
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 1677–1690
December 7-11, 2022 ©2022 Association for Computational Linguistics

Learning Label Modular Prompts for Text Classification in the Wild

Hailin Chen♣♠, Amrita Saha♠, Shafiq Joty♣♠, Steven C.H. HOI♠
♣ Nanyang Technological University, Singapore

♠ Salesforce Research
{hailin001, srjoty}@ntu.edu.sg

{amrita.saha, shoi}@salesforce.com

Abstract

Machine learning models usually assume i.i.d
data during training and testing, but data and
tasks in real world often change over time.
To emulate the transient nature of real world,
we propose a challenging but practical task:
text classification in-the-wild, which introduces
different non-stationary training/testing stages.
Decomposing a complex task into modular
components can enable robust generalisation
under such non-stationary environment. How-
ever, current modular approaches in NLP do
not take advantage of recent advances in pa-
rameter efficient tuning of pretrained language
models. To close this gap, we propose MOD-
ULARPROMPT, a label-modular prompt tuning
framework for text classification tasks. In MOD-
ULARPROMPT, the input prompt consists of a
sequence of soft label prompts, each encod-
ing modular knowledge related to the corre-
sponding class label. In two of most formidable
settings, MODULARPROMPT outperforms rele-
vant baselines by a large margin demonstrating
strong generalisation ability. We also conduct
comprehensive analysis to validate whether the
learned prompts satisfy properties of a modular
representation.1

1 Introduction

While NLP research has received a significant
boost in performance by employing large-scale pre-
trained language models (PLMs), finetuning an
entire dedicated model for each task is not always
practical or even feasible, especially as model size
continues to grow. To alleviate this, recently there
has been increased interest in parameter-efficient
methods such as Adapter (Houlsby et al., 2019)
and Prompt-based tuning methods (Lester et al.,
2021; Qin and Eisner, 2021; Liu et al., 2021; Li
and Liang, 2021). When training on a downstream
task, these methods keep the PLM frozen and only

1Our Code is available at https://github.com/
salesforce/ModularPrompt

Figure 1: Example of MODULARPROMPT for stage-fused
NER. Top 2 blocks: training stages covering disjoint sets of
entity types (e.g., event, person). Bottom block: fused test
stage covering entity types of person and organization from
two training stages. Coloured boxes denote label prompts.
Underlining and italic blue denotes named entity and its type.

update a small set of parameters that are added to
the network. Among these methods, PROMPTTUN-

ING (Lester et al., 2021) proposes tunable prompts
– a sequence of learnable soft tokens, and show
impressive results, even competitive to full-model
finetuning with a large PLM.

While these prompt-based methods have proven
quite effective on popular benchmarks, these stan-
dard tasks typically assume only independently and
identically distributed (i.i.d) data during training
and testing. However, practical cognitive tasks in
the real world are usually more complex involving
changing contexts or non-stationary environments.
Talking about what is next for NLP, Kathleen McK-
eown in a recent interview (source) said: “Most
models are static. But the world changes every
minute, every second. Dealing with a dynamic
world is a new area that’s up and coming.”

Our work in this paper particularly concerns text
classification settings where a model is trained on

1677

https://github.com/salesforce/ModularPrompt
https://github.com/salesforce/ModularPrompt
https://www.amazon.science/blog/acl-what-comes-next-for-natural-language-processing

sequence of tasks and evaluated on an arbitrary
subset of seen labels of interest. We formalize this
as a novel text classification in-the-wild task (de-
fined in §3), which emulates the transient learning
environment of real world, e.g., for a service re-
quiring classification, the label set might gradually
change over time to include new labels or remove
obsolete ones. Such scenarios typically result in a
sequence of non-stationary low-resource training
and evaluations over different label sets (e.g., train
on {chemistry, physics} and {basketball, football}
in succession and then test on {physics, football}).

This requires handling non-stationary data dis-
tribution which humans are quite adept at, partly
because we can decompose a complex task in a
modular fashion (Berwick et al., 2013). For exam-
ple, when learning to classify objects, we acquire
modular knowledge exclusive to each class. This
allows us to robustly classify irrespective of any
label space manipulations such as label omission
or learning over new label spaces. This notion
of modularity at the level of each class label is
what we call label modularity and is a desirable
quality for NLP models to generalize to practical
non-stationary classification settings.

Contemporary modular model designs for com-
plex NLP tasks typically use a routing network or
programmer (Cases et al., 2019; Rosenbaum et al.,
2019; Khot et al., 2021; Corona et al., 2021; Jiang
and Bansal, 2019; Liu et al., 2019; Hu et al., 2018;
Gupta et al., 2020; Andreas et al., 2016) which
learns a meaningful decomposition of the task into
sub-tasks and executes it by applying a chain of
specialised modules designed for each sub-task.
For classification tasks, this can entail learning a
specialized module for each label in the target label-
space. While there has been limited research on
utilizing modular architectures for PLMs (Andreas
et al., 2016; Chen et al., 2020), the main research
gap that we explore in this work is that of a mod-
ular design of parameter efficient tuning of large
PLMs, in particular, PROMPTTUNING.

Although PROMPTTUNING can be considered mod-
ular at task level in that it learns soft-prompts for
each task to support multitasking, it is not able to
learn modular decomposition within a particular
task. For non-modular designs like PROMPTTUNING

or model-finetuning, text classification in-the-wild
is challenging to handle, as it requires combining
partial information from different label spaces. In
contrast, a label-modular approach should learn ex-

clusive knowledge for each label and generalise to
any subset of the label set. We thus postulate two
main objectives of a label-modular model:

Objective 1. Separable Label Representation:
Each class label should have its own representation
which compactly encodes the information from the
data belonging to that label.

Objective 2. Prediction over Controllable Label
Space: Models should perform robustly over any
subset of the learnt label space during inference.

To meet these objectives, we propose a modu-
lar design of Prompt Tuning – Label-modular
Prompt Tuning (MODULARPROMPT). It decomposes
the prompt sequence into label-modular compo-
nents called label prompts, each encoding specific
knowledge corresponding to a class label. Thus
in each forward pass, we can select desired label
prompts to construct the input prompt, based on the
target label-set. To ensure that the learned knowl-
edge is encoded in a modular fashion during train-
ing, we introduce a novel subset-invariant loss over
dynamic label-sets.

To evaluate generalizability of MODULARPROMPT

we construct some practical scenarios of text classi-
fication in-the-wild. We train in multiple stages
over non-overlapping label spaces and evaluate
the model on label-sets that (i) correspond to each
training stage (stage-specific), (ii) is accumulated
over all learned labels (stage-agnostic), and (iii)
is comprised of labels across multiple training
stages (stage-fused). We show an example of MODU-

LARPROMPT on stage-fused NER setting in Figure 1.
The stage-agnostic and stage-fused settings are

the most challenging scenarios for typical fine-
tuned or prompt-tuned models, and specifically on
those settings we find that MODULARPROMPT outper-
forms all relevant baselines by a significant mar-
gin. This alludes towards its ability to learn robust
prompt representations that is generalizable to dif-
ferent non-stationary learning environments.

We further empirically justify that MODU-

LARPROMPT indeed showcases modular properties
by analyzing its behavior when either the ground
truth or other random labels are removed from the
input or the order of label prompts is permuted.

2 Related Work

We now review methods from the literature that are
relevant to ours from different perspectives. First,
many parameter efficient tuning methods have been
proposed such as Adapter (Houlsby et al., 2019),

1678

PROMPTTUNING (Lester et al., 2021), PREFIXTUNING

(Li and Liang, 2021), BitFit (Zaken et al., 2022),
LoRA (Hu et al., 2021) and COMPACTER (Ma-
habadi et al., 2021a). They either finetune a param-
eter subset or introduce new layers or embeddings.
Transfer learning over prompts (Vu et al., 2022) and
Adapters (Pfeiffer et al., 2021) and multi-tasking
over the latter (Mahabadi et al., 2021b) have also
been explored, but they are not comparable to ours
due to difference in task/problem settings.

Second, continual learning (CL) methods are rel-
evant as they also have sequential training stages.
Architecture based CL methods adjust model archi-
tecture for each task (Chen et al., 2016; Rusu et al.,
2016; Mallya et al., 2018), but require task identi-
ties for inference. Regularization based CL meth-
ods restrain updating parameters critical to previous
tasks (Kirkpatrick et al., 2017; Zenke et al., 2017;
Aljundi et al., 2018). Memory based CL methods
retain key examples from prior tasks (Lopez-Paz
and Ranzato, 2017; Chaudhry et al., 2019; de Mas-
son d’Autume et al., 2019; Zhu et al., 2022) while
Memory generator models learn to generate and
use pseudo-data from prior tasks (Sun et al., 2020;
Qin and Joty, 2021). These methods are not com-
parable to ours as we do not use any memory or
pseudo memory in our sequential training.

Third, modular networks have been shown to
perform well on out-of-domain data (Kirsch et al.,
2018; Ruder et al., 2019; Alet et al., 2018) and miti-
gate forgetting in continual learning (Ostapenko
et al., 2021). Apart from routing network ap-
proaches introduced in §1, mixture-of-experts
(MoE) selects a soft subset of modules based
on model input (Shazeer et al., 2017; Fedus
et al., 2021; Goyal et al., 2021). Similar to ours,
Kudugunta et al. (2021); Rajendran et al. (2017);
Ponti et al. (2021); Ostapenko et al. (2021) con-
sider task level routing and support new tasks by
combining learned modules. By contrast, MODU-

LARPROMPT utilises parameter efficient finetuning
of large PLMs and support low resource settings.

3 Methodology

In this section, we first formally define the prob-
lem and subsequently present our MODULARPROMPT

model, introduce subset invariant loss and explain
the framework under text classification in-the-wild.

3.1 Problem Definition

Single stage text classification Assume a sin-
gle text classification domain (or dataset) D. Let
(X,Y) ∼ D be a sample, where X = {xt}Lt=1

represents a text input sequence of length L and
Y = {yt}Mt=1 represents the corresponding classifi-
cation label name of length M (in tokens). Let Ω
denote the set of all possible class labels of inter-
est, for which we have ∀(X,Y) ∼ D, cls(Y) ⊆ Ω.
Note that cls(Y) is a mapping which returns the
class label(s) in Y . In case of single class classi-
fication, cls(Y) returns {Y }. In case of sequence
labelling which is token-level classification, cls(Y)
returns the set of all unique target tags in Y .

Text classification in-the-wild Assume a se-
quence of n text classification stages with the cor-
responding training datasets Dtr = {Dtr

1 , ...,Dtr
n }.

Each stage represents a different task in tempo-
ral dimension, with (Xk, Yk) ∼ Dtr

k denoting a
sample at the k-th training stage and Ωk denoting
the set of all possible class labels for Dtr

k . Simi-
larly, the testing could consist of m such datasets
Dts = (Dts

1 , ...,Dts
m) with Ωts

j denoting the set of
possible class labels for Dts

j . For classification in-
the-wild, we examine three challenging yet very
practical settings. First, when m = 1 and Ωts

1 =
∪nk=1{Ωtr

k }, we have one test dataset covering all
seen labels. We refer it as stage-agnostic testing
as the test label can come from any of the training
stages (or tasks). Second, when m = n and Ωts

j =
Ωtr
j , ∀j = {1, ..., n}, we have one test dataset cor-

responding to each training stage with the same
label set. We denote this setting as stage-specific
testing as each test set evaluates the model’s perfor-
mance on a particular task in which it was trained.
Finally, a more challenging setting where m > 1
and Ωts

j /∈ {Ωtr
1 , ...,Ω

tr
n },∀j = {1, ...,m}, rather

Ωts
j ∈ P(∪nk=1{Ωtr

k }) − ∪ni=1{P(Ωtr
i)}, where

P(S) denotes the power-set of a given set S. That
is, the label set of a test stage does not correspond to
any one training stage, but is composed of partial la-
bel sets from multiple training stages (or tasks). We
refer it as stage-fused testing. Note that the stage-
agnostic and stage-specific scenarios are closely
related to continual learning (Thrun, 1996), though
the latter considers access to task-id instead of intra-
task information (i.e., task label set).

3.2 Soft Prompt Tuning

Let X = {x1, ..., xL} be an input text sequence,
where xt is the t-th token, and M be a pretrained

1679

Figure 2: Left: PROMPTTUNING, where consecutive soft tokens are concatenated with the input to a frozen PLM.
Right: Our proposed MODULARPROMPT, where multiple label prompts are concatenated together with the input to a
frozen PLM. Each label prompt consists of a label name and consecutive sequence of soft tokens.

language model. The input text is mapped to a
sequence of embeddings H = {h1, ...,hL} with
ht ∈ Rd. A soft prompt is a sequence of N tunable
tokens T = {p1, ...,pN} with pi ∈ Rd, that is con-
catenated with the text embedding as the final input
to M : H̄ = {T ⊕H} = {p1, ...,pN ,h1, ...,hL}.
The model prediction is defined as P (Y |H̄;M) =
P (Y | T , X;M). During training, M is kept frozen
and only T is updated.

3.3 Label Modular Prompt Model

We visualise the architecture of PROMPTTUNING

(Lester et al., 2021) and our proposed MODU-

LARPROMPT in Figure 2. In contrast to PROMPTTUN-

ING, MODULARPROMPT’s prompt consists of a se-
quence of label prompts, where each label prompt
contains the corresponding label name and a se-
quence of tunable soft tokens similar to soft prompt.
Formally, we denote lk = ek ⊕ {pk

1, ...,p
k
m} as la-

bel prompt for label k, where ek is the embedding
of label k’s text or sequence of token-embeddings
for multi-token labels, ⊕ denotes concatenation
and m is the number of tunable tokens per label
prompt. The final input prompt is T = ⊕k∈Slk
with S being the set of labels of interest.

Prompt formulation The key mechanism of
MODULARPROMPT is prompt formulation {R,S} →
T , where R denotes the learned representation
space of all labels prompts. In PROMPTTUNING, vari-
ables S and R do not exist and the model training
tunes T directly. In MODULARPROMPT, given S as a
set of class labels of interest, we select the corre-
sponding label prompts representation from R and
concatenate these to form the final input prompt
T . The training loss is back-propagated through
Y → T → R to learn the soft label prompts.

Subset invariant loss The prompt formulation
{R,S} → T aims to achieve Objective 2: pre-
diction over controllable label space (§1). In sin-
gle domain setting, Ωtr is the set of all possible
class labels during training as defined by Section
3.1. However fixing S to a constant Ωtr throughout
training will make the model susceptible to data dis-
crepancy between train and inference as Ωts ̸= Ωtr.
Thus to ensure Objective 2, we propose to vary S
during training. We first uniformly sample the size
of S, |S| from {1, . . . , (|Ωtr| − 1)} and then ran-
domly choose |S| labels from Ωtr to construct S.
Such sub-sampling of Ωtr encourages a fair explo-
ration of different lengths of prompt sequences as
input during training, thus enabling representations
to be robust to a dynamic Ωts at inference. For
each training instance, with probability p we fix
S = Ωtr and vary S as above with (1− p) chance.
We refer such sampling process as S ∼ Ŝ. The
subset invariant loss is then defined as:

Linv
R (D) = E(X,Y)∼D

S∼Ŝ

[
−1cls(Y)⊆S logP (Y |X,R, S;M)

]

(1)

where 1 is the Indicator function; 1cls(Y)⊆S = 1
if cls(Y) ⊆ S, otherwise 0. According to Objec-
tive 1, we expect our model to make predictions
grounded by the relevant label prompts. When S
does not contain ground truth class label(s) in Y ,
the model should not be able to predict Y as output.
Thus we set the loss to be zero when cls(Y) ⊈ S
to avoid encouraging ungrounded predictions.

3.4 Classification in-the-wild with
MODULARPROMPT

So far, we have introduced MODULARPROMPT ś func-
tionality under a single domain classification set-
ting. To verify our Objective 2, we wish to exam-
ine it under text classification in-the-wild defined in

1680

Algorithm 1 Text Classification in-the-wild with
MODULARPROMPT.
Require: Training datasets Dtr = {Dtr

1 , ...,Dtr
n }, test-

ing datasets Dts = (Dts
1 , ...,Dts

m), pretrained language
model M

1: for Dtr
i in Dtr do ▷ Training

2: Ωtr ← Ωtr
i

3: INITIALIZE RΩtr
i

from RΩtr
<i

▷ Transfer
4: for step = 1, ..., iter do
5: UPDATE RΩtr

i
with SGD on Linv

R (Dtr
i)

6: end for
7: end for
8: for Dts

i in Dts do ▷ Testing
9: EVALUATE P (·|X,S = Ωts

i , R;M) on X ∼ Dts
i

10: end for

§3.1. Given training datasets Dtr = {Dtr
1 , ...,Dtr

n },
the model is trained on each dataset Dtr

i sequen-
tially, and then evaluated on three classification in-
the-wild testing settings. The pseudocode of MODU-

LARPROMPT under the continual learning setting is
given in Algorithm 1. Note that RΩtr

i
in step 3 de-

notes label prompt representation of labels in Ωtr
i ,

i.e., RΩtr
i
:= {lk ∈ R|k ∈ Ωtr

i } and RΩtr
<i

is simi-
larly defined as RΩtr

<i
:= {lm ∈ R|m ∈ ∪

t<i
Ωtr
t }.

Label prompt transfer In step 3, for learning the
label prompt representation RΩtr

i
at any training

stage i, we first aim to transfer the label-modular
knowledge, RΩtr

<i
learned over the previous train-

ing stages through prompt initialization. This is
a unique learning characteristic that is facilitated
by our label-modular architecture and allows the
model to exploit semantic relatedness between la-
bels across training stages when initializing the
label prompt representation. Intuitively, if ‘bistro’
∈ Ωtr

<i and ‘restaurant’ ∈ Ωtr
i , then initializing the

label prompt representation of ‘restaurant’ with the
knowledge encoded in the learned label prompt
representation of ‘bistro’ should be helpful to the
model. To compute the similarity between labels
lj and lk with j ∈ Ωtr

i and k ∈ Ωtr
<i, we use per-

token average cosine similarity sim(ej , ek) based
on the embeddings of the label texts. For each
label j ∈ Ωtr

i , we select the top-K most simi-
lar labels Ωtr

top-K(j) ⊂ Ωtr
<i. We then initialize lj

by averaging the top-K similar label prompt rep-
resentations, weighted by their normalized sim-
ilarity score: lj ←

∑
k∈Ωtr

top-K(j)
αklk, where

αk = sim(ej , ek)/
∑

m∈Ωtr
top-K(j)

sim(ej , em).
This method is similar in spirit to (Vu et al., 2022),
which shows good transfer for task level prompts
with training overheads, while we transfer at a finer-

grained level over label prompts with no overheads.

4 Experiments

In this section, we first introduce datasets used
and data construction process (§4.1) followed by
relevant baselines (§4.2), evaluation methods (§4.3)
and implementation details (§4.4). Through our
experiments, we target three research questions:
1. Can MODULARPROMPT consolidate knowledge

over multi-stage training? → answered in §4.5
with stage-agnostic setting

2. Can MODULARPROMPT adapt to dynamic label
space at inference? → answered in §4.6 with
stage-fused setting

3. How competitive is MODULARPROMPT in stage-
specific setting? → answered in §4.7

Additionally, we perform ablations (§4.8) and quan-
titative and qualitative analysis (§4.9-§4.10) to ver-
ify modular properties of MODULARPROMPT.

4.1 Tasks and Datasets
We conduct experiments on three types of NLP
tasks: News Domain Classification on Huffpost-
News (Misra, 2018), Name Entity Recognition
(NER) on fewNERD (Ding et al., 2021) and Rela-
tion Extraction (RE) on FewRel (Han et al., 2018).
We formulate all tasks as a text-to-text problem, as
defined in §3.1. For News Domain Classification
and NER, we construct target text following Qin
and Joty (2021). For RE, we concatenate the origi-
nal text and entities with a seperator ’|’ as the input
sequence, and use the relation type as the target.
(Example data can be found at Appendix A)

For HuffpostNews, we subsample 100 shots per
class for training and validation and split it into
5 stages of disjoint labels. For FewNERD and
FewRel, we subsample 50 shots for training and
validation and split into 4 and 5 stages, respec-
tively. For testing, we subsample 200, 50, and
50 shots per class for HuffpostNews, FewNERD
and FewRel, respectively. The total number of
labels for {HuffpostNews,FewNERD,FewRel} is
{41,64,80} respectively, and resulting label size per
stage is {8-9,16,16} respectively.

For stage-specific testing, we follow the stages
defined for training and construct a correspond-
ing test data for each stage. For stage-agnostic
testing, we combine stage-specific test data for cur-
rent stage and all previously seen stages to con-
struct the test data. For stage-fused testing, we
construct label-sets for each fused stage such that

1681

it is not a subset of any single prior training stage,
but rather contains labels from ‘all’ prior training
stages. We construct {5,4,5} fused stages for {Huff-
postNews,FewNERD,FewRel}. We conduct 5 ran-
domised trials with different data sampling and
experiment seed for all of the above settings.

4.2 Baselines

We use T5-large (Raffel et al., 2020) as the back-
bone PLM for all methods, and consider the follow-
ing baselines to compare with our MODULARPROMPT:

• MODELTUNING (Finetune), which tunes all param-
eters of the backbone PLM.

• (i) PROMPTTUNING (PT) from §3.2, (ii) PTCL -
An extension of PT to continual learning (CL)
setting, which trains separate PT models for each
stage and concatenates the learned soft-prompts
during inference, based on the test label-set.

• Adapter, a parameter efficient tuning alternative
introduced in (Houlsby et al., 2019), which in-
serts light adapter layers into the backbone PLM
and only tune them.

As text classification in-the-wild overlaps with con-
tinual learning, we also compare with versions of
the above baselines that use architecture-agnostic
methods and settings relevant to the latter.

• Online regularization based methods: (i) A scal-
able online version of EWC (Kirkpatrick et al.,
2017) proposed in (Schwarz et al., 2018), and
(ii) Online MAS (Aljundi et al., 2018). These
methods measure each parameter’s importance to
previous tasks by fisher information, and restrict
updating previously important parameters when
learning a new task, to mitigate catastrophic for-
getting.

• Multitask model, which involves training on all
stages simultaneously, not sequentially. This is
infact an oracle method for stage-agnostic test-
ing and can be considered as an upper bound of
memory-based methods in continual learning.

4.3 Evaluation Methods

For all the three NLP tasks, we consider an exact
match as a correct prediction and report accuracy
for News Classification and RE, and compute F1-
score over the BIO format for the NER task. By
default, we do not apply any other post-processing
or verbalizer, though these are orthogonal methods
that can be separately used to enhance any of the
discussed models. In the stage-fused setting, we

apply constrained decoding similar to (Cao et al.,
2021) to selected baselines, marked by special indi-
cator * (e.g., Finetune∗MAS). For MODULARPROMPT,
we use all seen label prompts for stage-agnostic
testing and specific set of label prompts for stage-
specific and stage-fused testing. Since other base-
lines do not have label-level modularity, for stage-
agnostic and stage-fused testing, we use the check-
point after the final stage and for stage-specific test-
ing we take their checkpoints after each training
stage. We show average performance in the main
paper and relegate detailed results to Appendix C.

4.4 Implementation Details
We set the learning rate to 0.5 for PROMPTTUNING

and MODULARPROMPT and 5e-5 for MODELTUNING

and Adapter, using Adafactor (Shazeer and Stern,
2018) optimizer. We adopt implementation of
Adapter from OpenDelta (Hu, 2022) and use the de-
fault bottleneck dimension of 24. For online EWC
and MAS, we report best results obtained over dif-
ferent regularization constant. For all methods, we
set maximum training epochs to 256 for Fuffpost-
News and FewNERD, and to 512 for FewRel. For
MODULARPROMPT, the number of soft tokens per la-
bel prompt is set to 10, the selection probability p is
set to 50% and number of label transfer candidates
K in §3.4 is set to 3.

4.5 Results on Stage-agnostic Setting
In Table 1, we show the stage-agnostic testing
results. We observe that across all three tasks,
MODULARPROMPT significantly outperforms all other
baselines by a large margin. This empirically jus-
tifies that MODULARPROMPT is indeed able to dy-
namically combine the label-specific knowledge
learned across different training stages in order
to infer over the unseen combined label-space.
Amongst the baselines, MODELTUNING performs rel-
atively better, while the limited trainable parame-
ters make the parameter efficient models more sus-
ceptible to catastrophic forgetting. For CL methods,
MAS improves MODELTUNING and PROMPTTUNING

by 4% and 8% on average respectively, but fails
on Adapter. EWC is less effective in addressing
forgetting across all baselines.

Also note that the PTCL extension is able to im-
prove by 10-20% over vanila PT. This shows that
soft prompts, behaving like language tokens, have
a compositional nature and can be concatenated to
support multi-tasking. MODULARPROMPT, in addi-
tion to exploiting this implicit language prior, also

1682

Methods Size News NER RE

Finetunemultitask 770M 60.6±5.0 64.5±0.2 87.9±0.6

Finetune 770M 23.0±0.6 25.0±2.7 40.8±2.2

FinetuneEWC 770M 22.5±1.2 26.6±2.8 45.4±3.2

FinetuneMAS 770M 29.2±2.9 25.4±2.9 46.2±1.8

Adapter 4.8M 19.3±0.3 21.2±2.0 28.6±1.9

AdapterEWC 4.8M 18.6±1.0 20.5±1.3 27.8±1.2

AdapterMAS 4.8M 20.1±1.5 21.1±2.0 28.3±0.5

PT 0.13M 16.1±0.3 18.8±0.1 19.6±0.1

PTEWC 0.13M 16.5±0.5 19.0±0.5 20.1±0.8

PTMAS 0.13M 23.8±5.9 29.3±4.6 25.1±4.9

PTCL 0.13M 28.1±2.9 30.9±5.4 43.1±4.9

ModularPT 0.13M 43.2±0.6 44.8±4.9 61.8±1.8

Table 1: Stage-agnostic performance on News Classifi-
cation, NER and Relation Extraction (RE). Size denotes
average number of tunable parameters per training stage

explicitly imposes subset-invariant loss to adapt
to dynamic label spaces, further boosting stage-
agnostic performance by 14%-18% over PTCL.

4.6 Results on Stage-fused Setting
We present results on our novel stage-fused setting
in Table 2. We observe that none of the baselines
are capable of handling this setting, as is evident
from their abysmal performance across all testing
stages. In absence of any label-modular represen-
tation, they are unable to utilize any information
about the desired label-space. On the other hand,
MODULARPROMPT not only outperforms all baselines
by an average margin of 37.5%, it also achieves 4%-
14% better performance than the oracle multi-task
MODELTUNING on News Classification and NER.

We select the top performing baselines in this
setting and apply constrained decoding to them
(marked with *), which improves their performance
by 20%-30% on News and RE, 2%-4% on NER.
However, MODULARPROMPT still outperforms these
baselines by 14%-27%. This significant improve-
ment is evident of the fact that MODULARPROMPT,
by learning label-modular representations, can ef-
fectively combine partial knowledge from different
training stages and condition the PLM on any target
set of label prompts. This allows it to seamlessly
adapt to dynamic unseen label spaces, without ap-
plying any post-processing or verbalizer.

Note that while PTCL is able to combine knowl-
edge from multiple training stages to support stage-
agnostic testing, it fails to extract and consolidate
specific knowledge corresponding to only the target
label-set, across different stages.

Methods Size News NER RE

Finetunemultitask 770M 60.7±0.6 57.0±0.0 86.0±0.9

Finetune 770M 22.4±0.5 24.9±2.1 40.7±2.1

FinetuneEWC 770M 22.6±1.0 25.1±1.7 45.2±3.3

FinetuneMAS 770M 28.8±3.3 23.5±1.3 46.9±1.9

Adapter 4.8M 18.8±0.3 21.8±1.7 28.2±1.8

AdapterEWC 4.8M 18.1±1.0 21.7±1.5 27.4±1.2

AdapterMAS 4.8M 19.6±1.4 21.4±2.0 27.8±0.6

PT 0.13M 15.7±0.2 19.3±0.5 19.6±0.2

PTEWC 0.13M 16.1±0.5 20.0±1.0 20.0±0.8

PTMAS 0.13M 23.7±6.2 25.3±3.8 24.9±5.1

PTCL 0.13M 27.5±2.8 30.4±5.1 43.3±5.2

Finetune∗MAS 770M 52.8±2.2 25.8±1.7 68.1±1.3

PT∗
CL 0.13M 57.5±5.2 34.3±2.4 65.3±2.7

ModularPT 0.13M 74.8±1.7 61.6±2.2 82.4±0.8

Table 2: Stage-fused performance on News Classifica-
tion, NER and relation extraction (RE)

4.7 Results on Stage-specific Setting

While MODULARPROMPT has proved to be particu-
larly successful in handling the challenging non-
stationary settings of stage-agnostic and stage-
fused evaluations, we now want to see how com-
petitive it is under stage-specific settings. From the
results in Table 3, we see that the average stage-
specific performance of MODULARPROMPT is com-
parable to vanila PROMPTTUNING on the three tasks.
Note that while MAS regularization boosts stage-
agnostic performance somewhat for MODELTUNING

and PROMPTTUNING, it infact degrades their stage-
specific performance by 10%-40%. Similarly ap-
plying EWC regularization fails to improve over
the vanila models in this setting while also proving
less effective on stage-agnostic evaluation. This
shows the lack of robustness of these techniques
across the different non-stationary settings. But
MODULARPROMPT is able to achieve state-of-the-art
in stage-agnostic and stage-fused settings while
remaining comparable to PROMPTTUNING in stage-
specific evaluation. Besides, (Lester et al., 2021)
showed that the performance gap between PROMPT-

TUNING and MODELTUNING will gradually close as
the size of backbone PLMs scales up. We posit that
MODULARPROMPT, being an extension of PROMPT-

TUNING can similarly benefit from scaling-up of the
PLM, but we leave this as future work owing to
resource limitations.

1683

Methods Size News NER RE

Finetunemultitask 770M 60.6±5.0 64.5±0.2 87.9±0.6

Finetune 770M 83.1±0.4 77.9±0.4 94.5±0.7

FinetuneEWC 770M 82.5±0.4 77.3±0.4 94.5±0.3

FinetuneMAS 770M 59.7±9.8 60.4±3.8 74.0±6.5

Adapter 4.8M 81.4±0.5 77.4±0.4 94.6±0.5

AdapterEWC 4.8M 81.5±0.4 77.3±0.4 94.8±0.8

AdapterMAS 4.8M 81.0±0.2 77.2±0.5 94.9±0.6

PT 0.13M 79.7±0.3 75.4±0.2 94.3±0.9

PTEWC 0.13M 79.9±0.6 74.8±0.6 94.5±0.6

PTMAS 0.13M 49.6±4.8 44.4±2.3 84.3±3.8

ModularPT 0.13M 80.4±0.6 74.5±0.6 93.6±0.4

Table 3: Stage-specific performance on News Classifi-
cation, NER and RE (averaged over stages)

Methods Stage-agnostic Stage-fused

News NER RE News NER RE

MODULARPROMPT 43.2±0.6 44.8±4.9 61.8±1.8 74.8±1.7 61.6±2.2 82.4±0.8

w/o transfer 35.4±2.7 43.0±3.6 54.8±2.7 64.9±1.7 57.4±2.3 77.5±1.2

w/o subset-inv 41.1±2.4 40.0±4.6 58.2±2.6 58.5±3.0 44.1±2.9 47.7±4.1

Table 4: Ablation study of MODULARPROMPT: average
performance on stage-agnostic and stage-fused settings

Methods News NER RE

ModularPT 74.8±1.7 61.6±2.2 82.4±0.8

drop ground-truth label prompt 1.5±0.5 4.1±0.8 0.5±0.4

drop one random label prompt 74.9±1.4 61.8±2.1 83.2±0.6

permute label prompt order 72.4±1.3 61.5±2.3 82.2±0.9

Table 5: Mean Stage-fused performance for different
inference schemes

4.8 Ablation Study

We now analyze the contribution of different com-
ponents of MODULARPROMPT towards its SoTA per-
formance. From the results in Table 4, we see that
in stage-agnostic setting, both label prompt transfer
and subset invariant loss provide a boost, though
the role of the former is seemingly more signifi-
cant. On the contrary, removing subset invariant
loss has a more debilitating effect on stage-fused
performance. This evinces that subset invariant
loss is indeed critical in learning label modular rep-
resentations. This is essential to the stage-fused
evaluation which needs to extract and dynamically
re-compose label-specific knowledge.

4.9 Quantitative Analysis

Apart from achieving SoTA, does MODULARPROMPT

possess the desirable characteristics of a modu-
lar model? According to Algorithm 1, MODU-

LARPROMPT set S = Ωts
i during inference. We ex-

Figure 3: Successful (blue) and failure (red) cases of
MODULARPROMPT predictions for stage-fused NER

periment with different strategies of input prompt
construction including dropping label prompt(s) ei-
ther corresponding to ground truth label(s) or one
other random label, and permuting the default order
of label prompts; see Table 5 for the results.

Indeed we observe that dropping the ground
truth label prompt during inference degrades the
mean performance by 57%-82% while dropping
any other random label prompt boosts performance
slightly. This strongly demonstrates the label
grounding property of MODULARPROMPT, i.e. the
knowledge of a class label is exclusively embedded
in its corresponding label prompt. MODULARPROMPT

also shows low sensitivity to the order of label
prompts during inference - a yet another favourable
property of label modular models

4.10 Qualitative Analysis
Revisiting Figure 1 presented in §1, we observe that
MODULARPROMPT is able to predict correctly on a
testing regime that is unseen during training, by ex-
tracting and consolidating label specific knowledge
from multiple training stages. More example pre-
dictions are shown in Figure 3 (and Appendix B),
which indicate that MODULARPROMPT is able to ex-
ploit in-context learning over label-prompts to gen-
eralize to unseen label-combinations during infer-
ence. For example, MODULARPROMPT tags “Gilbert”
as politician as he was “a delegate to” a government.
In the same spirit, MODULARPROMPT wrongly tags
“Bert Bell” and “Rozelle” as athletes (true label be-
ing person_other) because they are associated with
the sports league “NFL”. Such qualitative findings
demonstrate MODULARPROMPT’s capabilities to learn
label modular representations and integrate them
dynamically during inference.

5 Conclusion

In this paper, we have proposed MODULARPROMPT,
a novel label modular prompt tuning framework

1684

for text classification in-the-wild. Extensive ex-
periments show that MODULARPROMPT is able to
consolidate knowledge learned during sequential
training stages for stage-agnostic testing and ex-
tract and recompose knowledge for stage-fused test-
ing, while maintaining competitive performance in
stage-specific settings. We have also conduct anal-
ysis to show that MODULARPROMPT has desirable
modular properties of label grounding, low order
sensitivity and in-context learning. Being the first
work on modular parameter efficient tuning, we
hope for it to spur more research in this area in
future towards solving a wider range of tasks under
more general non-stationary settings.

Limitations

In this section, we discuss limitations and potential
future work towards extending MODULARPROMPT to
a more generalised method for wider applicability.

On Scalability In MODULARPROMPT, the input
prompt T grows in proportion to |S|, the size of
label set of interest. This limits MODULARPROMPT

from supporting huge label set (e.g., thousands
of labels) as transformers can only condition on
a bounded-length context. With long range trans-
formers like Longformer (Beltagy et al., 2020),
Performer (Choromanski et al., 2021) and LongT5
(Guo et al., 2021) coming into vogue, this issue
is somewhat mitigated. Regardless of that, one
potential solution is to formulate a hierarchical ver-
sion of MODULARPROMPT, which is similar in spirit
to hierarchical softmax (Morin and Bengio, 2005).
Hierarchical MODULARPROMPT takes multiple steps
for prediction, with each step to predict labels in a
specific hierarchy level.

Another potential solution is to treat all label
prompts as memory units from which the model
learns to select relevant ones for a given data in-
stance, in the spirit of (Wu et al., 2022).

On generation tasks As MODULARPROMPT shows
SoTA performance and good modular characteris-
tics for text classification in-the-wild, it is appealing
to extend it to other tasks like Question Answering
(QA), Machine Reading Comprehension (MRC)
and Summarization. However, it is non-trivial for
MODULARPROMPT to incorporate these tasks as their
target texts are unstructured without clear class la-
bels. One potential solution is to instead consider
attributes or properties of target texts, which are
also conditioning factors (e.g., formality, concise-

ness, topics, aspects, sentiment for summarization).
With such definitions, it will be interesting to check
if MODULARPROMPT framework can achieve good
generalisation and conditional generation on text
generation in-the-wild.

References
Ferran Alet, Tomás Lozano-Pérez, and Leslie Pack Kael-

bling. 2018. Modular meta-learning. In CoRL, vol-
ume 87 of Proceedings of Machine Learning Re-
search, pages 856–868. PMLR.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-
seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 139–154.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In CVPR,
pages 39–48. IEEE Computer Society.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

RC Berwick, AD Friederici, N Chomsky, and JJ Bolhuis.
2013. Evolution, brain, and the nature of language.
Trends Cogn Sci., 17(2).

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In ICLR. OpenReview.net.

Ignacio Cases, Clemens Rosenbaum, Matthew Riemer,
Atticus Geiger, Tim Klinger, Alex Tamkin, Olivia Li,
Sandhini Agarwal, Joshua D. Greene, Dan Jurafsky,
Christopher Potts, and Lauri Karttunen. 2019. Recur-
sive routing networks: Learning to compose modules
for language understanding. In NAACL-HLT (1),
pages 3631–3648. Association for Computational
Linguistics.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with A-GEM. In ICLR (Poster).
OpenReview.net.

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens.
2016. Net2net: Accelerating learning via knowledge
transfer. In ICLR.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou,
Dawn Song, and Quoc V. Le. 2020. Neural symbolic
reader: Scalable integration of distributed and sym-
bolic representations for reading comprehension. In
ICLR. OpenReview.net.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamás
Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz

1685

https://pubmed.ncbi.nlm.nih.gov/23313359/

Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J. Colwell, and Adrian Weller. 2021. Re-
thinking attention with performers. In ICLR. Open-
Review.net.

Rodolfo Corona, Daniel Fried, Coline Devin, Dan Klein,
and Trevor Darrell. 2021. Modular networks for
compositional instruction following. In NAACL-HLT,
pages 1033–1040. Association for Computational
Linguistics.

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In NeurIPS,
pages 13122–13131.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-nerd: A few-shot named entity recog-
nition dataset. In ACL/IJCNLP (1), pages 3198–3213.
Association for Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. CoRR,
abs/2101.03961.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Sha-
gun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. 2021. Recurrent independent
mechanisms. In ICLR. OpenReview.net.

Mandy Guo, Joshua Ainslie, David C. Uthus, Santi-
ago Ontañón, Jianmo Ni, Yun-Hsuan Sung, and Yin-
fei Yang. 2021. Longt5: Efficient text-to-text trans-
former for long sequences. CoRR, abs/2112.07916.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2020. Neural module networks for
reasoning over text. In ICLR. OpenReview.net.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A
large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In EMNLP,
pages 4803–4809. Association for Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. CoRR, abs/2106.09685.

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate
Saenko. 2018. Explainable neural computation via
stack neural module networks. In ECCV (7), volume
11211 of Lecture Notes in Computer Science, pages
55–71. Springer.

Shengding Hu. 2022. Opendelta. https://github.
com/thunlp/OpenDelta.

Yichen Jiang and Mohit Bansal. 2019. Self-assembling
modular networks for interpretable multi-hop rea-
soning. In EMNLP/IJCNLP (1), pages 4473–4483.
Association for Computational Linguistics.

Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2021. Text modular
networks: Learning to decompose tasks in the lan-
guage of existing models. In NAACL-HLT, pages
1264–1279. Association for Computational Linguis-
tics.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Louis Kirsch, Julius Kunze, and David Barber. 2018.
Modular networks: Learning to decompose neural
computation. In NeurIPS, pages 2414–2423.

Sneha Kudugunta, Yanping Huang, Ankur Bapna,
Maxim Krikun, Dmitry Lepikhin, Minh-Thang Lu-
ong, and Orhan Firat. 2021. Beyond distillation:
Task-level mixture-of-experts for efficient inference.
In EMNLP (Findings), pages 3577–3599. Associa-
tion for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP (1), pages 3045–3059. Associa-
tion for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL/IJCNLP (1), pages 4582–4597. Association for
Computational Linguistics.

Daqing Liu, Hanwang Zhang, Zheng-Jun Zha, and Feng
Wu. 2019. Learning to assemble neural module tree
networks for visual grounding. In ICCV, pages 4672–
4681. IEEE.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. CoRR, abs/2103.10385.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
NIPS, pages 6467–6476.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021a. Compacter: Efficient low-rank
hypercomplex adapter layers. In NeurIPS, pages
1022–1035.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021b. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In ACL/IJCNLP (1), pages
565–576. Association for Computational Linguistics.

1686

https://github.com/thunlp/OpenDelta
https://github.com/thunlp/OpenDelta
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
2018. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In ECCV (4),
volume 11208 of Lecture Notes in Computer Science,
pages 72–88. Springer.

Rishabh Misra. 2018. News category dataset.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical
probabilistic neural network language model. In AIS-
TATS. Society for Artificial Intelligence and Statis-
tics.

Oleksiy Ostapenko, Pau Rodríguez, Massimo Caccia,
and Laurent Charlin. 2021. Continual learning via
local module composition. In NeurIPS, pages 30298–
30312.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In EACL, pages 487–503. Associa-
tion for Computational Linguistics.

Edoardo Maria Ponti, Ivan Vulic, Ryan Cotterell,
Marinela Parovic, Roi Reichart, and Anna Korhonen.
2021. Parameter space factorization for zero-shot
learning across tasks and languages. Trans. Assoc.
Comput. Linguistics, 9:410–428.

Chengwei Qin and Shafiq Joty. 2021. LFPT5: A
unified framework for lifelong few-shot language
learning based on prompt tuning of T5. CoRR,
abs/2110.07298.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
In NAACL-HLT, pages 5203–5212. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Janarthanan Rajendran, Aravind S. Lakshminarayanan,
Mitesh M. Khapra, P. Prasanna, and Balaraman
Ravindran. 2017. Attend, adapt and transfer: Atten-
tive deep architecture for adaptive transfer from mul-
tiple sources in the same domain. In ICLR (Poster).
OpenReview.net.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer,
and Tim Klinger. 2019. Routing networks and the
challenges of modular and compositional computa-
tion. CoRR, abs/1904.12774.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2019. Latent multi-task archi-
tecture learning. In AAAI, pages 4822–4829. AAAI
Press.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Had-
sell. 2016. Progressive neural networks. CoRR,
abs/1606.04671.

Jonathan Schwarz, Wojciech Czarnecki, Jelena
Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. 2018.
Progress & compress: A scalable framework for con-
tinual learning. In International Conference on Ma-
chine Learning, pages 4528–4537. PMLR.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In ICLR
(Poster). OpenReview.net.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2020.
LAMOL: language modeling for lifelong language
learning. In ICLR. OpenReview.net.

Sebastian Thrun. 1996. Is learning the n-th thing any
easier than learning the first? In Advances in Neu-
ral Information Processing Systems, volume 8. MIT
Press.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. Spot: Better frozen model
adaptation through soft prompt transfer. In ACL (1),
pages 5039–5059. Association for Computational
Linguistics.

Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and
Christian Szegedy. 2022. Memorizing transformers.
CoRR, abs/2203.08913.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
ACL (2), pages 1–9. Association for Computational
Linguistics.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intelli-
gence. In ICML, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3987–3995. PMLR.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie
Huang. 2022. Continual prompt tuning for dialog
state tracking. In ACL (1), pages 1124–1137. Associ-
ation for Computational Linguistics.

1687

https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://proceedings.neurips.cc/paper/1995/file/bdb106a0560c4e46ccc488ef010af787-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/bdb106a0560c4e46ccc488ef010af787-Paper.pdf

A More Details on Dataset Construction

In this section, we provide more complementary de-
tails to §4.1. Table 6 shows examples of text input
and target for three datasets. For Huffpost News
and FewRel, we subsample exactly 200,50 exam-
ples per label class. For FewNERD, as it can have
multiple label types per example, we subsample at
50 examples per label class.

Dataset Example

Huffpost
’Tis The Season To Be Cheeky With ’Jingle
Butts’ Music Video. Clip features both male
and female butt models. → weird news

The 4 Best Last-Minute Christmas Gift Ideas.
Scrambling to shop for that last relative, sig-
nificant other or hard-to-buy-for friend? We’re
here to help. → style and beauty

FewNERD
One of the Yak-3s was destroyed right away .
→ Yak-3s ! product airplane ;

All Together Now is a British reality television
music competition which first aired on BBC
One on 27 January 2018 . → All Together
Now ! event other ; BBC One ! organization
media ;

FewRel
Its main base was at Tampere - Pirkkala Air-
port (TMP) , Tampere . Pirkkala Airport |
Tampere→ place served by trainsport hub

He represented Sweden at the 1934 FIFA
World Cup . 1934 FIFA World Cup | Swe-
den→ participating teams

Table 6: Examples of text input→ text target for Huff-
post News, fewNERD and FewRel

B More Qualitative Examples

Similar to §4.10, we show another example of MOD-

ULARPROMPT on stage-fused NER in Figure 4 and
more example predictions in Figure 5. These ad-
ditional examples strengthen the conclusions in
§4.10. In the second example in Figure 5, MOD-

ULARPROMPT tags "Big Twin Sauce" as a product
food while its ground truth tag is product other. We
can see MODULARPROMPT considers the context as
the entity is associated with a restaurant. Similarly,
in the third example, "Kobo Touch" is actually a
hardware reader and its ground truth tag is prod-
uct other. However, such world knowledge is not
available and MODULARPROMPT tags it as a software
based on the context of "eBooks" and libraries.

Figure 4: Another example of MODULARPROMPT for stage-
fused NER

Figure 5: Successful (blue) and failure (red) cases of
MODULARPROMPT predictions for stage-fused NER

C Detailed Results on Stage-agnostic and
Stage-specific Settings

Table 7 shows detailed stage-agnostic results.
D{1..k} corresponds to multi-stage training over
domains {1, .., k} and testing over the aggregated
domains. For baselines, we use their checkpoints
after k-th stage for evaluating D{1..k}. For MODU-

LARPROMPT, we use the final checkpoint. Table 8,
9 show detailed stage-fused results. Dk’ denotes
k-th task fused stage.

1688

Methods News Classification NER RE

D{1..2} D{1..3} D{1..4} D{1..5} D{1..2} D{1..3} D{1..4} D{1..2} D{1..3} D{1..4} D{1..5}
FinetuneMultitask 60.0±5.2 61.6±4.8 62.1±4.3 60.6±5.0 64.3±0.3 68.1±0.3 64.5±0.2 85.3±1.0 87.4±0.6 83.7±2.2 87.9±0.6

Finetune 57.8±0.9 35.2±1.8 29.4±1.2 23.0±0.6 39.8±0.4 30.9±2.1 25.0±2.7 71.1±2.2 57.4±2.5 48.0±1.6 40.8±2.2

FinetuneEWC 61.4±2.6 35.3±1.8 27.3±2.5 22.5±1.2 42.9±2.2 37.8±4.8 26.6±2.8 79.2±3.5 61.2±6.5 52.5±3.4 45.4±3.2

FinetuneMAS 58.9±1.1 46.9±2.8 38.7±3.0 29.2±2.9 48.6±7.5 37.1±2.1 25.4±2.9 74.5±3.9 61.3±2.7 54.7±1.5 46.2±1.8

Adapter 45.2±2.6 29.3±0.4 24.5±0.5 19.3±0.3 38.9±1.0 27.7±0.7 21.2±2.0 56.6±1.4 40.4±2.5 36.9±1.2 28.6±1.9

AdapterEWC 45.6±3.0 29.6±0.5 24.4±0.6 18.6±1.0 38.6±0.7 29.1±1.7 20.5±1.3 54.9±1.2 42.6±1.5 36.1±0.8 27.8±1.2

AdapterMAS 45.6±2.6 30.0±0.8 26.1±2.5 20.1±1.5 38.2±0.3 28.6±1.1 21.1±2.0 57.1±2.9 40.5±1.9 35.5±1.9 28.3±0.5

PT 36.9±0.5 27.9±0.4 21.7±0.4 16.1±0.3 37.0±0.3 26.1±0.3 18.8±0.1 47.3±1.0 32.4±0.5 24.3±0.4 19.6±0.1

PTEWC 36.9±1.1 28.2±0.2 21.5±0.3 16.5±0.5 36.7±0.8 26.0±0.4 19.0±0.5 46.8±0.5 32.3±1.2 25.4±0.9 20.1±0.8

PTMAS 43.0±3.5 30.1±5.2 24.1±4.5 23.8±5.9 28.8±2.8 29.2±6.0 29.3±4.6 51.3±1.3 36.0±0.9 30.7±1.7 25.1±4.9

PTCL 60.3±3.7 41.8±7.5 35.4±3.3 28.1±2.9 47.4±4.6 39.7±3.9 30.9±5.4 69.9±7.8 54.3±3.9 47.9±4.2 43.1±4.9

ModularPT 60.3±3.9 53.9±2.3 51.1±1.4 43.2±0.6 63.3±1.4 53.9±4.3 44.8±4.9 81.3±3.3 70.1±3.7 65.1±2.2 61.8±1.8

w/o transfer 61.2±2.8 48.9±2.4 43.1±2.7 35.4±2.7 62.6±1.4 53.8±1.7 43.0±3.6 82.2±2.3 67.2±3.2 59.4±2.0 54.8±2.7

w/o subset_inv 62.4±1.9 53.9±3.2 50.0±2.9 41.1±2.4 60.0±2.8 51.2±3.5 40.0±4.6 74.4±10.9 66.2±4.8 60.3±3.5 58.2±2.6

Table 7: Detailed Stage-agnostic Performance on News Classification, NER and RE.

Methods News Classification NER

D1’ D2’ D3’ D4’ D5’ Mean D1’ D2’ D3’ D4’ Mean

FinetuneMultitask 58.5±0.7 57.5±1.7 60.8±2.7 64.4±1.8 62.2±1.6 60.7±0.6 64.3±1.0 53.8±0.1 51.0±0.7 59.1±0.2 57.0±0.0

Finetune 20.5±1.5 21.7±1.2 21.8±1.3 24.5±1.3 23.4±1.0 22.4±0.5 20.9±2.9 24.1±2.9 35.4±1.8 19.1±3.4 24.9±2.1

FinetuneEWC 20.9±1.7 21.9±0.7 21.2±2.2 25.6±1.8 23.3±1.7 22.6±1.0 21.8±1.5 24.6±1.4 34.7±2.0 19.3±4.2 25.1±1.7

FinetuneMAS 26.4±6.2 25.6±2.9 26.8±3.4 38.4±7.0 26.5±6.4 28.8±3.3 22.4±3.5 25.2±0.9 19.1±4.4 27.2±5.9 23.5±1.3

Adapter 15.8±0.9 20.5±0.4 15.5±2.0 22.6±0.6 19.6±1.2 18.8±0.3 17.1±2.0 21.6±3.3 33.5±1.7 15.0±1.9 21.8±1.7

AdapterEWC 15.2±1.3 20.4±0.5 13.7±2.0 23.5±1.9 18.0±1.4 18.1±1.0 17.3±1.8 21.0±2.5 33.8±1.6 14.5±1.5 21.7±1.5

AdapterMAS 17.3±2.0 20.2±0.4 16.5±1.3 23.5±2.3 20.3±2.5 19.6±1.4 16.7±2.1 20.4±2.5 34.1±2.3 14.2±2.0 21.4±2.0

PT 13.7±0.3 19.6±0.3 8.3±0.2 21.0±1.3 15.6±0.6 15.7±0.2 14.9±1.2 17.2±0.8 31.9±1.3 13.2±1.0 19.3±0.5

PTEWC 13.7±0.4 19.7±0.2 9.2±1.5 21.9±0.5 15.8±1.1 16.1±0.5 14.7±0.8 18.5±1.9 33.0±1.3 14.0±1.5 20.0±1.0

PTMAS 25.3±6.0 21.9±3.9 20.0±13.4 27.6±7.9 23.8±5.3 23.7±6.2 26.1±3.1 20.7±2.5 22.3±4.2 31.9±7.8 25.3±3.8

PTCL 25.7±5.9 27.1±5.5 21.9±5.5 29.1±7.3 33.9±4.8 27.5±2.8 28.1±4.3 34.7±4.8 30.5±6.0 28.2±7.9 30.4±5.1

Finetune∗MAS 47.9±2.4 49.7±5.5 55.8±4.7 52.4±2.5 58.2±4.9 52.8±2.2 23.3±2.8 29.3±1.8 22.3±1.7 28.3±2.0 25.8±1.7

PT∗
CL 56.1±6.3 62.5±4.7 57.5±6.6 55.8±9.4 55.5±2.0 57.5±5.2 33.1±4.0 37.4±1.4 28.2±4.9 38.6±2.0 34.3±2.4

ModularPT 71.6±3.0 75.8±4.0 76.5±2.0 79.1±3.3 71.0±1.6 74.8±1.7 62.8±4.0 60.7±1.1 61.5±2.5 61.5±4.4 61.6±2.2

w/o transfer 67.8±3.9 69.7±3.0 66.7±5.3 63.8±3.3 56.6±5.3 64.9±1.7 56.0±4.5 51.2±7.6 61.3±1.6 61.2±2.7 57.4±2.3

w/o subset_inv 61.3±7.7 55.9±11.8 60.4±5.2 61.0±3.0 53.7±7.2 58.5±3.0 51.9±9.5 37.5±3.7 40.7±7.3 46.3±4.3 44.1±2.9

Table 8: Detailed Stage-fused Performance on News Classification and NER

1689

Methods RE Mean
D1’ D2’ D3’ D4’ D5’

FinetuneMultitask 80.5±2.1 90.3±1.6 85.4±1.2 88.5±0.9 85.4±1.0 86.0±0.9

Finetune 31.2±2.8 49.6±3.5 37.4±4.0 43.3±3.7 42.2±1.3 40.7±2.1

FinetuneEWC 34.3±4.1 57.8±3.6 40.6±2.5 46.9±6.0 46.5±2.1 45.2±3.3

FinetuneMAS 41.7±3.0 60.1±3.4 52.2±4.2 46.1±3.8 34.4±3.7 46.9±1.9

Adapter 21.0±0.6 33.8±4.6 21.3±1.3 32.9±2.0 32.0±2.6 28.2±1.8

AdapterEWC 20.1±0.7 31.1±3.7 19.7±0.3 34.0±2.8 32.0±3.4 27.4±1.2

AdapterMAS 20.1±0.5 32.2±2.1 22.5±1.6 31.6±3.1 32.7±2.4 27.8±0.6

PT 19.6±0.1 20.8±0.7 20.3±1.2 18.5±0.2 19.0±0.3 19.6±0.2

PTEWC 19.8±0.1 22.2±3.0 19.9±0.4 18.5±0.1 19.8±1.1 20.0±0.8

PTMAS 18.8±6.9 25.0±9.1 22.8±5.9 32.7±8.1 25.5±3.7 24.9±5.1

PTCL 37.6±9.1 51.1±4.4 37.8±4.4 41.4±4.7 48.4±6.1 43.3±5.2

Finetune∗MAS 55.7±3.8 72.9±2.6 69.8±3.5 80.2±2.2 62.0±2.8 68.1±1.3

PT∗
CL 58.8±5.1 65.1±4.0 61.1±1.6 78.3±3.3 63.3±3.5 65.3±2.7

ModularPT 80.3±1.6 89.2±2.5 75.1±3.9 88.5±2.7 78.6±0.8 82.4±0.8

w/o transfer 73.5±2.6 85.1±1.9 66.9±7.4 88.2±2.6 73.7±3.6 77.5±1.2

w/o subset_inv 45.1±5.1 50.6±6.1 48.3±5.9 46.5±4.8 48.0±6.7 47.7±4.1

Table 9: Detailed Stage-fused Performance on RE

1690

