative contribution of
these to ConCoRD’s performance improvement;
Table 5 shows the results of this ablation. We re-run
ConCoRD with either entailment or contradiction
relations removed, re-tuning the hyperparameters
for both of the new settings (contradiction-only or
entailment-only). We find that the relative con-
tribution of contradiction and entailment relations
varies significantly across models even within the
same task, but using both relation types always per-
forms approximately as well or better than using
just one, suggesting that both types of detected rela-
tions from the NLI model carry useful information.
However, we observe in several cases, such as ViLT
and the TS5 models, that the entailment and contra-
diction relations may encode somewhat redundant
information, as the performance when including
either type of constraint alone nearly matches that
of using both types.

4.5 Hyperparameter Sensitivity

We perform several experiments to clarify the rela-
tionship between the key hyperparameters, includ-
ing the specific relation NLI model, 3, and A.

Impact of varying relation model. Table 6
shows a comparison of ConCoRD’s test perfor-
mance for several NLI models for each setting; no-
tably, the best-performing NLI model is not consis-
tent across problems. While the Albert-XXL model
from Nie et al. (2020) is the strongest performing
model on NQ, the simpler RoOBERTa-Large models
outperform it on BeliefBank and ConVQA.

Sensitivity to 5 and \. Figure 3 shows the per-
formance of ConCoRD on ConVQA with ViLT as
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Figure 3: Change in ConCoRD’s exact-match validation ac-
curacy as A (the NLI confidence threshold) and /3 (tradeoff
between base model and relation model beliefs) vary, holding
relation model RoBERTa-Large ANLI constant. By com-
paring the maximum value within each column or row, we
conclude that ConCoRD is relatively robust to the choice of
A\, which the choice of 3 is more important. Values are those
encountered during tuning with base model ViLT on ConVQA
validation questions. Gray squares correspond to regions not
evaluated during search, and asterisks (***) mark the region
where the maximum increase in accuracy occurs.

B (the tradeoff between base model and relation
model beliefs) and A (the NLI confidence thresh-
old) are varied, using the values explored during
hyperparameter optimization. Section H.2 of the
Appendix shows similar visualizations for differ-
ent VQA experiments. If multiple hyperparame-
ters within a grid element were explored, the best
performing configuration is shown. While the max-
imum value in each column is the same (0.04),
indicating that there exists a good value of 3 for
almost any A, the converse is not true; for some
values of 3, no good value of A exists. Thus, we
conclude that the tradeoff parameter (3 is the more
important parameter to tune carefully.

5 Discussion & Conclusion

We have presented the ConCoRD framework for
enforcing self-consistency in pre-trained language
models using relations estimated by pre-trained
NLI models, showing that it improves over off-the-
shelf performance in a variety of settings without
requiring any fine-tuning. Our findings suggest that
existing pre-trained NLI models can be a useful
building block for boosting performance of NLP
systems by providing useful estimates of logical
relationships between model predictions across var-
ious models and datasets for QA and visual QA.
ConCoRD also suggests several directions for
future work. Integrating ConCoRD with meth-

F1/Accuracy
NLI Model Data BB ConVQA  NQ
Alb-XXL ANLI  0.892 0.689 0.351
RoB-Lg ANLI  0.931 0.706 0.344
RoB-Lg MNLI 0918 0.706 0.346

Table 6: Comparing ConCoRD’s performance for various NLI
models on BB (BeliefBank), ConVQA, and NQ. Performance
is measured as F1 score between predicted and gold text for
BB and NQ, exact match accuracy for ConVQA. We use
Macaw 3B for BB results, LXMERT for VQA results and
T5-3B for NQ results. The best NLI model(s) in each column
are bolded; the best NLI model varies across problems.

ods that generate questions likely to elicit use-
ful knowledge for answering the question at hand
(Ray et al., 2019; Shwartz et al., 2020) may further
improve performance. In addition, integrating a
framework such as ConCoRD with recent methods
for differentiation through black box combinatorial
solvers (Pogancic¢ et al., 2020) may enable train-
ing of the entire base model, relation model, and
inference pipeline end-to-end, potentially further
improving aggregate performance. Finally, Con-
CoRD’s general mechanism of re-ranking predic-
tions by estimating the self-consistency of groups
of model predictions is applicable beyond natu-
ral language, and future work might investigate
its application to problems in vision or sequential
decision-making. We hope that ConCoRD may
serve as another promising example of integrat-
ing both neural and explicit symbolic inference
machinery into a broader intelligent system that
outperforms any of its components individually.

6 Limitations

While our results suggest ConCoRD can effectively
leverage additional compute to boost model per-
formance without fine-tuning, our work has some
limitations. Although ConCoRD is conceptually
applicable to generations from any language model,
our work focuses on question-answering settings to
leverage existing self-consistency benchmarks. In
addition, ConCoRD increases the compute costs of
inference, although it does not require fine-tuning.
Further, our results suggest that the best NLI model
to use for ConCoRD may vary across domains, re-
quiring some tuning. As NLI models improve, we
might hope that the final performance of ConCoRD-
like systems should also inherit these gains, but Ta-
ble 6 suggests that the factors that make a particular
NLI model well-suited to a particular problem are
not obvious, requiring further investigation.
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A Reproducing Macaw-Large Examples

The following configuration reproduces the Macaw-
Large behavior noted in the abstract and the intro-
duction at https://huggingface.co/allenai/
macaw-large.

$answer$ ; $question$ = Is a sparrow a
bird? ; $mcoptions$ = (A) Yes. (B) No. ;
$answer$ ; $question$ = Does a bird have
feet? ; $mcoptions$ = (A) Yes. (B) No. ;

$answer$ ; $question$ = Does a sparrow
have feet? ; $mcoptions$ = (A) Yes. (B)
No. ;

B Factor Graph Overview

A factor graph is a factorization of a function f
mapping a set of n variables Z = {z;}7_, to anon-
negative scalar. The factorization is represented
as a bipartite graph containing variable nodes and
factors; each z; is represented by one variable node,
and each factor ¢; maps a subset of the variable
nodes Z; to a non-negative scalar. The value of
the function is computed as f(Z) = [[,(Z;). See
Loeliger (2008) for a more complete reference.

C Question-Answer to Statement
Conversion Model Details

To convert question-answer pairs into declara-
tive statements, we combine data from the Ques-
tion to Declarative Sentence (QA2D) (Demszky
et al., 2018) and BeliefBank (Kassner et al.,
2021) datasets to fine-tune a T5-base sequence-to-
sequence model. QA2D contains question-answer
pairs from five QA datasets; 95% of the pairs are
from SQuAD (Rajpurkar et al., 2016). The gold
statements are from Amazon Mechanical Turk. The
BeliefBank questions are created from silver facts
using natural language templates as in Section 4.1,

and the yes/no answers are from the known binary
truth values of these facts. Our training dataset is
composed of the full QA2D training dataset of 61k
question-answer pairs and half of the BeliefBank
silver facts, for a total of 67k training examples.
Likewise, the validation dataset consists of the full
QAZ2D validation dataset of 10k pairs and half the
BeliefBank silver facts, for a total of 16k validation
pairs.

The input to the QA statement conversion model
is the concatenation of the question-answer pair
i || a;. Accuracy is evaluated by comparing the
output sequence tokens to the gold sequence tokens.
Training occurs with a learning rate of 1e~* for a
maximum of 50 steps, where each step consists
of 32k training examples, with early stopping if
validation loss does not decrease for 6 consecutive
steps. We ran the fine-tuning on NVIDIA GeForce
RTX 3090 GPU. Fine-tuning ended after 14 steps
with a final training accuracy of 0.764 and valida-
tion accuracy of 0.628. This took approximately
40 minutes. Table 7 demonstrates the model’s per-
formance on a few validation examples.

D Additional Modifications to ConCoRD

A timeout for solvers is imposed in order to prevent
the RC2 MaxS AT solver from running optimization
indefinitely. The average solve time per question
was <4 ms for closed-book QA, <1 ms for VQA
and <20 ms for NQ (for NQ, the solve time is
< 1/10th of the time needed for a forward pass
through the QA and NLI models). We found only
one batch of test questions for the closed-book QA
task and VQA task where the solver couldn’t find a
solution efficiently, so we set a short timeout (30s
for CBQA, 10s for VQA, none required for NQ).

We also de-duplicate the list of inferred con-
straints before passing the statement and constraint
groups through the MaxSAT solver so that only the
highest-weighted constraints would remain among
their duplicates.

E Entailment Correction Ablations

Table 8 shows the effects of entailment correc-
tion on ConCoRD test performance in closed-book
question answering and VQA experiments for dif-
ferent choices of base model, using the NLI rela-
tion model resulting in the best test set performance
(RoBERTa-Large-MNLI).
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Dataset

Input

Output

Gold statement

SQUAD

SQuAD

BeliefBank

BeliefBank

Who established Yale’s residen-
tial college system? Edward S.
Harkness

How did Kuhn view the his-
tory of science? competing
paradigms or conceptual sys-
tems

Is it true that a poodle is a river?
No

Is a pigeon a living thing? Yes

Edward S. Harkness established
Yale’s residential college sys-
tem.

Kuhn viewed the history of sci-
ence as a competing paradigm
or conceptual system.

A poodle is not a river.

A pigeon is a living thing.

Edward S. Harkness established
Yale’s residential college sys-
tem.

Kuhn viewed the history of sci-
ence as competing paradigms
or conceptual systems.

A poodle is not a river.

A pigeon is a living thing.

Table 7: The QA statement conversion model outputs declarative statements from question-answer pairs. Out of the four
validation examples presented, three are correct. The Red, bolded portion of the output of the second example indicates how it
differs from the Teal, bolded corresponding portion of the gold statement.

F1/Accuracy
Model Naive w. E.C. w/o. E.C.

Mac-Lg+Rob/ANLI 0.831 0.914  0.909
Mac-3B+Rob/ANLI 0.855 0.931  0.886
LXMERT+Rob/MNLI 0.656 0.706 0.701
LXMERT+Rob/ANLI 0.656 0.706  0.693
ViLT+Rob/MNLI  0.784 0.804  0.810
VILT+Rob/ANLI  0.784 0.814  0.807

Table 8: Comparison of ConCoRD test performance vs. base-
line with and without entailment correction (E.C.) across
base+relation models for closed-book question answering
(Macaw) and VQA (LXMERT, ViLT) experiments (F1 for
closed-book QA, exact-match accuracy for VQA), showing
that the entailment correction improves performance for most
configurations.

F Additional “Good” and “Bad” Edit
Pairs

More examples of good and bad edits in the Edit-
ing experiment are presented in Table 10. We also
include good (Figure 4)and bad flip (Figure 5) ex-
amples from the VQA dataset. For the bad flip ex-
amples in VQA, we include different failure modes
to demonstrate the types of potential ConCoRD
erTors.

G Good and Bad Flips

For each set of experiments on the test set, we
report the numbers of good and bad flips made by
ConCoRD in Table 9. It can be observed that the
number of good flips is consistently significantly
higher than that of bad flips.

H Hyperparameter Search Details

H.1 Experiments
H.1.1 Closed-Book Question Answering

Hyperparameters (Section 3.4) are tuned jointly us-
ing hyperopt on the BeliefBank calibration dataset

Experiment Model Good Flips Bad Flips
BeliefBank  Macaw-3B 723 277

VQA LXMERT 576 238

NQ T5-3B-NQ 168 69

Table 9: The numbers of good and bad flips in each of the
experiments performed. We define flips as choosing a different
candidate from the naive baseline for the multiple choice
experiments, and a binary truth value flip for BeliefBank.
“Good” flips are flips that improves performance, and “bad”
flips are those that are detrimental to performance.

(Section 4.1). The search space of (3 is uniform
between [0.05,1.0], and for \ it is uniform be-
tween [0.5, 1.0]. hyperopt optimizes cumulative
F1 across all entity batches for 300 trials. To speed-
up tuning, we created caches of model beliefs B,
and relation sets I, for each calibration entity
Sm. This was run on NVIDIA GeForce RTX 3090
GPU, and the largest NLI models took up to two
hours to complete. Using these caches, hyperopt
tuning completes in less than an hour on CPU. The
best performance on the calibration facts for each
of the base Macaw models is reported in Table 11.
The results show that [ is higher for the better base
model Macaw-3B.

H.1.2 VQA

Hyperparameters are tuned jointly using hyperopt.
The search space for £ is uniform over [0.05, 1], for
Aitis uniform over [£, 1]. A total of 100 trials were
performed, updating parameters using TPE, on an
AWS g4dn.xlarge EC2 instance. Each search
took less than one hour. Table 12 shows the se-
lected parameters and their exact-match accuracy
on validation questions.
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Model Input & Gold Answer Generations Added context
T5-Sm-NQ Q: Who was the declara- Second Continental The United States Declaration of Inde-
tion of independence writ- Congress; the United pendence is the statement adopted by
ten for? States; the British Crown; the Second Continental Congress meet-
A: the Second Continental  Great Britain ing at the Pennsylvania State House (
Congress Independence Hall ) in Philadelphia on
July 4 , 1776 , which announced that
the thirteen American colonies , then at
war with the Kingdom of Great Britain ,
regarded themselves as thirteen indepen-
dent sovereign states , no longer under
British rule .
T5-Sm-NQ Q: What is the scientific  The serratus calf muscle; Along with the soleus muscle , the gas-
name for the calf muscle gastrocnemius  muscle;  trocnemius forms half of the calf muscle
A: gastrocnemius muscle The serratus calfi; The
serratus muscle
T5-3B-NQ Q: Who is the actor that Freddie Highmore; Daryl The series stars Freddie Highmore as
plays Dr. Sean Murphy “Chill” Mitchell; Dylan Shaun Murphy , a young surgical resi-
A: Freddie Highmore Christopher Minnette; dent with autism and savant syndrome
Javier Muoz at San Jose St. Bonaventure Hospital .,
Freddie Highmore as Shaun Murphy : A
surgical resident with autism and savant
syndrome .
T5-3B-NQ Q: Who is the founder of the ~ Linus Torvalds; Mark Mark Richard Shuttleworth ( born 18

Ubuntu project
A: Mark Richard Shuttle-
worth

Shuttleworth; Richard St.
John Hopper; Richard St.

John Redmond

September 1973 ) is a South African en-
trepreneur who is the founder and CEO
of Canonical Ltd. , the company behind
the development of the Linux - based
Ubuntu operating system .

Table 10: Editing a model’s behavior by adding new information to the context. The Underlined generation is the answer with the
highest QA model confidence. The Bolded generation is what ConCoRD selects after NLI inference. Teal, bolded generations
indicate that ConCoRD selects a generation with higher token overlap F1, while Red, bolded generations indicate that ConCoRD

selects a worse generation.

Base model nCoRD
What coloris desk? {white, blue} {white, blue}
Is desk white? {no, yes} {no, yes}
Is desk yellow? {no, yes} {no, yes}
What color is meat? {black, brown} {black, brown}
Is meat brown? {no, yes} {no, yes}
Is meat blue? {yes, no} {yes, no}
Is there boy? {yes, no} {yes, no}
Is boy holding skateboard? {yes, no} {yes, no}
Who is holding skateboard? {man, boy} {man, boy}
Can you see a skateboard? {yes, no} {yes, no}

Figure 4: “Good” flip examples from the VQA experiments.
The green texts mark the correctly selected answers, while the
red texts indicate incorrectly selected answers.

Is there sheet?
Is sheet on bed?
What is on bed?
Is there bed?
Where is sheet?

Are there lights?

Are lights on buildings?
What are on buildings?
Do you see buildings?
Where are lights?

Is there cloud?
Is cloud in sky?
What is in sky?
Is there sky?
Where is cloud?

What size is train?
Is train long?
Is train short?

Base model

{yes, no}

{no, yes}
{nothing, blanket}
{yes, no}

{bed, floor}

{yes, no}

{yes, no}

{windows, lights}

{yes, no}

{background, buildings}

{yes, no}

{no, yes}
{clouds, snow}
{yes, no}

{sky, in sky}

{small, large}
{yes, no}
{yes, no}

ConCoRD

{yes, no}

{no, yes}
{nothing, blanket}
{yes, no}

{bed, floor}

{yes, no}

{yes, no}

{windows, lights}

{yes, no}

{background, buildings}

{yes, no}

{no, yes}
{clouds, snow}
{yes, no}

{sky, in sky}

{small, large}
{yes, no}
{yes, no}

Figure 5: “Bad” flip examples from the VQA experiments.
The green texts mark the correctly selected answers, while
the red texts indicate the incorrectly selected answers. The
bolded texts are the correct answers, if generated within the
top-2 predictions. From top to bottom, the first image is
an example of when the correct answer, "sheet," was not
contained in the predicted answers. The second image is
an example of when the conversion of QA pair to statement
did not occur as intended and the NLI failed to generate the
appropriate inferences that could be used to inform correction
of "background" to "buildings. The third image shows an
example of when an "incorrect" answer (sky) is effectively
the same as the "correct" answer (in sky)—only semantically
different. The fourth image shows an example of when the
model strongly believed in an incorrect answer and changed
another correct answer.
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Model F1 B A E.C.

0919 0.753 0.855
0.804 0.873

True
True

Macaw-Large
Macaw-3B 0.94

Table 11: Validation performance on the BeliefBank
calibration facts. Both models achieve best validation
performance with the RoOBERTa-Large ANLI model.

VQA Acc. B8 A E.C.
LXMERT 0.691 0.208 0.805 True
ViLT 0.787 0395 0.772 True

Table 12: Validation performance on VQA. Both models
achieve best validation performance with the RoBERTa-
Large MNLI model.

H.1.3 Information Injection with Natural
Questions

For this round of experiments, we lower the bounds
for 5 and A\ after some initial trials. The bounds
of § are [0,0.5] and the bounds of \ are [0, 0.6].
We run hyperopt for 200 trials (often taking ap-
proximately 2 to 3 hours on an NVIDIA GeForce
RTX 3090 GPU) for each of the three NLI mod-
els. Hyperopt optimizes for the highest token-
overlapping F1 score in this experiment.

We report the best validation performance of
each of the QA base models in Table 13.

Model F1 B A E.C.
T5-Small 0227 0.112 0.540 True
T5-Large 0.331 0.081 0.413 False

T5-3B 0353 0.072 0477 True

Table 13: Validation performance on NQ. All models
achieve best validation performance with the ALBERT
ANLI model.

H.2 Visualizing Hyperparameter Search

Figure 6 shows increases in exact-match accuracy
as they vary with choices of A, 5, for additional
choices of base model for a VQA task, with and
without entailment correction, complementing fig-
ure 3. Interestingly, choosing a different base
model does noticeably effect the optimum value
of 3; between figures 6b and 6¢ we see the near-
optimal region shift towards a value of (3 that gives
higher confidence in the base model where the base
model produces “better” answers. However, the
increase in accuracy is similar, suggesting that with
appropriate selection of 3, ConCoRD can offer sim-
ilar improvements over a range of choices of base
model.
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Figure 6: As in figure 3, we show changes in exact-match
validation accuracy as a function of confidence threshold A
and tradeoff parameter (3, with several choices of base model,
with and without an entailment correction, holding relation
model RoBERTa-Large ANLI constant.
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