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Abstract

Machine learning models usually assume i.i.d
data during training and testing, but data and
tasks in real world often change over time.
To emulate the transient nature of real world,
we propose a challenging but practical task:
text classification in-the-wild, which introduces
different non-stationary training/testing stages.
Decomposing a complex task into modular
components can enable robust generalisation
under such non-stationary environment. How-
ever, current modular approaches in NLP do
not take advantage of recent advances in pa-
rameter efficient tuning of pretrained language
models. To close this gap, we propose MoOD-
ULARPROMPT, a label-modular prompt tuning
framework for text classification tasks. In MoD-
ULARPROMPT, the input prompt consists of a
sequence of soft label prompts, each encod-
ing modular knowledge related to the corre-
sponding class label. In two of most formidable
settings, MODULARPROMPT outperforms rele-
vant baselines by a large margin demonstrating
strong generalisation ability. We also conduct
comprehensive analysis to validate whether the
learned prompts satisfy properties of a modular
representation.

1 Introduction

While NLP research has received a significant
boost in performance by employing large-scale pre-
trained language models (PLMs), finetuning an
entire dedicated model for each task is not always
practical or even feasible, especially as model size
continues to grow. To alleviate this, recently there
has been increased interest in parameter-efficient
methods such as Adapter (Houlsby et al., 2019)
and Prompt-based tuning methods (Lester et al.,
2021; Qin and Eisner, 2021; Liu et al., 2021; Li
and Liang, 2021). When training on a downstream
task, these methods keep the PLM frozen and only

'Our Code is available at https://github.com/
salesforce/ModularPrompt

shoi}@salesforce.com

Train stage 1: event {sports, protest, ...}, organization {company, sports ...}

Input: \event_sports\...\org_company\... In 2005 the rights to produce the Miss
Arizona USA pageant were given to Casting Crown Productions .

Target: Miss Arizona USA pageant ! event sports ; Casting Crown Productions !
organization company

Train stage 3: person {artist or author, ...}, building {library, theater, airport, ...}

Input: |person_author|... buiding library \ ... Navarro worked for more than 40
years in the Library of the National Congress of Chile ...

Target: Navarro ! person artist or author ; Library of the National Congress of
Chile ! building library

Test stage 1": person {artist or author, ...}, organization {company, sports ...}

Input: [person_author ... [org.company| ... Combs contracted her as the first
female artist to his Bad Boy Entertainment record label during 1994 .

Predict: Combs ! person artist or author ; Bad Boy Entertainment !
organization company

Figure 1: Example of MODULARPROMPT for stage-fused
NER. Top 2 blocks: training stages covering disjoint sets of
entity types (e.g., event, person). Bottom block: fused test
stage covering entity types of person and organization from

two training stages. Coloured boxes denote label prompts.
Underlining and italic blue denotes named entity and its type.

update a small set of parameters that are added to
the network. Among these methods, PROMPTTUN-
NG (Lester et al., 2021) proposes tunable prompts
— a sequence of learnable soft tokens, and show
impressive results, even competitive to full-model
finetuning with a large PLM.

While these prompt-based methods have proven
quite effective on popular benchmarks, these stan-
dard tasks typically assume only independently and
identically distributed (i.i.d) data during training
and testing. However, practical cognitive tasks in
the real world are usually more complex involving
changing contexts or non-stationary environments.
Talking about what is next for NLP, Kathleen McK-
eown in a recent interview (source) said: “Most
models are static. But the world changes every
minute, every second. Dealing with a dynamic
world is a new area that’s up and coming.”

Our work in this paper particularly concerns text
classification settings where a model is trained on
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sequence of tasks and evaluated on an arbitrary
subset of seen labels of interest. We formalize this
as a novel text classification in-the-wild task (de-
fined in §3), which emulates the transient learning
environment of real world, e.g., for a service re-
quiring classification, the label set might gradually
change over time to include new labels or remove
obsolete ones. Such scenarios typically result in a
sequence of non-stationary low-resource training
and evaluations over different label sets (e.g., train
on {chemistry, physics} and {basketball, football}
in succession and then test on {physics, football}).

This requires handling non-stationary data dis-
tribution which humans are quite adept at, partly
because we can decompose a complex task in a
modular fashion (Berwick et al., 2013). For exam-
ple, when learning to classify objects, we acquire
modular knowledge exclusive to each class. This
allows us to robustly classify irrespective of any
label space manipulations such as label omission
or learning over new label spaces. This notion
of modularity at the level of each class label is
what we call label modularity and is a desirable
quality for NLP models to generalize to practical
non-stationary classification settings.

Contemporary modular model designs for com-
plex NLP tasks typically use a routing network or
programmer (Cases et al., 2019; Rosenbaum et al.,
2019; Khot et al., 2021; Corona et al., 2021; Jiang
and Bansal, 2019; Liu et al., 2019; Hu et al., 2018;
Gupta et al., 2020; Andreas et al., 2016) which
learns a meaningful decomposition of the task into
sub-tasks and executes it by applying a chain of
specialised modules designed for each sub-task.
For classification tasks, this can entail learning a
specialized module for each label in the target label-
space. While there has been limited research on
utilizing modular architectures for PLMs (Andreas
et al., 2016; Chen et al., 2020), the main research
gap that we explore in this work is that of a mod-
ular design of parameter efficient tuning of large
PLMs, in particular, PROMPTTUNING.

Although ProMPTTUNING can be considered mod-
ular at task level in that it learns soft-prompts for
each task to support multitasking, it is not able to
learn modular decomposition within a particular
task. For non-modular designs like PROMPTTUNING
or model-finetuning, text classification in-the-wild
is challenging to handle, as it requires combining
partial information from different label spaces. In
contrast, a label-modular approach should learn ex-

clusive knowledge for each label and generalise to
any subset of the label set. We thus postulate two
main objectives of a label-modular model:

Objective 1. Separable Label Representation:
Each class label should have its own representation
which compactly encodes the information from the
data belonging to that label.

Objective 2. Prediction over Controllable Label
Space: Models should perform robustly over any
subset of the learnt label space during inference.

To meet these objectives, we propose a modu-
lar design of Prompt Tuning — Label-modular
Prompt Tuning (MopuLarPrompT). It decomposes
the prompt sequence into label-modular compo-
nents called label prompts, each encoding specific
knowledge corresponding to a class label. Thus
in each forward pass, we can select desired label
prompts to construct the input prompt, based on the
target label-set. To ensure that the learned knowl-
edge is encoded in a modular fashion during train-
ing, we introduce a novel subset-invariant loss over
dynamic label-sets.

To evaluate generalizability of MODULARPROMPT
we construct some practical scenarios of text classi-
fication in-the-wild. We train in multiple stages
over non-overlapping label spaces and evaluate
the model on label-sets that (i) correspond to each
training stage (stage-specific), (ii) is accumulated
over all learned labels (stage-agnostic), and (iii)
is comprised of labels across multiple training
stages (stage-fused). We show an example of Mopu-
LARPROMPT on stage-fused NER setting in Figure 1.

The stage-agnostic and stage-fused settings are
the most challenging scenarios for typical fine-
tuned or prompt-tuned models, and specifically on
those settings we find that MoDULARPROMPT outper-
forms all relevant baselines by a significant mar-
gin. This alludes towards its ability to learn robust
prompt representations that is generalizable to dif-
ferent non-stationary learning environments.

We further empirically justify that Mopu-
LarProMPT indeed showcases modular properties
by analyzing its behavior when either the ground
truth or other random labels are removed from the
input or the order of label prompts is permuted.

2 Related Work

We now review methods from the literature that are
relevant to ours from different perspectives. First,
many parameter efficient tuning methods have been
proposed such as Adapter (Houlsby et al., 2019),
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PROMPTTUNING (Lester et al., 2021), PREFIXTUNING
(Li and Liang, 2021), BitFit (Zaken et al., 2022),
LoRA (Hu et al., 2021) and COMPACTER (Ma-
habadi et al., 2021a). They either finetune a param-
eter subset or introduce new layers or embeddings.
Transfer learning over prompts (Vu et al., 2022) and
Adapters (Pfeiffer et al., 2021) and multi-tasking
over the latter (Mahabadi et al., 2021b) have also
been explored, but they are not comparable to ours
due to difference in task/problem settings.

Second, continual learning (CL) methods are rel-
evant as they also have sequential training stages.
Architecture based CL methods adjust model archi-
tecture for each task (Chen et al., 2016; Rusu et al.,
2016; Mallya et al., 2018), but require task identi-
ties for inference. Regularization based CL meth-
ods restrain updating parameters critical to previous
tasks (Kirkpatrick et al., 2017; Zenke et al., 2017;
Aljundi et al., 2018). Memory based CL methods
retain key examples from prior tasks (Lopez-Paz
and Ranzato, 2017; Chaudhry et al., 2019; de Mas-
son d’ Autume et al., 2019; Zhu et al., 2022) while
Memory generator models learn to generate and
use pseudo-data from prior tasks (Sun et al., 2020;
Qin and Joty, 2021). These methods are not com-
parable to ours as we do not use any memory or
pseudo memory in our sequential training.

Third, modular networks have been shown to
perform well on out-of-domain data (Kirsch et al.,
2018; Ruder et al., 2019; Alet et al., 2018) and miti-
gate forgetting in continual learning (Ostapenko
et al., 2021). Apart from routing network ap-
proaches introduced in §1, mixture-of-experts
(MoE) selects a soft subset of modules based
on model input (Shazeer et al., 2017; Fedus
et al., 2021; Goyal et al., 2021). Similar to ours,
Kudugunta et al. (2021); Rajendran et al. (2017);
Ponti et al. (2021); Ostapenko et al. (2021) con-
sider task level routing and support new tasks by
combining learned modules. By contrast, Mopu-
LARPROMPT utilises parameter efficient finetuning
of large PLMs and support low resource settings.

3 Methodology

In this section, we first formally define the prob-
lem and subsequently present our MODULARPROMPT
model, introduce subset invariant loss and explain
the framework under text classification in-the-wild.

3.1 Problem Definition

Single stage text classification Assume a sin-
gle text classification domain (or dataset) D. Let
(X,Y) ~ D be a sample, where X = {x;}X
represents a text input sequence of length L and
Y = {y,}1, represents the corresponding classifi-
cation label name of length M (in tokens). Let €2
denote the set of all possible class labels of inter-
est, for which we have V(X,Y") ~ D, cls(Y) C Q.
Note that cls(Y") is a mapping which returns the
class label(s) in Y. In case of single class classi-
fication, cls(Y") returns {Y}. In case of sequence
labelling which is token-level classification, cls(Y")
returns the set of all unique target tags in Y.

Text classification in-the-wild Assume a se-
quence of n text classification stages with the cor-
responding training datasets D' = {D!", ..., D"},
Each stage represents a different task in tempo-
ral dimension, with (X, Y)) ~ DY denoting a
sample at the k-th training stage and €2 denoting
the set of all possible class labels for D{". Simi-
larly, the testing could consist of m such datasets
D = (DY, ..., D!) with Q;S denoting the set of
possible class labels for D;-S. For classification in-
the-wild, we examine three challenging yet very
practical settings. First, when m = 1 and Q% =

n_ {94}, we have one test dataset covering all
seen labels. We refer it as stage-agnostic testing
as the test label can come from any of the training
stages (or tasks). Second, when m = n and Qz-s =
Q?", Vj = {1,...,n}, we have one test dataset cor-
responding to each training stage with the same
label set. We denote this setting as stage-specific
testing as each test set evaluates the model’s perfor-
mance on a particular task in which it was trained.
Finally, a more challenging setting where m > 1
and QY ¢ {QF, ..., '}, V) = {1,...,m}, rather
Q€ PUL_,{QU}) — UL, {P(QI")}. where
P(S) denotes the power-set of a given set S. That
is, the label set of a test stage does not correspond to
any one training stage, but is composed of partial la-
bel sets from multiple training stages (or tasks). We
refer it as stage-fused testing. Note that the stage-
agnostic and stage-specific scenarios are closely
related to continual learning (Thrun, 1996), though
the latter considers access to task-id instead of intra-
task information (i.e., task label set).

3.2 Soft Prompt Tuning

Let X = {x1,...,z1} be an input text sequence,
where z; is the ¢-th token, and M be a pretrained
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X: text input Y :label 7 o select
p;'-: soft token yi:i-th label /// N
X : text input Y : label I; : label prompt Pt mmmmmmm o N
p;: soft token R : representation of all label prompts = |_! ,
T : input prompt template i T :input prompt template | I:l |:| |:| |:| ! R

Figure 2: Left: PROMPTTUNING, where consecutive soft tokens are concatenated with the input to a frozen PLM.
Right: Our proposed MobpuLARPROMPT, where multiple label prompts are concatenated together with the input to a
frozen PLM. Each label prompt consists of a label name and consecutive sequence of soft tokens.

language model. The input text is mapped to a
sequence of embeddings H = {hy, ..., hy} with
h: € R?. A soft prompt is a sequence of N tunable
tokens 7 = {py, ..., px } with p; € RY, that is con-
catenated with the text embedding as the final input
toM: H= {T@H} = {pl, ...,DN, hli"" hL}.
The model prediction is defined as P(Y'|H; M) =
P(Y|T,X;M). During training, M is kept frozen
and only 7 is updated.

3.3 Label Modular Prompt Model

We visualise the architecture of PROMPTTUNING
(Lester et al., 2021) and our proposed Mobpu-
LARPrRoOMPT in Figure 2. In contrast to PROMPTTUN-
ING, MODULARPROMPT’S prompt consists of a se-
quence of label prompts, where each label prompt
contains the corresponding label name and a se-
quence of tunable soft tokens similar to soft prompt.
Formally, we denote I, = ex © {p, ..., pF,} as la-
bel prompt for label k, where e, is the embedding
of label k’s text or sequence of token-embeddings
for multi-token labels, ¢ denotes concatenation
and m is the number of tunable tokens per label
prompt. The final input prompt is T = Bresli
with S being the set of labels of interest.

Prompt formulation The key mechanism of
MoDULARPROMPT is prompt formulation { R, S} —
T, where R denotes the learned representation
space of all labels prompts. In PROMPTTUNING, Vari-
ables S and R do not exist and the model training
tunes 7 directly. In MobuLARPROMPT, given S as a
set of class labels of interest, we select the corre-
sponding label prompts representation from R and
concatenate these to form the final input prompt
T. The training loss is back-propagated through
Y — T — R to learn the soft label prompts.

Subset invariant loss The prompt formulation
{R,S} — T aims to achieve Objective 2: pre-
diction over controllable label space (§1). In sin-
gle domain setting, Q' is the set of all possible
class labels during training as defined by Section
3.1. However fixing S to a constant 2" throughout
training will make the model susceptible to data dis-
crepancy between train and inference as * # Q.
Thus to ensure Objective 2, we propose to vary S
during training. We first uniformly sample the size
of S, |S| from {1,...,(]Q"| — 1)} and then ran-
domly choose | S| labels from Q" to construct S.
Such sub-sampling of Q! encourages a fair explo-
ration of different lengths of prompt sequences as
input during training, thus enabling representations
to be robust to a dynamic (2** at inference. For
each training instance, with probability p we fix
S = Q! and vary S as above with (1 — p) chance.
We refer such sampling process as S ~ S. The
subset invariant loss is then defined as:

LR (D) = Ex,v)~p [~ Leisy)cs log P(Y|X, R, S5 M)]

S~& "
where 1 is the Indicator function; 1.y)cs = 1
if cls(Y) C S, otherwise 0. According to Objec-
tive 1, we expect our model to make predictions
grounded by the relevant label prompts. When S
does not contain ground truth class label(s) in Y,
the model should not be able to predict Y as output.
Thus we set the loss to be zero when cls(Y) ¢ S
to avoid encouraging ungrounded predictions.

3.4 Classification in-the-wild with
MODULARPROMPT

So far, we have introduced MobpuLARPROMPT § func-
tionality under a single domain classification set-
ting. To verify our Objective 2, we wish to exam-
ine it under text classification in-the-wild defined in
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Algorithm 1 Text Classification in-the-wild with
MODULARPROMPT.

Require: Training datasets D" = {DY",..., DI}, test-
ing datasets D** = (D'*, ..., D), pretrained language
model M

: for DI" in D" do
O Qi
INITIALIZE R from Ry

> Training

1

2

3 > Transfer
4 for step = 1, ..., iter do _

5 UPDATE Rq:- with SGD on L' (D;")

6: end for

7: end for

8: for D!* in D** do > Testing
9 EVALUATE P(-|X,S = Q*, R; M) on X ~ D%
10: end for

§3.1. Given training datasets D'" = {D'", ..., D"},
the model is trained on each dataset D!" sequen-
tially, and then evaluated on three classification in-
the-wild testing settings. The pseudocode of Mopu-
LARPrROMPT under the continual learning setting is
given in Algorithm 1. Note that RQ? in step 3 de-

notes label prompt representation of labels in Q"
i.e., Rotr == {l;, € R|k € Q}"} and Reyr is simi-
larly defined as Roer, = {lm, € Rlm € tU‘ QY.

4 <t

Label prompt transfer In step 3, for learning the
label prompt representation g at any training
stage i, we first aim to transfer the label-modular
knowledge, RQZ learned over the previous train-
ing stages through prompt initialization. This is
a unique learning characteristic that is facilitated
by our label-modular architecture and allows the
model to exploit semantic relatedness between la-
bels across training stages when initializing the
label prompt representation. Intuitively, if ‘bistro’
€ 0, and ‘restaurant’ € QI then initializing the
label prompt representation of ‘restaurant’ with the
knowledge encoded in the learned label prompt
representation of ‘bistro’ should be helpful to the
model. To compute the similarity between labels
l; and lj, with j € QI and k € QY;, we use per-
token average cosine similarity sim(e;, e;,) based
on the embeddings of the label texts. For each
label j € QIF, we select the top-K most simi-
lar labels Qi ;) C QF;. We then initialize I
by averaging the top-K similar label prompt rep-
resentations, weighted by their normalized sim-

ilarity score: I; < ZkEQtr ()aklk, where
top-K (g

sim(e;, ek)/zmeszfgp_m)
This method is similar in spirit to (Vu et al., 2022),
which shows good transfer for task level prompts

with training overheads, while we transfer at a finer-

ap = sim(ej, em).

grained level over label prompts with no overheads.

4 Experiments

In this section, we first introduce datasets used
and data construction process (§4.1) followed by
relevant baselines (§4.2), evaluation methods (§4.3)
and implementation details (§4.4). Through our
experiments, we target three research questions:

1. Can MopuLarProMPT consolidate knowledge
over multi-stage training? — answered in §4.5
with stage-agnostic setting

2. Can MobuLArRProMPT adapt to dynamic label
space at inference? — answered in §4.6 with
stage-fused setting

3. How competitive is MODULARPROMPT in stage-
specific setting? — answered in §4.7

Additionally, we perform ablations (§4.8) and quan-
titative and qualitative analysis (§4.9-§4.10) to ver-
ify modular properties of MODULARPROMPT.

4.1 Tasks and Datasets

We conduct experiments on three types of NLP
tasks: News Domain Classification on Huffpost-
News (Misra, 2018), Name Entity Recognition
(NER) on fewNERD (Ding et al., 2021) and Rela-
tion Extraction (RE) on FewRel (Han et al., 2018).
We formulate all tasks as a text-to-text problem, as
defined in §3.1. For News Domain Classification
and NER, we construct target text following Qin
and Joty (2021). For RE, we concatenate the origi-
nal text and entities with a seperator ’I’ as the input
sequence, and use the relation type as the target.
(Example data can be found at Appendix A)

For HuffpostNews, we subsample 100 shots per
class for training and validation and split it into
5 stages of disjoint labels. For FewNERD and
FewRel, we subsample 50 shots for training and
validation and split into 4 and 5 stages, respec-
tively. For testing, we subsample 200, 50, and
50 shots per class for HuffpostNews, FewNERD
and FewRel, respectively. The total number of
labels for { HuffpostNews,FewNERD,FewRel} is
{41,64,80} respectively, and resulting label size per
stage is {8-9,16,16} respectively.

For stage-specific testing, we follow the stages
defined for training and construct a correspond-
ing test data for each stage. For stage-agnostic
testing, we combine stage-specific test data for cur-
rent stage and all previously seen stages to con-
struct the test data. For stage-fused testing, we
construct label-sets for each fused stage such that
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it is not a subset of any single prior training stage,
but rather contains labels from ‘all’ prior training
stages. We construct {5,4,5} fused stages for { Huff-
postNews,FewNERD,FewRel }. We conduct 5 ran-
domised trials with different data sampling and
experiment seed for all of the above settings.

4.2 Baselines

We use T5-large (Raffel et al., 2020) as the back-
bone PLM for all methods, and consider the follow-
ing baselines to compare with our MODULARPROMPT:

* MopeLTUNING (Finetune), which tunes all param-
eters of the backbone PLM.

¢ (1) PromMPTTUNING (PT) from §3.2, (ii) PT¢p, -
An extension of PT to continual learning (CL)
setting, which trains separate PT models for each
stage and concatenates the learned soft-prompts
during inference, based on the test label-set.

* Adapter, a parameter efficient tuning alternative
introduced in (Houlsby et al., 2019), which in-
serts light adapter layers into the backbone PLM
and only tune them.

As text classification in-the-wild overlaps with con-
tinual learning, we also compare with versions of
the above baselines that use architecture-agnostic
methods and settings relevant to the latter.

* Online regularization based methods: (i) A scal-
able online version of EWC (Kirkpatrick et al.,
2017) proposed in (Schwarz et al., 2018), and
(i1) Online MAS (Aljundi et al., 2018). These
methods measure each parameter’s importance to
previous tasks by fisher information, and restrict
updating previously important parameters when
learning a new task, to mitigate catastrophic for-
getting.

» Multitask model, which involves training on all
stages simultaneously, not sequentially. This is
infact an oracle method for stage-agnostic test-
ing and can be considered as an upper bound of
memory-based methods in continual learning.

4.3 Evaluation Methods

For all the three NLP tasks, we consider an exact
match as a correct prediction and report accuracy
for News Classification and RE, and compute F1-
score over the BIO format for the NER task. By
default, we do not apply any other post-processing
or verbalizer, though these are orthogonal methods
that can be separately used to enhance any of the
discussed models. In the stage-fused setting, we

apply constrained decoding similar to (Cao et al.,
2021) to selected baselines, marked by special indi-
cator * (e.g., Finetuney,, ). For MODULARPROMPT,
we use all seen label prompts for stage-agnostic
testing and specific set of label prompts for stage-
specific and stage-fused testing. Since other base-
lines do not have label-level modularity, for stage-
agnostic and stage-fused testing, we use the check-
point after the final stage and for stage-specific test-
ing we take their checkpoints after each training
stage. We show average performance in the main
paper and relegate detailed results to Appendix C.

4.4 Implementation Details

We set the learning rate to 0.5 for PROMPTTUNING
and MobpULARPrROMPT and 5e-5 for MODELTUNING
and Adapter, using Adafactor (Shazeer and Stern,
2018) optimizer. We adopt implementation of
Adapter from OpenDelta (Hu, 2022) and use the de-
fault bottleneck dimension of 24. For online EWC
and MAS, we report best results obtained over dif-
ferent regularization constant. For all methods, we
set maximum training epochs to 256 for Fuffpost-
News and FewNERD, and to 512 for FewRel. For
MobpULARPROMPT, the number of soft tokens per la-
bel prompt is set to 10, the selection probability p is
set to 50% and number of label transfer candidates
K in §3.4 is set to 3.

4.5 Results on Stage-agnostic Setting

In Table 1, we show the stage-agnostic testing
results. We observe that across all three tasks,
MobuLarProMPT significantly outperforms all other
baselines by a large margin. This empirically jus-
tifies that MopuLarRPRrROMPT is indeed able to dy-
namically combine the label-specific knowledge
learned across different training stages in order
to infer over the unseen combined label-space.
Amongst the baselines, MODELTUNING performs rel-
atively better, while the limited trainable parame-
ters make the parameter efficient models more sus-
ceptible to catastrophic forgetting. For CL methods,
MAS improves MODELTUNING and PROMPTTUNING
by 4% and 8% on average respectively, but fails
on Adapter. EWC is less effective in addressing
forgetting across all baselines.

Also note that the PT ¢y, extension is able to im-
prove by 10-20% over vanila PT. This shows that
soft prompts, behaving like language tokens, have
a compositional nature and can be concatenated to
support multi-tasking. MopULARPROMPT, in addi-
tion to exploiting this implicit language prior, also
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Methods Size News NER RE

Finetuneyiitask  770M  60.6450 64.5102 8794056
Finetune TI0M  23.04096 25.04007 40.8499
Finetunegwc TIOM 225119 26.6198 454139
Finetuneyas TJIOM 292499 254499 4624138
Adapter 4.8M 193403 2124009 28.6419
Adaptergwc 48M 1864109 205413 278412
Adapteryas 48M 201415 2114909 283405
PT 0.13M  16.1493 18.8401 19.6401
PTewc 0.13M  16.5405 19.0405 20.149s8
PTMmas 0.13M 238459 293146 251149
PTcL 0.13M  28.1499 309454 43.1149
ModularPT 0.13M 432,06 448149 61.8113g

Table 1: Stage-agnostic performance on News Classifi-
cation, NER and Relation Extraction (RE). Size denotes
average number of tunable parameters per training stage

explicitly imposes subset-invariant loss to adapt
to dynamic label spaces, further boosting stage-
agnostic performance by 14%-18% over PTcL.

4.6 Results on Stage-fused Setting

We present results on our novel stage-fused setting
in Table 2. We observe that none of the baselines
are capable of handling this setting, as is evident
from their abysmal performance across all testing
stages. In absence of any label-modular represen-
tation, they are unable to utilize any information
about the desired label-space. On the other hand,
MoDpULARPROMPT not only outperforms all baselines
by an average margin of 37.5%, it also achieves 4%-
14% better performance than the oracle multi-task
MopELTUNING on News Classification and NER.

We select the top performing baselines in this
setting and apply constrained decoding to them
(marked with *), which improves their performance
by 20%-30% on News and RE, 2%-4% on NER.
However, MopuLarRProMmPT still outperforms these
baselines by 14%-27%. This significant improve-
ment is evident of the fact that MoDULARPROMPT,
by learning label-modular representations, can ef-
fectively combine partial knowledge from different
training stages and condition the PLM on any target
set of label prompts. This allows it to seamlessly
adapt to dynamic unseen label spaces, without ap-
plying any post-processing or verbalizer.

Note that while PT¢y, is able to combine knowl-
edge from multiple training stages to support stage-
agnostic testing, it fails to extract and consolidate
specific knowledge corresponding to only the target
label-set, across different stages.

Methods Size News NER RE

Finetuneyyiiask  770M 60.7196 57.0400 86.0409
Finetune 7710M 224405 249401 407491
Finetunegwc TIOM  22.6419 251417 452433
Finetunepas T7I0M  28.8433 235413 469419
Adapter 4.8M  18.8403 21.8417 2824138
Adaptergwc 4.8M 181410 217415 274419
Adapteryas 48M  19.6414 214490 27.8406
PT 0.13M 157102 193105 19.6402
PTewc 0.13M  16.1405 20.04109 20.04038
PTmas 0.13M  23.7462 253438 249151
PTcL 0.13M 275128 304151 433459
Finetune; , 4 7710M 528499 258417 68.1413
PT¢, 0.13M 575452 343124 653427
ModularPT 0.13M 748117 61.64125 824403

Table 2: Stage-fused performance on News Classifica-
tion, NER and relation extraction (RE)

4.7 Results on Stage-specific Setting

While MobuLArRPrROMPT has proved to be particu-
larly successful in handling the challenging non-
stationary settings of stage-agnostic and stage-
fused evaluations, we now want to see how com-
petitive it is under stage-specific settings. From the
results in Table 3, we see that the average stage-
specific performance of MODULARPROMPT is com-
parable to vanila PROMPTTUNING on the three tasks.
Note that while MAS regularization boosts stage-
agnostic performance somewhat for MODELTUNING
and PRoMPTTUNING, it infact degrades their stage-
specific performance by 10%-40%. Similarly ap-
plying EWC regularization fails to improve over
the vanila models in this setting while also proving
less effective on stage-agnostic evaluation. This
shows the lack of robustness of these techniques
across the different non-stationary settings. But
MobpULARPROMPT is able to achieve state-of-the-art
in stage-agnostic and stage-fused settings while
remaining comparable to PROMPTTUNING in stage-
specific evaluation. Besides, (Lester et al., 2021)
showed that the performance gap between PROMPT-
TunNING and MopeLTUNING Will gradually close as
the size of backbone PLMs scales up. We posit that
MoODULARPROMPT, being an extension of PROMPT-
TuNING can similarly benefit from scaling-up of the
PLM, but we leave this as future work owing to
resource limitations.
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Methods Size News NER RE

Finetunepyiiask  770M 60.6450 64.54102 8794056
Finetune 770M  83.1404 779404 9454107
Finetunegwc 770M 825404 773404 9454103
Finetuneymas 770M  59.7198 604138 74.0465
Adapter 4.8M  8l4igs 774404 946405
Adaptergwc 48M  81.5404 773104 948103
Adapteryas 48M  81.0402 772105 949106
PT 0.13M  79.7403 754402 943409
PTewc 0.13M 799406 748406 945106
PTMmas 0.13M  49.6448 444,03 843433
ModularPT 0.13M 804406 745106 93.6404

Table 3: Stage-specific performance on News Classifi-
cation, NER and RE (averaged over stages)

Stage-agnostic Stage-fused
News NER RE News NER RE
MODULARPROMPT 432106 44.8149 61.8415(74.8417 61.6122 824405
354497 43.0136 54.8427|64.9117 574493 775410
411404 40.0146 58.2426(58.543.0 441029 47. 7141

Methods

w/o transfer

w/o subset-inv

Table 4: Ablation study of MODULARPROMPT: average
performance on stage-agnostic and stage-fused settings

Methods News NER RE

ModularPT 748417 61.6495 824408
drop ground-truth label prompt  1.5405 4.1408  0.5+04
drop one random label prompt 749414 61.8121 83.2105
permute label prompt order 724413 615493 822409

Table 5: Mean Stage-fused performance for different
inference schemes

4.8 Ablation Study

We now analyze the contribution of different com-
ponents of MoDULARPROMPT towards its SOTA per-
formance. From the results in Table 4, we see that
in stage-agnostic setting, both label prompt transfer
and subset invariant loss provide a boost, though
the role of the former is seemingly more signifi-
cant. On the contrary, removing subset invariant
loss has a more debilitating effect on stage-fused
performance. This evinces that subset invariant
loss is indeed critical in learning label modular rep-
resentations. This is essential to the stage-fused
evaluation which needs to extract and dynamically
re-compose label-specific knowledge.

4.9 Quantitative Analysis

Apart from achieving SoTA, does MODULARPROMPT
possess the desirable characteristics of a modu-
lar model? According to Algorithm 1, Mobu-
LARPROMPT set S = L¥ during inference. We ex-

Test stage 1': person {artist or author, ...}, organization {company, sports ...}

Input: [person_author! ... [org_company| .. Gilbert was a delegate to the New
York State Constitutional Convention of 1894 .

Predict: Gilbert ! person politician ; New York State Constitutional Convention
| organization government ;
Input: [person_author|... [org_company| .. After Bert Bell 's death in October,
the 33-year-old Rozelle was the surprise choice for his replacement as
NFL commissioner .

Predict: Bert Bell ! person athlete ; Rozelle ! person athlete ; NFL !
organization sports league ;

Figure 3: Successful (blue) and failure (red) cases of
MobDULARPROMPT predictions for stage-fused NER

periment with different strategies of input prompt
construction including dropping label prompt(s) ei-
ther corresponding to ground truth label(s) or one
other random label, and permuting the default order
of label prompts; see Table 5 for the results.

Indeed we observe that dropping the ground
truth label prompt during inference degrades the
mean performance by 57%-82% while dropping
any other random label prompt boosts performance
slightly. This strongly demonstrates the label
grounding property of MODULARPROMPT, i.e. the
knowledge of a class label is exclusively embedded
in its corresponding label prompt. MODULARPROMPT
also shows low sensitivity to the order of label
prompts during inference - a yet another favourable
property of label modular models

4.10 Qualitative Analysis

Revisiting Figure 1 presented in §1, we observe that
MoDULARPROMPT is able to predict correctly on a
testing regime that is unseen during training, by ex-
tracting and consolidating label specific knowledge
from multiple training stages. More example pre-
dictions are shown in Figure 3 (and Appendix B),
which indicate that MopuLARPROMPT is able to ex-
ploit in-context learning over label-prompts to gen-
eralize to unseen label-combinations during infer-
ence. For example, MopuLarRPrOMPT tags “Gilbert”
as politician as he was “a delegate to” a government.
In the same spirit, MODULARPROMPT wrongly tags
“Bert Bell” and “Rozelle” as athletes (true label be-
ing person_other) because they are associated with
the sports league “NFL”. Such qualitative findings
demonstrate MobpuLARPROMPT’S capabilities to learn
label modular representations and integrate them
dynamically during inference.

5 Conclusion

In this paper, we have proposed MODULARPROMPT,
a novel label modular prompt tuning framework
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for text classification in-the-wild. Extensive ex-
periments show that MopuLARPROMPT is able to
consolidate knowledge learned during sequential
training stages for stage-agnostic testing and ex-
tract and recompose knowledge for stage-fused test-
ing, while maintaining competitive performance in
stage-specific settings. We have also conduct anal-
ysis to show that MopuLArRPrRoMPT has desirable
modular properties of label grounding, low order
sensitivity and in-context learning. Being the first
work on modular parameter efficient tuning, we
hope for it to spur more research in this area in
future towards solving a wider range of tasks under
more general non-stationary settings.

Limitations

In this section, we discuss limitations and potential
future work towards extending MODULARPROMPT to
a more generalised method for wider applicability.

On Scalability In MopuLarProMPT, the input
prompt 7 grows in proportion to |S/|, the size of
label set of interest. This limits MODULARPROMPT
from supporting huge label set (e.g., thousands
of labels) as transformers can only condition on
a bounded-length context. With long range trans-
formers like Longformer (Beltagy et al., 2020),
Performer (Choromanski et al., 2021) and LongT5
(Guo et al., 2021) coming into vogue, this issue
is somewhat mitigated. Regardless of that, one
potential solution is to formulate a hierarchical ver-
sion of MopuLARPROMPT, Which is similar in spirit
to hierarchical softmax (Morin and Bengio, 2005).
Hierarchical MobuLARPROMPT takes multiple steps
for prediction, with each step to predict labels in a
specific hierarchy level.

Another potential solution is to treat all label
prompts as memory units from which the model
learns to select relevant ones for a given data in-
stance, in the spirit of (Wu et al., 2022).

On generation tasks As MopULARPROMPT shows
SoTA performance and good modular characteris-
tics for text classification in-the-wild, it is appealing
to extend it to other tasks like Question Answering
(QA), Machine Reading Comprehension (MRC)
and Summarization. However, it is non-trivial for
MoDULARPROMPT to incorporate these tasks as their
target texts are unstructured without clear class la-
bels. One potential solution is to instead consider
attributes or properties of target texts, which are
also conditioning factors (e.g., formality, concise-

ness, topics, aspects, sentiment for summarization).
With such definitions, it will be interesting to check
if MopuLarRPrROMPT framework can achieve good
generalisation and conditional generation on text
generation in-the-wild.
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A More Details on Dataset Construction

In this section, we provide more complementary de-
tails to §4.1. Table 6 shows examples of text input
and target for three datasets. For Huffpost News
and FewRel, we subsample exactly 200,50 exam-
ples per label class. For FewNERD, as it can have
multiple label types per example, we subsample at
50 examples per label class.

Dataset  Example

"Tis The Season To Be Cheeky With ’Jingle
Butts’ Music Video. Clip features both male
and female butt models. — weird news

The 4 Best Last-Minute Christmas Gift Ideas.
Scrambling to shop for that last relative, sig-
nificant other or hard-to-buy-for friend? We’re
here to help. — style and beauty

Huffpost

One of the Yak-3s was destroyed right away .

FewNERD — Yak-3s ! product airplane ;

All Together Now is a British reality television
music competition which first aired on BBC
One on 27 January 2018 . — All Together
Now ! event other ; BBC One ! organization
media ;

Its main base was at Tampere - Pirkkala Air-
port ( TMP ) , Tampere . Pirkkala Airport |
Tampere — place served by trainsport hub
He represented Sweden at the 1934 FIFA
World Cup . 1934 FIFA World Cup | Swe-
den — participating teams

FewRel

Table 6: Examples of text input — text target for Huff-
post News, fewNERD and FewRel

B More Qualitative Examples

Similar to §4.10, we show another example of Mop-
ULARPROMPT on stage-fused NER in Figure 4 and
more example predictions in Figure 5. These ad-
ditional examples strengthen the conclusions in
§4.10. In the second example in Figure 5, Mop-
ULARPROMPT tags "Big Twin Sauce" as a product
food while its ground truth tag is product other. We
can see MopULARPROMPT considers the context as
the entity is associated with a restaurant. Similarly,
in the third example, "Kobo Touch" is actually a
hardware reader and its ground truth tag is prod-
uct other. However, such world knowledge is not
available and MopULARPROMPT tags it as a software
based on the context of "eBooks" and libraries.

Train stage 3: person {artist or author, ...}, building {library, theater, airport, ...}

Input: [person_author) [person_other|...| buiding library |... Navarro worked for
more than 40 years in the Library of the National Congress of Chile ...

Target: Navarro ! person artist or author ; Library of the National Congress of
Chile ! building library

Train stage 4: location {GPE, island, park, ...}, product {airplane, food, ...}

Input: location_GPE| ..Jprod_airplane] [prod_food| .. British Gulf lost one of its
Russian built AN-12 cargo planes on 13 November 2008 in Iraq .

Target: British Gulf ! location bodies of water ; Russian ! location GPE ; AN-12 |
product airplane ; Iraq ! location GPE ;

<=

Test stage 2’: building {library, theater, airport, ...}, product {food, weapon, ...}

Input: | buiding library \ \prod_airplane\ \prod_food\m to stay at the same
Somerset hotels ... covering the United Airlines Flight 93 crash site,, ...

Predict: Somerset hotels ! building hotel ; United Airlines Flight 93 ! product
airplane ;

Figure 4: Another example of MODULARPROMPT for stage-
fused NER

Test stage 2’: building {library, theater, airport, ...}, product {food, weapon, ...}

Input: | buiding library |.. [prod_airplane] prod_food) .. on board the Scaled
Composites White Knight research aircraft in a seven-flight , 20-hour
program operated from the Mojave Spaceport .

Predict & Target: Scaled Composites White Knight ! product airplane ; Mojave
Spaceport ! building airport ;

Input: ‘buiding_library ‘,_,‘prod_airplane"prod_food‘_,, Big Twin Sauce is a
condiment featured by the Hardee 's and Carl 's Jr . restaurant chain .

Predict: Big Twin Sauce ! product food ; Hardee 's ! building restaurant ; Carl 's
Jr ! building restaurant ;

Target: Big Twin Sauce ! product other ; Hardee 's and Carl 's Jr . ! building
restaurant ;

Input: \ buiding library \“,\prod_airplane\ prod_food\m eBooks compatible with
the Kobo Touch can be borrowed from many public libraries , including
the Ottawa Public Library and the Toronto Public Library .

Predict: Kobo Touch ! product software ; Ottawa Public Library ! building
library ; Toronto Public Library ! building library ;

Target: Kobo Touch ! product other ; Ottawa Public Library ! building library ;
Toronto Public Library ! building library ;

Figure 5: Successful (blue) and failure (red) cases of
MobDULARPROMPT predictions for stage-fused NER

C Detailed Results on Stage-agnostic and
Stage-specific Settings

Table 7 shows detailed stage-agnostic results.
Dy xy corresponds to multi-stage training over
domains {1, .., k} and testing over the aggregated
domains. For baselines, we use their checkpoints
after k-th stage for evaluating Dy ). For Mobu-
LaRPrROMPT, we use the final checkpoint. Table 8,
9 show detailed stage-fused results. D;’ denotes
k-th task fused stage.
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Methods News Classification NER RE
Doy Dpsy Dy Dpsy [ Dy Dpsy Dpgy | Digy D3y Dpagy Dposy
Finetunesuiitask  60.0452 61.6445 621143 60.6150 | 643103 68.1403 64.5402 | 853410 874106 83.7422 879406
Finetune 5784109 352418 294410 230406 | 398104 309401 250407 | Tl.lins S5T4io0s 480116 40.840s
FinetuneE‘,V(; 61.4i2_5 35»3i1.8 27.3125 22~5i1.2 42-9i2.2 37.8i4_g 26.6i2_3 79.213_5 Gl.ziﬁ_a 52-5i3.4 45-4i3.2
Finetunepsas 589411 469108 387130 292499 | 486475 370401 254499 | 745439 613407 547415 462498
Adapter 452106 293404 245i05 193403 | 389410 277407 212400 | 56.6414 404105 369410 28.6419
Adaptersywe 456450 296405 244106 186410 | 386107 291417 205413 | 549110 426415 36.1p0s 278410
Adaptery as 456496 300108 261405 20.0u1s | 3824103 286411 211400 | 57.01hs9 405110 355410 283405
PT 369105 279104 21.7404 16.1403 | 37.0003 26.1:03 188101 | 473110 324105 243104 196101
PTewc 369111 282402 21.5103 165105 | 367108 26.0:04 19.0105 | 46.8+05 323112 254409 201408
PTyras 43.0435 301452 241445 238459 | 288128 292460 293146 | 513413 360109 307417 25.1i49
PTcr 603137 418175 354433 28.lisg | 474446 397439 309154 | 699478 543439 479442 431449
ModularPT 603430 539403 5llira 432406 | 633214 539413 448.49 | 813135 70.0.37 65.0i00 61.8.s
wlo transfer 612.05 489404 431407 354407 | 626114 538417 430436 | 822405 672432 594100 548407
w/o subset_inv 6244119 5394392 50.0429 4114904 | 60.0408 51.2435 40.0446 | 7441109 662148 603135 582496
Table 7: Detailed Stage-agnostic Performance on News Classification, NER and RE.
Methods News Classification NER
DI’ D2’ D3’ D4’ D5’ Mean DI’ D2’ D3’ D4’ Mean
Finetune nrusitast 585407 575417 60.8407 64di1s 622416 607406 | 643210 5384101 S51.0s07 59.1i02 57.0:00
Finetune 2054115 217410 218413 245413 234310 224405 | 209409 241409 354415 191454 249401
Finetunegyy o 209417 219407 212199 256418 2334117 22.61410 | 21.8415 24.6114 347100 1931420 251417
Finetunepsas 264162 25.6429 26.8434 384470 265164 288133 | 224435 252409 190144 272459 235413
Adapter 15.8i0_9 20.510.4 15.53:2_0 22.610_6 19.6i1_2 18.8i0_3 17-1j:2.0 21.6i3_3 33-5i1.7 15-0i1.9 21.8i1_7
AdapterEwc 15-2il.3 20-4i0.5 13-7i2.0 23-5i].9 18.0i1>4 18.1i1_0 17.3i1_g 21~0i2.5 33-8i1.6 14-5il.5 21~7i1.5
AdapterMAs 17.312_0 20.2104 16.511_3 23.51243 20.312,5 19.611_4 16.7:&2'1 20.412,5 34.112_3 14.2:&2,0 21.412,0
PT 137403 196403 83102 210413 156106 157102 | 149412 172405 319413 132410 193105
PTepwc 137104 197102 92415 219405 158411 161405 | 1471058 185419 33.0113 140415 200419
PTras 253460 219439 2004134 27.6479 238453 237162 | 26.1431 20.7425 223442 319478 253435
PTcp, 257459 271455 219155 29.1473 339448 275108 | 281443 347148 305160 282479 304451
Finetune?, ¢ 479194 497455 5584147 524405 582440 528400 | 233108 293118 223i17 283400 258417
PT¢, 56.1163 625147 575166 55.8494 555400 57.5452 | 331440 374414 282449 386490 343104
ModularPT 71.6130 758140 765109 790433 710116 748117 | 628140 607117 61.5.55 61.5.,4 61.6125
w/o transfer 67.8439 69.7130 667153 63.8433 56.6153 649117 | 560145 S1.24176 613116 612407 574403
w/o subsetﬁinv 61.3i7_7 55‘9i11.8 60.4i5_2 61‘0i3_0 53~7i7.2 58.5i3_0 51‘9i9.5 37.513_7 4O~7i7.3 46‘3i4_3 44.112,9
Table 8: Detailed Stage-fused Performance on News Classification and NER
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RE

Methods Mean
DI’ D2’ D3’ D4’ D5’

Finetunepryititask  80.5+21 903116 854412 885+i09 854110 86.0409
Finetune 312405 49.6135 37dpso 433437 422:15 40740,
Finetune gy o 343401 578136 40.6405 469460 465121 452433
Finetuneszas HTi50 60.0usa 522410 46.0uss 34dizs 469410
Adapter 21.0106 338146 213113 329400 32.04926 282413
Adaptergy ¢ 201207 3l1s7 197405 340425 32.0i34 274410
Adapterysas 20.1405 322491 225416 316431 327424 27.8406
PT 19.6401 20.8407 203412 185102 19.0403 19.6402
PTewc 19.8401 222430 199404 185101 19.8411 20.040s
PTras 188469 250191 22.8159 327481 255437 249151
PTcr 37.6491 Sliliga 378144 414147 484461 433452
Finetune}, , ¢ 557438 729426 698135 802405 620428 68.1413
PT¢, 58.8451 65.1140 611416 783433 633435 653407
ModularPT 803,16 892405 75130 885.07 786105 824i0s
w/o transfer 7354126 851419 669174 882106 73.7+36 775412
wiosubseinv 451451 50.6461 483459 46.5.s8 48.0s67 477141

Table 9: Detailed Stage-fused Performance on RE
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