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Abstract
The construction of open-domain dialogue sys-
tems requires high-quality dialogue datasets.
The dialogue data admits a wide variety of
responses for a given dialogue history, espe-
cially responses with different semantics. How-
ever, collecting high-quality such a dataset
in most scenarios is labor-intensive and time-
consuming. In this paper, we propose a data
augmentation method to automatically aug-
ment high-quality responses with different se-
mantics by counterfactual inference. Specifi-
cally, given an observed dialogue, our counter-
factual generation model first infers semanti-
cally different responses by replacing the ob-
served reply perspective with substituted ones.
Furthermore, our data selection method filters
out detrimental augmented responses. Experi-
mental results show that our data augmentation
method can augment high-quality responses
with different semantics for a given dialogue
history, and can outperform competitive base-
lines on multiple downstream tasks.

1 Introduction

Open-domain dialogue systems have attracted
much attention (Chen et al., 2017; Huang et al.,
2020; Ni et al., 2021; Fu et al., 2022) due to their
potential applications. Generally, training open-
domain dialogue systems requires high-quality dia-
logue datasets. The dialogue data admits a wide va-
riety of responses for a given dialogue history (Hou
et al., 2018). Specifically, a given dialogue his-
tory can exist many valid responses with different
semantics, and the response of each semantic in-
formation can also have abundant alternative ex-
pressions (Li et al., 2019). However, manually col-
lecting high-quality such datasets is usually labor-
intensive and time-consuming in practice.

A feasible solution to address this problem is
to use data augmentation techniques. Currently,
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Smoking is harmful for your health.
Dialogue history�

What in your opinion can 
be done to stop smoking?

Observed response�

I have regular check-ups, 
and do not have any disease.

Counterfactual response�

stop smoking
Observed reply perspective�

check-ups
What if stop smoking check-ups

!

Substituted reply perspective�

Figure 1: An example of a counterfactual response,
which is a semantically different response re-inferred
by changing the observed reply perspective.

some data augmentation methods have been used in
open-domain dialogues (Sennrich et al., 2016; Niu
and Bansal, 2019; Li et al., 2019; Cai et al., 2020;
Zhang et al., 2020a; Xie et al., 2022) to augment
data. However, the augmented data have limited
semantic differences from the observed data based
on the restrained changes. These existing methods
only consider word- or sentence-level alternative
expressions of the observed data without augment-
ing more valid responses with different semantics.

In this paper, we propose to augment valid re-
sponses with different semantics for a given dia-
logue history. Imagine that when humans infer
different-semantic responses, they may naturally
ask a question: Given an observed dialogue, what
the response would happen if we change the reply
perspective, while keeping the current environment
unchanged? Answering this question will infer a
different response, given an example shown in Fig-
ure 1. The imagination of different responses under
the current environment is so-called counterfactual
inference (Pearl et al., 2000), which ensures the
quality of inferred responses (Zhu et al., 2020).

Motivated by this, we propose a Counterfactual
data Augmentation method via Perspective
Transition, CAPT for short, to generate counter-
factual responses for a given observed dialogue.
CAPT interprets a counterfactual generation model
as a structural causal model (SCM), which de-
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scribes the generation process under the current
environment. The current environment is modeled
by unobserved variables in the SCM that capture all
unobserved but relevant factors that affect response
generation. Counterfactual responses are then gen-
erated by intervening in the reply perspective in the
SCM, i.e., replacing the observed reply perspec-
tive with valid alternatives, while keeping these
unobserved variables unchanged. To achieve an
alternative, we first construct a shift graph based on
all observed dialogues, which explicitly represents
the shift associations between both focuses of atten-
tion on dialogue histories and their corresponding
responses respectively. We then randomly choose
a focus on the given dialogue history and regard
its 1-hop neighbors in the shift graph as candidates.
A valid alternative can be predicted from these
candidates. After achieving all counterfactual aug-
mented responses, the augmented data are further
filtered using a data selection module. Finally, we
merge the observed data with this augmented data
as training data for downstream tasks.

Experiment results indicate that CAPT can aug-
ment high-quality responses with different seman-
tics, and our augmented data contributes to the
performance improvement of both retrieval-based
and generation-based open-domain dialogue mod-
els. Our contributions are summarized as follows:
(1) We propose a counterfactual data augmenta-
tion method via perspective transition to augment
responses with different semantics for a given dia-
logue history. To the best of our knowledge, this is
the first study to augment more valid responses with
different semantics in open-domain dialogues. (2)
Automatic and manual evaluation show that CAPT
generates semantically different responses, which
can be further used to improve the performance
of downstream tasks. (3) Extensive experiments
show that providing more responses with different
semantics can further improve performance.

2 Background

In this section, we describe task definitions and
review the concept of the structural causal model.
Please see task definitions in Appendix A.

2.1 Structural Causal Model

Definition. A structural causal model (SCM)
consists a set of observed variables V =
{V 1, . . . ,V m} and a set of independent unob-
served random variables U = {U1, . . . ,Um}with

distribution P (U), which are connected by a set of
functions F = {f1, . . . , fm}. Specifically, ∀i, V i

is caused by a set of parent variables PAi and U i,
i.e., V i = fi(PAi,U i), where PAi ⊆ V \ V i in
the causal DAG (Buesing et al., 2019).

For the counterfactual generation model, it can
be cast as an SCM with three observed vari-
ables, including dialogue history X , reply per-
spective Z and response Y . The counterfactual
generation SCM turns the conditional distribution
P (Y |X,Z) into a deterministic function Y =
f(X,Z,U), where U captures all unobserved but
influential factors of the current environment, such
as speaking style. The function f is defined by the
learned counterfactual generation model. Overall,
SCM can infer counterfactual responses given the
known function f and the posterior of the unob-
served variable P (U |X = x,Z = z,Y = y).

Intervention. Before observing what the ob-
served variable V i would happen, an interven-
tion would be given on a parent variable V j ,
V j ∈ PAi, where the intervention in the SCM
is an action by changing the observed value. For
the counterfactual generation SCM, the interven-
tion is to replace the observed value z of the reply
perspective Z with a different value z̃.

Counterfactual Inference. Given an SCM and
observed a variable V i = vi, counterfactual infer-
ence answers the question that what the observed
variable V i would have changed if a parent vari-
able V j has been intervened while keeping the
current environment unchanged. Accordingly, gen-
erating a counterfactual response involves a query
about what the response Y would have happened if
an intervention is taken by setting Z as a different
value z̃, rather than the observed value z.

Overall, to generate counterfactual responses,
we can follow a three-step procedure (Pearl et al.,
2016): (1) Abduction: Predict the “current envi-
ronment of the SCM” , i.e., compute the posterior
P (U |X = x,Z = z,Y = y) and sample u
from it. (2) Action: Perform an intervention by re-
placing the observed value z of Z with a different
value z̃. (3) Prediction: Reason a counterfactual
response ỹ, given the posterior sample u and the
known function f .

3 Method

In this section, our goal is to take an input dialogue
sample (x,y) and augment high-quality responses
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Post xx: Smoking is harmful for your health.

Observed reply perspective   : 
stop smoking

Substituted reply perspective   : 
check-ups

Observed response    :
What in your opinion can be 
done to stop smoking?

Counterfactual response   :
I have regular check-ups, and do not 
have any disease.

1. Abduction 3. Prediction

2. Action
z z̃

y ỹ

z̃z
. . .

Shift Graph Construction

smoking

Reply Perspective Prediction

health

  XX    ZZ

Counterfactual Generation 2. Action

z̃x

SCM SCM

Figure 2: The three-step procedure of counterfactual generation: (1) Abduction: we estimate the “current environ-
ment of the SCM” u where the observed response y occurs. (2) Action: we perform an intervention on Z in the
SCM by replacing z with z̃. For obtaining z̃, we first construct the shift graph by characterizing each observed shift
between the focus (e.g., smoking) on x and the reply perspective z (e.g., stop smoking) in D. We then randomly
choose a focus on x , e.g. health, and regard its 1-hop neighbors as candidates. Finally, we predict z̃ from these
candidates conditioned on the chosen focus of x and the post x. (3) Prediction: the counterfactual response is
generated based on the post x and the alternative z̃ from the inferred u.

that have different semantics from y. To this end, in
Section 3.1, we introduce a technique called Coun-
terfactual Generation via Perspective Transition
for intervening in the observed reply perspective
to augment responses under the current environ-
ment. In Section 3.2, we describe how to train
those models involved in Section 3.1, including
the reply perspective predictor and the counterfac-
tual generator. In Section 3.3, we design a data
selection method, named Bi-directional Perplexity
Selection, to select high-quality augmented data.

3.1 Counterfactual Generation via
Perspective Transition

This paper mainly focuses on single-turn dialogues.
Given a post-response pair (x,y), we use the SCM
to generate a counterfactual response ỹ following
the three-step procedure shown in Figure 2.

1. Abduction. This step is to estimate the unob-
served variable given the observed sample (x, z,y)
(for more details about z see the action step).
Specifically, when generating the t-th token of y,
our counterfactual generator outputs a categorical
distribution P (Yt|X = x,Z = z,Y <t = y<t),
where y<t is the token sequence generated in the
previous time step. According to Oberst and Son-
tag (2019), the impact of the unobserved random
variable U t is simulated by introducing Gumbel
random noises. Thus, we perform the Gumbel-Max
Trick (Luce, 1959) for this categorical distribution

as follows,

ptk =P (Yt = k|X = x,Z = z,Y <t = y<t),

yt =argmax
k=1,...,|V |

(log ptk + utk),

(1)
where utk ∼ Gumbel(0, 1) and |V | denotes the
vocabulary size.

Consequently, our counterfactual generation
SCM transforms into a Gumbel-Max SCM (Oberst
and Sontag, 2019). The estimation of the unob-
served variable is then to sample from the poste-
rior distribution over these Gumbel random vari-
ables. Fortunately, a straightforward way to in-
fer posterior (Maddison et al., 2014) is utilizing
the properties of the shifted Gumbel variables
gtk = log ptk + utk: in the posterior, the maxi-
mum value is independent with the argmax of the
shifted Gumbel variables and is distributed as a
standard Gumbel. Thus, we first let yt = k∗ (*
denotes the observed token) and sample the maxi-
mum value g∗tk from Gumbel(0, 1). Secondly, we
sample the remaining values gtk from the shifted
Gumbel distribution Gumbel(log ptk, 1) truncated
at g∗tk. Then, for each index of k, a sample of utk
is obtained by subtracting off the location parame-
ter log ptk from gtk. Finally, the resulting sample
ut = [ut1, . . . , ut|V |] is used to infer the counter-
factual responses.

2. Action. This step is to replace the observed
reply perspective z with a substituted reply per-
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spective z̃. However, two sub-problems need to
be addressed: representing the reply perspective
and predicting a substituted valid reply perspective.
By observing human dialogues, we find that a re-
ply perspective can be represented by a keyword,
like “stop smoking” in Figure 2. It can be achieved
based on the process that humans first naturally fo-
cus on a certain point of a given post like “smoking”
and then would unconsciously shifting this focus
point to another one. The focus point of the post
can be similarly represented by a keyword. We
name the focus point on the post and the shifted
one as the focus and reply perspective respectively.
When humans have different focuses (e.g., “health”
in Figure 2) or different shifts on the same focus,
they will obtain substituted reply perspectives.

To achieve valid alternatives, it is critical to make
valid shifts from a focus. We build a shift graph
based on all observed samples, where head and tail
vertices are focuses and reply perspectives respec-
tively, and edges represent observed shifts between
focuses and reply perspectives. Inspired by Xu
et al. (2020) and Zou et al. (2021), we can regard
1-hop neighbors of a given focus as candidates and
predict a valid alternative from these candidates. It
is based on the fact that the corresponding reply
perspectives can be shared if posts containing the
same focus have similar semantics.

We build the shift graph G with two steps: ver-
tex construction and edge construction. For vertex
construction, we first exploit a rule-based keyword
extraction method (Campos et al., 2020) to iden-
tify salient keywords from utterances in the ob-
served dialogue dataset D. To further identify the
focus c from all keywords of x, we use guidance
from the future information (i.e., response) to se-
lect the keyword that is semantically closest to y.
To identify the reply perspective z, we select the
keyword with the closest semantics to c. More
concretely, we use cosine similarity between their
embedding via BERT (Devlin et al., 2019) as the
measure of semantic closeness, where each em-
bedding is achieved by taking the average of the
hidden state of each token. For edge construction,
we build an edge by connecting c with z. In this
way, we characterize all shift associations in D.

Once the shift graph is built, we predict z̃ as

z̃ = argmaxz̃ P (Z|C = c̃,X = x,N = N (c̃)),
(2)

which is given by a trained reply perspective pre-
dictor. Note that c̃ can be any keyword in the post

x and N (c̃)) denotes 1-hop neighbors of c̃.

3. Prediction. This step is to generate the coun-
terfactual response given the posterior sample ut =
[ut1, . . . , ut|V |]. Specifically, when generating the
t-th token of the counterfactual response, our coun-
terfactual generator computes the categorical distri-
bution as follows,

p̃tk =P (Yt = k|X = x,Z = z̃,Y <t = ỹ<t),

ỹt =argmax
k=1,...,|V |

(log p̃tk + utk),

(3)
where z̃ is the predicted reply perspective, ỹ<t is
the token sequence generated in the previous step.

Overall, counterfactual generation via perspec-
tive transition can be used as an effective data aug-
mentation method for open-domain dialogues to
augment responses with wider semantic coverage.
We show this method in Algorithm 1. The algo-
rithm takes an observed sample (x,y) as an in-
put and loop through every keyword of x as a
different focus c̃. For each c̃, to sample multi-
ple corresponding reply perspectives, we equally
divide the candidate set N (c̃) into K sub-sets
{N1(c̃), . . . ,NK(c̃)} for nested loop. At each iter-
ation it predicts a different z̃ for perspective transi-
tion to output a counterfactual sample (x, ỹ).

3.2 Model Training
CAPT relies on the reply perspective predictor and
the counterfactual generator, which greatly influ-
ence the quality of augmentation. Inspired by Yang
et al. (2020); Schick and Schütze (2021), we choose
a pre-trained encoder-decoder model BART (Lewis
et al., 2020) as the backbone model.

Reply Perspective Predictor. We fine-tune
BART onD to learn P (Z|C,X,N). In particular,
the input is a concatenated text sequence consisting
of the post X , the focus C, and the candidates N .
The output is the predicted reply perspective Z.
We maximize the objective as follows,

Lp = −
∑|Z|

t=1
logP (Zt|[C,X,N ],Z<t), (4)

where the bracket [·, ·, ·] denotes concatenation
with the token [SEP]. The candidates N are also
concatenated with commas. Z<t is a prefix of the
reply perspectives. |Z| denotes the length of Z.

Counterfactual Generator. We fine-tune BART
on D to learn P (Y |X,Z). Specifically, the gen-
erator is trained to generate the response Y with
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Algorithm 1: Data Augmentation
Input: (x,y): An observed sample

C: All keywords {c̃1, . . . , c̃|C|} of x
G: The shift graph

Output: A counterfactual sample (x, ỹ)
1 Get the observed reply perspective z;
2 for i← 1 to |C| do
3 Get 1-hop neighbors N (c̃i) from G
4 Remove z from N (c̃i)
5 Equally divide N (c̃i) into

{N1(c̃i), . . . ,NK(c̃i)}
6 for j ← 1 to K do
7 ỹ← Trans(x, y, z, c̃i, Nj(c̃i))

8 Function Trans(x, y, z, c̃, N (c̃)):
9 Infer u from P (U |x,y, z)

10 Predict z̃ from P (Z|x, c̃,N (c̃))
11 Reason ỹ from P (Y |x, z̃) under the

current environment u
12 return ỹ

the input prompt consisting of the post X and the
reply perspective Z. Similarly, we maximize the
following objective:

Lg = −
∑|Y |

t=1
logP (Yt|[X,Z],Y <t), (5)

3.3 Bi-directional Perplexity Selection

Filtering out detrimental augmented samples can
improve downstream performance (Bras et al.,
2020). Existing methods (Axelrod et al., 2011;
Xie et al., 2020; Zhang et al., 2020a) pick out sam-
ples that the model only trained on the observed
data is most confident about. However, these mod-
els have only seen limited samples so they may
not identify valid but unseen samples from the
counterfactual-generated data. Inspired by Lee
et al. (2021), we leverage a large-scale dialogue pre-
trained language model DialoFlow (Li et al., 2021),
utilizing its powerful ability of transfer learning.
Since large-scale dialogues have been seen, it can
identify valid but unseen samples like “an expert”
via perplexity (PPL) scores. Nonetheless, the re-
sulting samples might contain samples with generic
responses. Inspired by Li et al. (2016), we further
introduce backward PPL to rerank responses for
prioritizing those valid and interesting samples.

Specifically, we independently fine-tune Di-
aloFlow to learn P (Y |X) and P (X|Y ) on D
for calculating forward and backward PPL scores.

Once we obtain the forward PPL scores for all
samples, we find the best threshold η that sepa-
rates valid samples from invalid samples. Inspired
by Lee et al. (2021), we leverage the validation set
to find the optimal single threshold parameter η,
where we regard observed samples from the val-
idation set as valid samples, and invalid samples
are constructed by replacing the responses of valid
samples with randomly-sampled responses. Fur-
thermore, we rerank the responses of each post in
the valid samples via backward PPL scores. Since
the higher the backward PPL score, the more likely
the response is dull (Li et al., 2016), we choose
samples in order from low to high until the desired
number of augmented samples are obtained.

4 Experimental Setup

4.1 Settings

The experiments are conducted on the Chinese
Weibo corpus (Zhang et al., 2020a). Specifically,
the dataset D contains training, validation, and test
sets with 300K, 5K, and 10K post-response sam-
ples, respectively. Please see Appendix B for more
details on data and method implementations.

4.2 Baselines

We compare CAPT with a set of baselines: (1)
Observed, which only uses the observed data to
fine-tune dialogue models. (2) Augmented, which
only uses our augmented data to fine-tune dialogue
models. (3) Back-Trans (Sennrich et al., 2016),
which back-translates responses via Google Trans-
late. (4) MLM (Cai et al., 2020), which fine-tunes
the BERT-large model on D to substitute some
words of responses. The substituting probability
is 0.15. (5) DL (Zhang et al., 2020a), which con-
structs post-response pairs where both post and
response are retrieved from the unpaired data. Aug-
mented dialogues are further filtered by their rank-
ing module. (6) BM25 (Gangal et al., 2021), which
uses the BM25 algorithm to retrieve the top-k simi-
lar post to the observed post, and the corresponding
response of the retrieved post is regarded as the aug-
mented response. (7) BART (Lewis et al., 2020),
which fine-tunes the BART-large model that takes
the post as the input to generate responses with dif-
ferent decode strategies, including greedy search,
sampling with temperature 0.5, and top-k sampling
(k=10,25). They are denoted as BART-greedy,
BART-samp, BART-k10, and BART-k25, respec-
tively. Augmented pairs generated by BM25 and
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Focus Reply Perspective Counterfactual Response
Post: I am sleepless because of coughing. (��)�()
sleepless ()�() sleep ()) I slept badly. (��?)��)

coughing (��) doctor (�$)
cold (��)

Have you seen the doctor already?(�'�$����
Honey, do you have a cold too?()#&�����
����)

Post: I have a stomachache every day. (�-!�*%�)

stomachache (*%)
spicy (,&)
check ( �)
serious (�/)

You can‘t eat spicy food. (�+�,&)
You need to check your body. (� ���)
What happened? Why is it so serious? (�
	.	�/)

Figure 3: Real cases showing the generation process of responses with different semantics.

BART are filtered by our data selection method.

4.3 Evaluation Metrics

Automatic Evaluation. The following metrics
are used to automatically evaluate retrieval-based
models. (1) Mean Average Precision (MAP): the
average of Average Precision (AP) over test sam-
ples. AP is the average of precision scores at the
ranks where references are found; (2) R10@k: the
percentage of references among the top-k selected
responses (k=1,2,5) when given 10 candidates in
total. The following metrics are used to evaluate
generation-based models. (1) BLEU: the overlap
of n-grams (n<4) between the generated response
and the reference. (2) Dist-n: the ratio of unique
n-grams (n=1,2) over all n-grams in the generated
responses, which measures the n-gram diversity.
As we sample 3 responses for each test post, eval-
uation is performed both within and among the
sampled responses. Intra-Dist calculates that ra-
tio within each sampled response, and Inter-Dist
calculates that ratio among all three responses. (3)
BSf : the F1-value of BERTScore (Zhang et al.,
2020b), which measures the semantic similarity
between each 2 responses in 3 sampled responses.
Lower scores imply greater semantic diversity.

We also use Dist-n and BSf to automatically
evaluate the quality of augmented data, which eval-
uates the diversity among the generated responses.
In addition, we introduce the following metrics
to evaluate the diversity with respect to the orig-
inal response. (1) Novelty-n: the ratio of new n-
grams (n=1,2) in the augmented responses. Intra-
Novelty similarly calculates the ratio within each
augmented response, i.e., n-grams that are covered
by the augmented response but not in the original
response. Inter-Novelty calculates the ratio within
the three augmented responses. (2) BSfo: the F1-

value of BERTScore, which measures the semantic
similarity between the augmented response and its
corresponding original response.

Manual Evaluation. The following metrics are
used to manually evaluate the quality of augmented
data and generation-based models. Three anno-
tators are employed to rate the samples. (1) Flu-
ency (Flu.): is the response fluent? (2) Coherence
(Coh.): is the response serve as a valid continua-
tion of the preceding post? (3) Interesting (Int.):
is the response generic? (4) Richness (Rich.): do
the three sampled responses express different se-
mantics? The rating scale is of 0 to 2, in which 0
means worst and 2 best.

5 Results and Discussion

5.1 Evaluating Augmented Data

We first evaluate the quality of augmented data.
Specifically, we respectively select 900K aug-
mented post-response pairs generated by these
methods, on which automatic evaluation is per-
formed. We further conduct manual evaluation on
600 samples, which contain 200 randomly-sampled
posts and each post has 3 corresponding responses.
The inter-annotator agreement is measured via the
Fleiss’s kappa κ (Randolph, 2005). The κ values
for Fluency, Coherence, Interesting and Richness
are 0.67 (moderate agreement), 0.46 (moderate
agreement), 0.64 (moderate agreement) and 0.69
(moderate agreement), respectively.

The results are shown in Table 1 and 2, which
indicates that our augmented data outperforms all
the baselines. We further observe that: (1) Our
augmented data achieve similar scores as the ob-
served data over all the metrics, which indicates
that our augmented data is high-quality. We present
some cases of the augmented data to show the gen-
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Method Intra-Dist-1,2 Inter-Dist-1,2 BSf Intra-Novelty-1,2 Inter-Novelty-1,2 BSfo

BART-greedy 93.34‡ 98.37‡ 64.83‡ 81.81‡ 66.46‡ 84.42‡ 95.54‡ 60.54‡ 80.38‡ 58.12‡

BART-samp 94.14‡ 98.79‡ 70.85‡ 89.27‡ 63.60‡ 84.24‡ 95.99‡ 65.84‡ 87.74‡ 58.11‡

BART-k10 93.08‡ 98.63‡ 70.60‡ 90.07‡ 63.15‡ 85.00† 96.23† 67.36‡ 89.11‡ 58.08‡

BART-k25 93.74‡ 98.77‡ 74.63‡ 91.98‡ 61.61‡ 85.76 96.43 71.01‡ 90.90‡ 57.83‡

CAPT 94.64 98.90 79.91 94.79 59.59 85.84 96.63 74.47 92.98 57.31‡

Observed 94.05 98.90 - - - - - - - -

Table 1: Automatic evaluation on the quality of augmented data generated by different generation-based methods.
The bottom row corresponds to the high-quality observed dialogue data in D. Significance tests between CAPT and
baselines are performed using t-test. † and ‡ indicate p-value < 0.05 and 0.01, respectively.

Method Flu. Coh. Int. Rich.

BART-greedy 1.921 1.507 1.222‡ 0.611‡

BART-samp 1.833‡ 1.383‡ 1.500‡ 0.926‡

BART-k10 1.853‡ 1.461† 1.506‡ 0.983‡

BART-k25 1.813‡ 1.333‡ 1.560† 1.182‡

CAPT 1.953 1.653 1.707 1.660
Observed 1.941 1.744 1.740 -

Table 2: Manual evaluation on augmented data. The
bottom row corresponds to the high-quality observed
dialogue data in D. Significance tests between CAPT
and baselines are performed using t-test. † and ‡ indicate
p-value < 0.05 and 0.01, respectively.

eration process of different-semantic responses in
Figure 3. (2) Our augmented data achieve better
scores of BSf , BSfo and Richness, which indicates
that CAPT can augment more responses with differ-
ent semantics. In particular, BART-samp vs. CAPT
shows the effectiveness of intervention in the re-
ply perspective. (3) BART-k10 achieves relatively
good scores on all the metrics compared to other
baselines. This indicates that the top-k sampling
(k=10) is superior to the other decoding strategies.
Thus, the top-k sampling (k=10) can be used for
the following generation-based models.

5.2 Evaluating Dialogue Model

We further evaluate the benefit of our augmented
data on retrieve-based and generation-based dia-
logue models. Specifically, we follow Zhang et al.
(2020a) and select 300K augmented post-response
samples for all methods for a fair comparison. We
conduct automatic evaluation on 5K test data and
manual evaluation on 600 samples that contain
200 randomly-sampled posts with 3 generated re-
sponses. The κ value for Fluency, Coherence, In-
teresting and Richness are 0.67 (moderate agree-
ment) are 0.71 (substantial agreement), 0.59 (mod-
erate agreement), 0.48 (moderate agreement) and
0.53(moderate agreement), respectively.

Method MAP R10@1 R10@2 R10@5

Observed 80.21‡ 69.72‡ 82.05‡ 94.96†

Augmented 76.67‡ 65.14‡ 78.16‡ 92.46‡

MLM 80.22‡ 69.76‡ 82.05‡ 94.90†

Back-Trans 80.26‡ 69.75‡ 82.21‡ 94.99
DL 80.47‡ 70.05‡ 82.41† 95.03
BM25 80.07‡ 69.68‡ 81.62‡ 94.82‡

BART-greedy 80.37‡ 70.03‡ 82.17‡ 94.75‡

BART-samp 80.42‡ 70.17‡ 82.03‡ 94.88‡

BART-k10 80.38‡ 70.06‡ 82.15‡ 94.79‡

BART-k25 80.53‡ 70.30‡ 82.21‡ 94.91†

CAPT 81.08 71.08 82.86 95.14

Table 3: Automatic evaluation on different data augmen-
tation methods for retrieve-based models. We repeatedly
experiment 10 times with different seeds and report the
averaged scores. † and ‡ indicate that the improvement
of CAPT is significant at the level of 0.05 and 0.01 re-
spectively (significance tests via t-test).

The results on retrieve-based and generation-
based models are respectively shown in Table 3
and 4, which indicates that CAPT outperforms all
the baselines on almost all the metrics for both
dialogue models. This confirms the effectiveness
of augmenting valid responses with different se-
mantics. We can further observe that: (1) CAPT
achieves higher scores for almost all the metrics
compared to other BART-based methods, espe-
cially BART-samp. This demonstrates that inter-
vention in the reply perspective is effective for im-
proving the performance of dialogue models. (2)
CAPT achieves higher BSf and Richness ratings
but a relatively lower BLEU score. We speculate
that augmenting more semantically different sam-
ples enables dialogue models to generate more re-
sponses that differ from references.

5.3 Further Discussion

Further, we also investigate the impact of the
amount of augmented responses and the effect of
each component of CAPT.
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Method BLEU Intra-Dist-1,2 Inter-Dist-1,2 BSf Flu. Coh. Int. Rich.

Observed 2.22 91.11‡ 98.21‡ 73.83‡ 93.18† 60.54‡ 1.806‡ 1.377‡ 1.645 1.075‡

Augmented 1.85 92.29‡ 98.16‡ 77.86 93.28 59.76 1.848 1.363‡ 1.652 1.320
MLM 2.16 91.19‡ 98.25‡ 74.41‡ 93.37 60.50‡ 1.813† 1.438 1.653 1.095‡

Back-Trans 2.21 91.26‡ 98.26‡ 74.66‡ 93.49 60.45‡ 1.791‡ 1.443 1.657 1.115‡

DL 2.23 92.09‡ 98.35‡ 75.02‡ 93.42 60.35‡ 1.823† 1.462 1.665 1.135‡

BM25 1.68 91.55‡ 98.14‡ 76.51‡ 92.02‡ 60.17† 1.803‡ 1.155‡ 1.650 1.185†

BART-greedy 3.54 91.54‡ 98.02‡ 64.79‡ 80.87‡ 67.18‡ 1.841 1.453 1.508‡ 0.895‡

BART-samp 2.86 92.12‡ 98.42‡ 69.81‡ 88.91‡ 63.51‡ 1.822† 1.448 1.582‡ 0.910‡

BART-k10 2.72 91.71‡ 98.53 70.51‡ 90.02‡ 63.45‡ 1.835 1.480 1.584‡ 0.925‡

BART-k25 2.70 91.93‡ 98.45‡ 71.29‡ 90.46‡ 62.81‡ 1.812† 1.425† 1.623† 0.935‡

CAPT 2.11 93.39 98.67 78.03 93.62 59.64 1.867 1.492 1.677 1.355

Table 4: Automatic and manual evaluation on different data augmented methods for generation-based dialogue
models. Significance tests between CAPT and baselines were performed using t-test, where booststrap resam-
pling (Koehn, 2004) was applied for automatic evaluation. † and ‡ indicate p-value < 0.05 and 0.01, respectively.
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Figure 4: Performance changes on retrieve-based and
generation-based dialogue models respectively by pro-
viding different amounts of augmented data generated
by CAPT and BART-sampling. We use MAP and BSf

metrics to evaluate corresponding models.

The Impact of Amount. We select 0x, 1x, 2x, 3x
the amount of training samples to assess the impact
of providing more responses and compare CAPT
with the baseline, i.e., BART-samp. Note that 3x
represents that 3*300K augmented post-response
samples are selected. Considering that samples se-
lected in order have different interesting degrees,
we eliminate the impact of interesting by uniformly
selecting 900K augmented samples and randomly
select from them. The results are shown in Figure 4.
We can observe that: (1) The MAP score on BART-
samp reaches a peak at 2x and drops afterward, and
BSf keeps increasing from 0x to 3x augmentation.
We speculate that BART-samp only outputs alter-
native expressions with diversified words, which
have limited semantic differences. Augmentation
of similar samples at high amounts would nega-
tively affect training. (2) However, the MAP score
on CAPT keeps increasing and BSf does not in-
crease. This indicates that CAPT can augment
responses with different semantics, and providing
more semantically different responses can further

Method MAP R10@1 R10@2 R10@5

CAPT 81.08 71.08 82.86 95.14
-Predictor 80.63‡ 70.33‡ 82.65 94.96†

-Candidate 80.22‡ 69.90‡ 82.01‡ 94.62‡

-Selection 80.41‡ 69.92‡ 82.44† 95.08
-Dial PLM 80.52‡ 70.19‡ 82.39† 94.98†

-Back PPL 80.68‡ 70.41‡ 82.51† 95.07
-Gumbel 80.83† 70.62† 82.76 95.02

Table 5: Ablation study on different components of
CAPT on retrieve-based dialogue models. We repeat-
edly experiment 10 times with different seeds and report
the averaged scores. † and ‡ indicate that the perfor-
mance drop is significant at the level of 0.05 and 0.01
respectively (significance tests via t-test).

improve the performance of downstream tasks.

Ablation Study. We perform the following abla-
tion tests to validate the effect of each component:
(1) Randomly choose a keyword from candidates
as the reply perspective without the prediction step
(-Predictor); (2) Only take the post and the focus as
the input to the predictor without 1-hop neighbors
as candidates (-Candidate); (3) Do not filter out
the augmented data via data selection (-Selection);
(4) Leverage a general pre-trained language model
GPT2, which does not see enough dialogue sam-
ples, to replace the dialogue pre-trained language
model DialoFlow (-Dial PLM); (5) Only use the for-
ward PPL scores to filter out invalid samples with-
out ranking via the backward PPL scores (-Back
PPL). (6) Generate responses not under the cur-
rent environment, i.e, without the posterior Gum-
bel noises (-Gumbel). The results are shown in
Table 5. We observe that ablating each component
brings varying degrees of performance drop. This
demonstrates the necessity of designing all these
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components.

6 Related Work

Data Augmentation. Data augmentation has
been widely used in various NLP tasks and sur-
veyed by Shorten and Khoshgoftaar (2019); Wen
et al. (2021); Feng et al. (2021); Ni et al. (2021);
Chen et al. (2021). Overall, data augmentation
methods either add slightly modified copies of ex-
isting data or create synthetic data. Some work
propose to use heuristic rules (Du and Black, 2018)
or paraphrasing-based methods (Niu and Bansal,
2019; Li et al., 2019; Cai et al., 2020; Zhang et al.,
2020a; Xie et al., 2022; Cao et al., 2022). An-
other line of work (Chang et al., 2021; Yang et al.,
2020; Schick and Schütze, 2021; Wang et al., 2021;
Zheng et al., 2022) is exploiting large-scale pre-
trained language models for data augmentation.
However, these existing methods do not focus on
creating semantically different responses.

Semantically Different Augmentation. Gangal
et al. (2021) utilizes knowledge sources, includ-
ing COMET (Bosselut et al., 2019) and corpus
retrieval (Robertson et al., 1994) to augment seman-
tically diverse references for dialogue evaluation.
Both methods only pre-define limited augmented
perspectives. In contrast, CAPT obtains richer re-
ply perspectives by building a shift graph.

Counterfactual Inference. Our work is based
on counterfactual inference (Pearl et al., 2000),
which has shown promising results in various NLP
tasks, including question answering (Paranjape
et al., 2022; Yu et al., 2021), machine transla-
tion (Liu et al., 2021) and story generation (Qin
et al., 2019; Hao et al., 2021; Chen et al.). In par-
ticular, Zhu et al. (2020) uses counterfactual infer-
ence for response generation, which explores poten-
tial responses via counterfactual off-policy training.
However, CAPT focuses on counterfactual data
augmentation, which can be used to improve the
performance of multiple downstream tasks.

Graph Construction. Some researches (Xu
et al., 2020; Zou et al., 2021) also build a graph
to manage concept shifts for response generation,
which aims to form a more coherent and control-
lable dialogue. In contrast, CAPT builds a shift
graph to predict valid substituted reply perspec-
tives, which are used to augment responses with
different semantics. Due to the different purposes

of use, our graph construction is different from
these existing works.

7 Conclusion

This paper presents a counterfactual data augmen-
tation method, CAPT, to augment more responses
with different semantics for a given dialogue his-
tory. Specifically, CAPT employs counterfactual in-
ference to generate counterfactual responses by in-
tervening in the observed reply perspective, which
replaces with different reply perspectives for gen-
erating semantically different responses. Experi-
mental results show that CAPT can augment high-
quality responses with different semantics, which
can be further used to improve the performance
of downstream tasks. In future work, we plan to
explore an appropriate training strategy for further
preventing dialogue models from being affected by
noises in our augmented data, and extend CAPT on
multi-turn dialogues. We hope that CAPT will en-
courage future research for other generation tasks.

Limitations

CAPT works well in scenarios with a certain
amount of observed data. A small amount of ob-
served data would lead to a small-scale shift graph.
Thus, it is difficult to provide enough candidates
to pick out more valid reply perspectives, and then
augment sufficient valid post-response samples. In
addition, CAPT may be more suitable for open-
domain dialogue augmentation in some languages
that require good-quality keyword extraction meth-
ods and pre-trained models for that language. e.g.,
Chinese and English. When transferred to different
languages, e.g., English, the modifications are re-
quired as follows: (1) use the English-version key-
word extraction method and keyword/sentence en-
coder when building the graph; (2) use the English-
version pre-trained model as the backbone model
for the reply perspective predictor and the counter-
factual generator.
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In this work, we employ three annotators to man-
ually evaluate the quality of augmented data and
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A Task Definitions

Response Selection. Given a dataset D =
{(xi,yi, li)Ni=1}, the retrieval-based dialogue
model learns a matching function to correctly
identify the positive response from a set of neg-
ative responses. Specifically, the matching func-
tion Pθ(l

i|xi,yi) predicts whether the response yi

matches the dialogue history xi. li ∈ {0, 1} de-
notes a matching label, which indicates that yi is a
proper response for xi if li = 1, otherwise li = 0.
The model parameters θ can be learned by mini-
mizing the loss function that is formulated as

Lsel =−
∑N

i=1
[li logPθ(l

i = 1|xi,yi)

+ (1− li) logPθ(l
i = 0|xi,yi)]

(6)

Generally, the training negative responses are ran-
domly selected from the dataset D.

Response Generation. Given a dataset D =
{(xi,yi)Ni=1}, the generation-based dialogue
model learns to model the distribution Pϕ(yi|xi)
of the response yi given the dialogue history xi.
The model parameters ϕ can be learned by mini-
mizing the following loss:

Lgen = −
∑N

i=1
logPϕ(y

i|xi) (7)

However, a dialogue dataset that admits multi-
ple semantically different responses for each dia-
logue history is usually expensive to collect, as it
requires annotators to write a large variety of valid
responses. Although such a dataset can be crawled
from social networks, it will contain many noisy
and meaningless responses. It is also expensive to
pick out sufficient high-quality dialogues that meet
requirements. Thus, counterfactual data augmen-
tation aims to further augment different-semantic
responses ỹi for xi in D without manually collect-
ing new data. In the following sections, we will
omit the superscript i for simplicity.

B Experimental Details

B.1 Data

The experiments are conducted on the Chinese
Weibo corpus (Zhang et al., 2020a). Specifically,
the dataset D contains training, validation, and test
sets with 300K, 5K, and 10K post-response sam-
ples, respectively. To build the shift graph, we ap-
ply YAKE (Campos et al., 2020) that relies on the

statistical features of the text to automatically ex-
tract the most important keywords of each utterance
in the training data. Keywords are limited to nouns,
adjectives and verbs. The number of keyword ver-
tices and edges are 77, 439 and 202, 266 respec-
tively. Furthermore, we randomly sample 200
post-response samples and employ three human
annotators to evaluate the appropriateness of both
keywords of focus and reply perspective. About
86% keyword pairs are accepted by the annota-
tors. The average number of candidate keywords
at training and augmentation times are 102 and
124 respectively. After achieving augmented data,
we similarly evaluate whether the responses share
similar core semantics with the given reply perspec-
tives. About 96.5% responses are accepted by the
annotators.

B.2 Implementation Details

CAPT. For graph construction, we pursue bert-
as-service (Xiao, 2018) to achieve the embedding
by mapping a variable-length text sequence to a
fixed-length vector. Our predictor and generator
are independently fine-tuned on the BART-large
model (Shao et al., 2021) using the loss in Eq. 4
and 5 for ten epochs, with the batch size of 64, the
learning rate of 1e-5. The other hyper-parameter
setting follows that of Shao et al. (2021). The max-
imum sequence length is set to 512. We thus limit
the maximum candidate size of our predictor to
100. If the candidate size is greater than 100, we
randomly sample 100 candidates. We then filter
out those samples whose candidate size is less than
5. For data selection, we implement the score func-
tions by fine-tuning the pre-trained DialoFlow (Li
et al., 2021) model withD for two epochs, with the
batch size of 64 and the learning rate of 1e-5. The
best threshold η is 10.

At augmentation time, we also limit the range
of the candidate size from 5 to 100. Thus, we
divide the whole candidate set into K sub-sets
and set the candidate size of each sub-set Nc̃ =
max(min( |N (c̃)|

K , 100), 5), where K is initialized
by 20. We further update K = |N (c̃)|

Nc̃
. The predic-

tor outputs reply perspectives with greedy search.
The generator samples counterfactual responses
from posterior Gumbel noises, the temperature is
set to 0.5.

Retrieve-based Model. The retrieve-based
model is built by fine-tuning the pre-trained
BERT-base (Devlin et al., 2019) for two epochs,
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with the learning rate of 2e-5, the batch size of 64,
and the max sequence length of 512. we adopt the
last checkpoint for evaluation.

Generation-based Model. The generation-based
model is built by fine-tuning the pre-trained BART-
large (Shao et al., 2021) for five epochs, with the
learning rate of 1e-5, the batch size of 64, and the
max sequence length of 512. At inference time,
we use the top-k sampling (k=10), and the maxi-
mum decoded length is set to 50. we adopt the last
checkpoint for evaluation.

Training and Evaluation. We train retrieve-
based dialogue models with 4 GPUs, generation-
based models with 8 GPUs, the reply perspective
predictor with 8 GPUs, and the counterfactual gen-
erator with 8 GPUs. We use Nvidia Tesla V100
GPUs. The training time for retrieve-based mod-
els, generation-based models, the reply perspective
predictor, and the counterfactual generator is ap-
proximately 2h, 4h, 4h and 5h, respectively. At
augmentation time, it takes 55min to predict re-
ply perspectives and 1h to generate counterfactual
responses for all augmented samples. When cal-
culating the forward and backward PPL scores, it
takes 40min respectively.
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