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Abstract

Part-of-Speech (POS) tagging is an important
component of the NLP pipeline, but many low-
resource languages lack labeled data for train-
ing. An established method for training a POS
tagger in such a scenario is to create a labeled
training set by transferring from high-resource
languages. In this paper, we propose a novel
method for transferring labels from multiple
high-resource source to low-resource target
languages. We formalize POS tag projection
as graph-based label propagation. Given trans-
lations of a sentence in multiple languages, we
create a graph with words as nodes and align-
ment links as edges by aligning words for all
language pairs. We then propagate node la-
bels from source to target using a Graph Neu-
ral Network augmented with transformer lay-
ers. We show that our propagation creates
training sets that allow us to train POS tag-
gers for a diverse set of languages. When
combined with enhanced contextualized em-
beddings, our method achieves a new state-of-
the-art for unsupervised POS tagging of low
resource languages.

1 Introduction

In many applications, Part-of-Speech (POS) tag-
ging is an important part of the NLP pipeline. In
recent years, high-accuracy POS taggers have been
developed owing to advances in machine learning
methods that combine pretraining on large unla-
beled corpora and supervised fine-tuning on well-
curated annotated datasets. This methodology only
applies to a handful of high-resource (HR) lan-
guages for which the necessary training data exists,
leaving behind the majority of low-resource (LR)
languages. When training resources are scarce, an
established method for training POS taggers is to
automatically generate the training data via cross-
lingual transfer (Yarowsky and Ngai, 2001; Fossum
and Abney, 2005; Agić et al., 2016; Eskander et al.,

*Equal contribution.
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Figure 1: The sentence “actions speak louder than
words” in English and its translations to Persian, Ger-
man, and Turkish, aligned at the word level. The POS
tags for high-resource English and German are known.
We use a GNN to exploit this graph structure and com-
pute POS tags for low-resource Persian and Turkish.

2020). Typically, POS annotations are projected
through alignment links from the HR source to the
LR target of a word aligned parallel corpus.

In this paper, we propose GLP (Graph Label
Propagation), a novel method for transferring la-
bels simultaneously from multiple high-resource
source languages to multiple low-resource target
languages. We formalize POS tag projection as
graph-based label propagation. Given translations
of a sentence in multiple languages, we create a
graph with words as nodes and alignment links as
edges by aligning words for all language pairs. We
then propagate POS labels associated with source
language nodes to target language nodes, using
a label propagation model that is formalized as
a Graph Neural Network (GNN) (Scarselli et al.,
2008). Nodes are represented by a diverse set of
features that describe both linguistic properties and
graph structural information. In a second step, we
additionally employ self-learning to obtain reliable
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training instances in the target languages.
Our approach is based on multiparallel corpora,

meaning that the translation of each sentence is
available in more than two languages. We ex-
ploit the Parallel Bible Corpus (PBC) of Mayer
and Cysouw (2014),1 a multiparallel corpus cover-
ing more than 1000 languages, many of which are
extremely low-resource, by which we mean that
only a tiny amount of unlabeled data is available or
that no language technologies exist for them at all
(Joshi et al., 2020).

We evaluate our method on a diverse set of low-
resource languages from multiple language fami-
lies, including four languages not covered by pre-
trained language models (PLMs). We train POS
tagging models for these languages and evaluate
them against references from the Universal Depen-
dencies corpus (Zeman et al., 2019). We compare
the results of our method against multiple state-
of-the-art (SOTA) cross-lingual unsupervised and
semisupervised POS taggers employing different
approaches like annotation projection and zero-shot
transfer. Our experiments highlight the benefits of
our new transfer and self-learning methods; cru-
cially, they show that reasonably accurate POS tag-
gers can be bootstrapped without any annotated
data for a diverse set of low-resource languages,
establishing a new SOTA for high-resource-to-low-
resource cross-lingual POS transfer. We also assess
the quality of the projected annotations with respect
to “silver” references and perform an ablation study.
To summarize, our contributions are:2

• We formalize annotation projection as graph-
based label propagation and introduce two
new POS annotation projection models,
GLP-B (GLP-Base) and GLP-SL (GLP-
SelfLearning).

• We evaluate GLP-B and GLP-SL on 17 low-
resource languages, including 4 languages not
covered by large PLMs.

• By comparing our method with various su-
pervised, semisupervised, and PLM-based ap-
proaches for POS tagging of low-resource lan-
guages, we establish a new SOTA for unsuper-
vised POS tagging.

1We do not use PBC-specific features. Thus, our work is
in principle applicable to any multiparallel corpus.

2Our code, data, and trained models are available at https:
//github.com/ayyoobimani/GLP-POS

2 Related work

POS tagging Part of Speech tagging aims to as-
sign each word the proper syntactic tag in con-
text (Manning and Schütze, 1999). For high-
resource languages, for which large labeled training
sets are available, high-accuracy POS tagging is
achieved through supervised learning (Kondratyuk
and Straka, 2019; Tsai et al., 2019).

Zero-shot transfer In low-resource settings, one
approach is to use cross-lingual transfer thanks to
pretrained multilingual representations, thereby en-
abling zero-shot POS tagging. Kondratyuk and
Straka (2019) analyze the few-shot and zero-shot
performance of mBERT (Devlin et al., 2019) fine-
tuning on POS tagging. We include this approach
in our set of baselines below. Ebrahimi and
Kann (2021) and Wang et al. (2022) analyze zero-
shot POS tagging performance of XLM-RoBERTa
(Conneau et al., 2020) and propose complementary
methods such as continued pretraining, vocabulary
expansion and adapter modules for better perfor-
mance. We show that combining GLP with Wang
et al. (2022)’s embeddings further improves our
base performance.

Annotation projection Annotation projection is
another approach to annotating low-resource lan-
guages. Yarowsky and Ngai (2001) first proposed
projecting annotation labels across languages, ex-
ploiting parallel corpora and word alignment. To
reduce systematic transfer errors, Fossum and Ab-
ney (2005) extended this by projecting from mul-
tiple source languages. Agić et al. (2015a) and
Agić et al. (2016) exploit multilingual transfer se-
tups to bootstrap POS taggers for low-resource lan-
guages starting from a parallel corpus and taggers
and parsers for high-resource languages. Other
works project labels by leveraging token and type-
level constraints (Täckström et al., 2013; Buys and
Botha, 2016a; Eskander et al., 2020). The latter
study notably proposes an unsupervised method for
selecting training instances via cross-lingual pro-
jection and trains POS taggers exploiting contex-
tualized word embeddings, affix embeddings and
hierarchical Brown clusters (Brown et al., 1992).
This approach is also used as a baseline below.

Semi-supervised approaches have been proposed
to mitigate the noise of projecting between lan-
guages. This can be achieved with auxiliary lex-
ical resources (Täckström et al., 2013; Ganchev
and Das, 2013; Wisniewski et al., 2014; Li et al.,
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2012) that guide unsupervised learning or act as an
additional training signal (Plank and Agić, 2018).
Other works combine manual and projected anno-
tations (Garrette and Baldridge, 2013; Fang and
Cohn, 2016). We outperform prior works without
the use of additional resources such as dictionaries
or annotations.

Graph Neural Networks Many natural and real-
life structures like physical systems, social net-
works & interactions, and molecular fingerprints
have a graph structure (Liu and Zhou, 2020). Graph
neural networks have been successfully used to
model them. Applications include social spam-
mer detection (Wu et al., 2020), learning molecular
fingerprints (Duvenaud et al., 2015) and human mo-
tion prediction (Li et al., 2020). Recently, GNNs
have been adopted for NLP tasks such as text clas-
sification (Peng et al., 2018), sequence labeling
(Zhang et al., 2018; Marcheggiani and Titov, 2017),
neural machine translation (Bastings et al., 2017;
Beck et al., 2018), and alignment link prediction
(Imani et al., 2022). As far as we know, our work
is the first to formalize the annotation projection
problem as graph-based label propagation.

Multiparallel corpora A multiparallel corpus
provides the translations of a source text in more
than two languages. A few such corpora (Agić and
Vulić, 2019; Mayer and Cysouw, 2014; Tiedemann,
2012) provide sentence-level aligned text for hun-
dreds or thousands of languages; for many of these
languages only a tiny amount of digitized content is
available (Joshi et al., 2020). Although the amount
of text found in existing multiparallel corpora is far
less than in monolingual corpora, we believe that
they can serve as cross-lingual bridges, with which
effective representation for low-resource languages
can be derived. Highly multiparallel corpora have
been used for expanding pretrained models to more
languages (Ebrahimi and Kann, 2021; Wang et al.,
2022), word alignment improvement and visual-
ization (ImaniGooghari et al., 2021; Imani et al.,
2022), embedding learning (Dufter et al., 2018),
and annotation projection (Agić et al., 2015b; Sev-
erini et al., 2022).

3 Method

We now introduce our Graph Label Propagation
(GLP) method, which formalizes the problem of
annotation projection as graph-based label propa-
gation. We first describe the graph structure, then
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Figure 2: An example of how we represent nodes of an
alignment graph using features for a part of the graph
in Figure 1.

the features associated with each node, and finally
the architecture of our model.

3.1 Problem formalization

The multilingual alignment graph (MAG) of a sen-
tence is formalized as follows. Each sentence σ
in our multiparallel corpus exists in a set L of lan-
guages.3 L contains both high-resource source lan-
guages (in Ls) and low-resource target languages
(in Lt) with Ls ∪ Lt = L. Each word in these |L|
versions of σ will constitute a node in our graph.
We first automatically annotate the text in all the
source languages using pre-existing taggers: these
POS tags are node labels; they are only known for
languages in Ls, unknown otherwise. We then use
Eflomal (Östling and Tiedemann, 2016), an unsu-
pervised word alignment tool to compute alignment
links for all |L|∗(|L|−1)2 language pairs: these links
define the edges of our MAG. Figure 1 displays
an example MAG for four languages, with English
and German as sources and Turkish and Persian as
targets. Note that both the word alignments and the
node labels are noisy, since we do not use gold data
but statistical methods to generate them.

3.2 Features

To train graph neural networks, we represent each
node using a set of features (Duong et al., 2019). In
Figure 2, you see a simple illustration of how nodes
are represented using a feature vector. The graph in
this figure is part of the original graph in Figure 1.
Two types of features are considered: features that
represent the inherent meaning of a node/word
(word representation features) and features that
describe the position of a node within the graph
(graph structural features). Node representation
features consist of: XLM-R (Conneau et al., 2020)
embeddings, the node’s language and its position
within the sentence. Since XLM-R embeddings
are not available for all languages, we alternatively

3|L| might be different for different sentences.
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experiment with static word embeddings created us-
ing Levy et al. (2017)’s sentence-ID method, which
we train on PBC. Our graph structural features
are similar to Imani et al. (2022)’s work on link
prediction. They include five centrality features:
degree, closeness (Freeman, 1978), betweenness
(Brandes, 2001), load (Newman, 2001), and har-
monic centrality (Boldi and Vigna, 2014). Each of
these features describes the node’s position within
the graph from a different perspective. For ex-
ample, degree is the number of neighbors of the
node and harmonic centrality measures how im-
portant/influential a node is. They also include
two community features corresponding to the ID
of the node’s communities computed respectively
with the greedy modularity community detection
method of Clauset et al. (2004) and the label propa-
gation algorithm of Cordasco and Gargano (2010).
These two methods detect communities of nodes
such that there are many links within the communi-
ties and only a few between them.

3.3 GLP architecture
Figure 3 displays the architecture of our GLP
model; white nodes are for the source (= training)
languages and green nodes for the target languages.
The model has two parts: the GNN-based encoder
turns the alignment graph into node representations
and the classifier learns to label nodes based on
these representations. The network is trained to
reproduce POS tags for each source node; it is then
used to predict the unknown tags for target nodes.

The encoder has two GATConv layers
(Veličković et al., 2018): given a graph with
M nodes represented as x1,x2, ...,xM , with
respective neighborhoods N (1),N (2), ...,N (M),
a GATConv layer computes a new representation
x′i for each node as:

x′i =
∑

j∈N (i)∪{i}
αi,jWxj , (1)

where W is a learnable weight matrix. αi,j mea-
sures how much node i “attends” to node j as fol-
lows:

αi,j =
exp

(
g
(
a>[Wxi ‖Wxj ]

))
∑

k∈N (i)∪{i} exp (g (a
>[Wxi ‖Wxk]))

where ‖ stands for concatenation, g is the
LeakyReLU (Maas et al., 2013), and a is a weight
vector. As neighborhoods only use alignment links,
the representation of a node is only influenced

by nodes in other languages. Also note that both
source and target nodes are fed to the encoder.

We train two GLP models: GLP-Base (GLP-B)
and GLP-SelfLearning (GLP-SL). The first one is
the basic GNN architecture. It tags a token based
on the other languages only, i.e. it makes no use of
the sequence information of the current token in its
own language. The second additionally employs
self-learning and is given access to the local context
of each token in its own language.

GLP-B uses a multi-layer perceptron as classifier.
We feed the node representations to the classifier
and train the model end-to-end. We can only do
this for source nodes since we have no training data
for the target languages.

GLP-SL additionally employs self-learning and
a better classifier. Self-learning takes advantage of
node labels predicted by GLP-B in the first step:
when the prediction confidence exceeds a threshold
γ, these labels are deemed correct and the corre-
sponding nodes are considered when training the
classifier. GLP-SL uses a Transformer architecture
to predict POS tags. The Transformer input con-
sists of all translations of a sentence, where words
are represented as GNN node embeddings. Each
embedding is the concatenation of input (xi) and
output representations (x′i) of the corresponding
node in the GNN. In addition to the information
available from neighbor nodes in other languages,
the Transformer can attend to other words of the
sentence in the same language, some of which may
already be (automatically) labeled. This is very
different from the training of GLP-B, where the
POS of words of the same language were either all
known (for source languages) or all unknown (for
target languages), and explains why we resorted to
a simpler classifier in the first stage.

Similarly to Eskander et al. (2020) and Agić et al.
(2016), GLP-SL uses type-level information: for
each word type, we create a tag distribution by
accumulating counts of the number of times each
tag was assigned. For source words, we use the
training data to estimate the distribution. For target
words, we use the predictions of GLP-B on PBC.

3.4 Neural POS tagger

We use the noisy labeled data, generated by GLP-
B or GLP-SL, to train monolingual neural POS
taggers. Each model is a Bi-LSTM (Bidirec-
tional Long Short-Term Memory, (Hochreiter and
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Figure 3: The architecture of GLP (Graph Label Projector). Source nodes are in white, target nodes in green.
For training, we first feed the alignment graph of a sentence to the encoder to compute a representation for each
node. Next we feed the representations of the source nodes to the classifier. The training objective is cross entropy
on prediction of POS tags. Note that we know the POS tags of the source nodes. After training, the model can
generalize the POS tag prediction to target nodes.

Schmidhuber, 1997) with XLM-RoBERTa embed-
dings (Conneau et al., 2020). The input is a sen-
tence labeled by GLP-B or GLP-SL. A token is
assigned the NULL tag in case of missing labels.
It is then ignored (i.e., masked) when computing
the cross-entropy loss. To avoid predicting NULL,
we set the corresponding output cell in the softmax
to −∞, similarly to Eskander et al. (2020).

4 Experimental setup

Table 1 gives our split of languages into training
(15), development (4) and test (17) sets. The train-
ing set contains the source languages used for the
transfer, while the development set languages are
used as targets for parameter tuning. Training and
test languages represent diverse language families
and diverse availability. Note that training and dev
languages are high-resource while test languages
are low-resource. For most of the test languages,
there are fewer than 8000 verses available in the
Parallel Bible Corpus;4 for Manx, fewer than 4000.
We evaluate POS tagging performance on the Uni-
versal Dependencies (UD) (Zeman et al., 2019)
test sets. As UD and PBC tokenizations differ, we
further adopt the following rule: if a PBC token cor-
responds to a sequence of several UD tokens, we
replace the sequence with the original word, tagged
with the tag of the UD token in the sequence that
is highest in the dependency tree (cf. (Agić et al.,
2016)). To tag the high-resource training and dev
languages, we use Stanza (Qi et al., 2020),5 a state-
of-the-art NLP Python library. We create word

4Bible versions are described in Appendix A.1.
5https://stanfordnlp.github.io/stanza/

Lang ISO Family # verses

Tr
ai

ni
ng

la
ng

ua
ge

s

Arabic arb Afro-Asiatic, Semitic 31173
Chinese zho Sino-Tibetan, Sinitic 31157
Danish dan Indo-European, Germanic 31173
English eng Indo-European 31099
Finnish fin Uralic, Finnic 30200
French fra Indo-European, Romance 31173
German deu Indo-European, Germanic 31173
Irish gle Indo-European, Celtic 34957
Italian ita Indo-European, Romance 35377
Polish Pol Indo-European, Slavic 31157
Russian rus Indo-European, Slavic 31173
Spanish spa Indo-European, Romance 31157
Swedish swe Indo-European, Germanic 31157
Tamil tam Dravidian, Southern Dravidian 7942
Urdu urd Indo-European, Indic 7046

D
ev

la
ng

ua
ge

s Czech ces Indo-European, Slavic 31157
Greek ell Indo-European, Greek 31173
Hebrew heb Afro-Asiatic, Semitic 23174
Hungarian hun Uralic, Ugric 31157

Te
st

la
ng

ua
ge

s

Afrikaans afr Indo-European, Germanic 31157
Amharic amh Afro-Asiatic, Semitic 7942
Basque eus Basque, Basque 7958
Belarusian bel Indo-European, Slavic 7958
Bulgarian bul Indo-European, Slavic 31173
Hindi hin Indo-European, Indic 7952
Indonesian ind Austronesian, Malayo-Sumbawan 31157
Lithuanian lit Indo-European, Baltic 31149
Marathi mar Indo-European, Indic 7947
Persian pes Indo-European, Iranian 7931
Portuguese pos Indo-European, Romance 31157
Telugu tel Dravidian, South-Central Dravidian 31163
Turkish tur Altaic, Turkic 31157
Bambara bam Mande, Western Mande 7958
Erzya myv Uralic, Mordvin 7958
Manx glv Indo-European, Celtic 3994
Yoruba yor Niger-Congo, Defoid 30819

Table 1: Language family and number of verses in PBC
for training, dev, and test languages in our experiments.

alignments using Eflomal (Östling and Tiedemann,
2016),6 a high-quality statistical word aligner, with
the “intersection” symmetrization heuristic. Other
than parallel data, Eflomal does not need any super-
vision signal; we can thus use it for any language
pair in PBC. Details on models’ hyperparameters
are in Appendix A.3. All tagging results reported
below are averages over three runs of the neural

67github.com/robert/eflomal
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with XLM-R without XLM-R

afr amh eus bul hin ind lit pes por tel tur bel mar bam myv glv yor

87.7 82.4 70.9 90.1 81.8 85.3 85.7 81.8 89.2 83.8 80.1 85.9 87.9 65.4 64.4 63.9 59.9

Table 2: Accuracy on UD v2.10 test for GLP-SL when transferring from all training source languages (i.e., GLP-
SL-All). See the other tables for comparison with prior work, which uses older versions of UD.

POS tagger model.

5 Results

We evaluate GLP on 17 test languages from dif-
ferent families, resource availabilities, and scripts,
on Universal Dependencies v2.10, the latest ver-
sion (see details in Appendix A.2). Our results
are in Table 2. For the four languages not sup-
ported by XLM-R, static embeddings are used (see
§3.2) during the training in the GNN part (GLP-
SL), and XLM-R embeddings in the neural POS
tagger model.7 The best performance, > 89, is
obtained for Bulgarian and Portuguese. All scores
with XLM-R are above 80, except for Basque. This
is probably because no language from the same
family appears in the training set. Similarly, Turk-
ish has the lowest performance among the other
test languages. Scores without XLM-R are overall
lower, yet competitive, showing that our projection
method also works for very low-resource languages.
Prior work has used older versions of UD . We now
compare against each baseline, evaluating on the
relevant version of UD in each case.

5.1 Annotation projection-based baselines
In this section, we compare with the unsupervised
SOTA in cross-lingual POS tagging via annotation
projection: ESKANDER (Eskander et al., 2020),
AGIC (Agić et al., 2016) and BUYS (Buys and
Botha, 2016b) as well as EFLOMAL. We also com-
pare with a semi-supervised SOTA method that
uses rapid annotation in addition to cross-lingual
projection: CTRL (Cotterell and Heigold, 2017).

5.1.1 Fully unsupervised baselines
EFLOMAL is a simple projection method using
alignment links followed by majority voting, sim-
ilar to early annotation projection methods (Agić
et al., 2015b; Fossum and Abney, 2005). We first
align all target sentences with the corresponding
sentences in all training languages with Eflomal

7XLM-R embeddings are used even for languages unseen
during its pretraining as they improve performance. This is
probably due to the fact that some words (e.g., names) can be
well represented even for an unseen language.

(Östling and Tiedemann, 2016). Each target word
is then tagged with the most common tag in the
aligned source words. The annotation projection
method ESKANDER (Eskander et al., 2020) uses
alignment links and token and type constraints to
project tags from source to target. The neural POS
tagger features include XLM-R embeddings, affix
embeddings, and word clusters created on PBC and
Wikipedia of the target languages. Table 3 com-
pares EFLOMAL, ESKANDER and GLP. In this
table -Eng stands for when only English is used
as the source language in GLP and -All stands for
when all training languages are used (see §6.1).
GLP outperforms both baselines in all cases but In-
donesian, where ESKANDER is 0.7 points better.
However, they tune their hyperparameters on this
language using dev data while we only tune them
on dev languages. Compared to ESKANDER, we
use a simpler neural POS tagger and less resources,
as we do not use affix embeddings nor word clus-
ters. Our initial experiments indicated that word
clusters were not helping in our setup. The higher
quality of the annotated data created by GLP may
already contain the information provided by word
clusters.

Table 4 compares AGIC, BUYS, CTRL, and
GLP-SL. AGIC (Agić et al., 2016) is a cross-
lingual POS tagger for low-resource languages
based on PBC excerpts and translations of the
Watchtower.8 BUYS (Buys and Botha, 2016b) ex-
tends previous approaches for projecting POS tags
using bitexts to infer constraints on the possible
tags for a given word type or token.

Table 4 shows that GLP outperforms AGIC and
BUYS, except for Portuguese (BUYS), where our
results are slightly below. BUYS projects from
Spanish, which is closely related to Portuguese.
Eskander et al. (2020) showed that it can be advan-
tageous to transfer only from one closely related
language as opposed to a mix of close and distant
languages. Note that BUYS performance for Por-
tuguese drops down to 84.3 when transferring from

8Obtained by crawling http://wol.jw.org
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afr amh eus bul hin ind lit pes por tel tur AVG bel mar AVG

EFLOMAL-Eng 73.7 74.9 60.4 78.9 58.1 72.4 80.3 59.2 74.1 77.5 67.6 70.6 76.2 73.2 71.3
EFLOMAL-All 83.9 79.3 64.5 85.0 68.1 78.4 82.8 68.6 83.8 77.1 74.8 76.9 79.6 77.8 77.2
ESKANDER-Eng 86.9 75.3 67.3 85.6 73.9 84.1 80.9 77.2 86.1 80.0 74.3 79.2
ESKANDER-All 89.3 79.3 67.1 88.2 72.8 83.0 82.5 77.3 87.8 77.1 74.6 79.9

GLP-B-Eng 86.6 81.9 67.5 85.7 76.8 82.7 81.1 76.2 87.6 82.5 76.4 80.4 80.0 82.3 80.6
GLP-SL-Eng 84.4 81.9 68.6 84.0 75.8 81.3 81.0 73.5 86.4 80.6 75.8 79.4 75.1 81.5 79.2
GLP-B-All 89.7 83.6 67.4 89.7 79.9 82.8 85.9 79.6 87.7 81.4 80.3 82.5 87.9 83.2 83.0
GLP-SL-All 87.5 82.9 70.6 89.7 81.9 83.4 85.8 81.9 89.6 83.7 78.4 83.2 88.8 88.4 84.0

Table 3: Accuracy on UD v2.5 test for EFLOMAL, ESKANDER (Eskander et al., 2020) and GLP. “-Eng”: transfer
from English only. “-All”: transfer from all training languages (see Eskander et al. (2020) and Table 1). Bold: best
score for each language.

Target AGIC GLP-SL-All

v1
.2

bul 70.0 mul 86.1
hin 50.5 mul 79.0
ind 75.5 mul 79.5
pes 33.7 mul 75.2
por 84.2 mul 87.7

Target BUYS GLP-SL-All

v1
.2 bul 81.8 eng 86.1

por 88.0 esp 87.7

Target CTRL GLP-SL-All

v2
.0

Bul 68.8 rus-100 89.3
Bul 83.1 rus-1000 89.3
Por 81.8 esp-100 90.1
Por 88.9 esp-1000 90.1

Table 4: Accuracy on UD test for AGIC (Agić et al.,
2016), BUYS (Buys and Botha, 2016b), CTRL (Cot-
terell and Heigold, 2017) and GLP-SL. We also report
the source language or “mul” for multilingual, and for
CTRL, the number of the supervision tokens.

English. BUYS also uses Europarl9 with up to 2M
tokens which is closer in domain to UD than PBC.
Thus, compared to BUYS, the parallel data we use
are smaller, and from a more distant domain.

5.1.2 Semisupervised baseline
CTRL (Cotterell and Heigold, 2017) is a character-
level recurrent neural network for multi-task cross-
lingual transfer of morphological taggers. Their
experiments include small sets of 100 and 1000
annotated target tokens. The bottom part of Table 4
shows that GLP-SL outperforms CTRL despite be-
ing fully unsupervised.

5.2 Zero-shot baselines
Cross-lingual projection is also possible thanks to
multilingual pretrained language models (PLMs).
A PLM is first fine-tuned to POS tagging on source
languages and then used to infer tags for target

9http://www.statmt.org/europarl/

languages. While this approach performs well for
some languages without requiring any parallel data,
its performance tends to be poor for low-resource
languages (Hu et al., 2021). Joshi et al. (2020) clus-
ter languages into six groups based on the amount
of available unlabeled and labeled data that exists
for them. Groups 1 and 2 consist of languages
such as Manx and Yoruba with the least amount of
available data, while group 5 contains languages
like English and Spanish with the largest amount of
available monolingual and labeled data. We com-
pare our approach with three baselines using test
languages from groups 1 and 2.

mBERT based baselines: Kondratyuk and
Straka (2019) use the zero-shot approach with mul-
tilingual BERT (Devlin et al., 2019) as PLM. We
train our POS taggers using mBERT (instead of
XLM-R) embeddings for a fair comparison. Ta-
ble 5 displays the results for the low-resource lan-
guages in group 1 and 2, which are also reported
in the compared work. GLP-SL outperforms zero-
shot in all cases by at least 12 percentage points.
This result suggests that annotation projection us-
ing GLP is more effective than using multilingual
representations for truly low-resource languages
(i.e., languages from the first two groups of Joshi
et al. (2020)). To create proper representations for a
language, PLMs require a huge amount of monolin-
gual data that is not available for many languages.
As Table 5 suggests, due to poor representations,
zero-shot transfer to these languages is also poor.
However, we were able to successfully exploit the
Bible’s parallel data in GLP for the benefit of these
languages.

XLM-R based baselines: Ebrahimi and Kann
(2021) continue pretraining PLMs on PBC and
show that this boosts performance for languages
unseen during the initial pretraining. Wang et al.
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bam myv yor

Kondratyuk and Straka (2019) 30.9 46.7 50.9
GLP-SL-ALL 65.5 64.6 63.3

Table 5: POS tagging accuracy on UD v2.3 test for
zero-shot mBERT and GLP-SL using mBERT embed-
dings.

bam myv glv

Ebrahimi and Kann (2021) 60.5 66.6 59.7
Wang et al. (2022) 69.4 74.3 68.8

GLP-SL-ALL + wang-before 71.1 78.9 70.1
GLP-SL-ALL + wang-after 70.2 80.6 70.7

Table 6: Accuracy on UD v2.5 test for two base-
lines and for our method combined with (Wang et al.,
2022)’s XLM-R models before and after finetuning on
the POS tagging task. (“glv” accuracy is on v2.7.)

(2022) adapt PLMs to languages with little mono-
lingual data using various sources of data includ-
ing PanLex lexicons,10 translations of English
Wikipedia to target languages and the JHU Bible
corpus (McCarthy et al., 2020). These approaches
are in fact complementary to GLP: we can equip
GLP with better multilingual representations to fur-
ther improve our results based on standard XLM-R.
This is reflected in Table 6, where we report results
for zero-shot baselines and combinations based on
Wang et al. (2022)’s improved XLM-R embeddings
(instead of standard XLM-R) to represent tokens
for the POS tagger. We see that these combinations
lead to large performance improvements, establish-
ing new SOTA results.

6 Analysis

6.1 Ablation study

We conduct an ablation study to better understand
what benefits our model.

“Eng” vs “All” Previous works highlighted the
importance of a diverse set of source languages for
cross-lingual transfer (Lin et al., 2019; Turc et al.,
2021). The last four lines of Table 3 report GLP-B
and GLP-SL results when transferring from En-
glish (i.e., using English as the only source), and
when transferring from the full set of source lan-
guages (see Table 1). The transfer from English has
lower performance than from all languages (except
for a decrease from 67.5 to 67.4 for Basque/GLP-
B). This means that our projection method does

10https://panlex.org/snapshot/
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Figure 4: Average per tag accuracy of our GLP sets
with respect to the “silver” reference.

benefit from more data and from the rich informa-
tion present in the diversity of source languages.

GLP-B vs GLP-SL Table 3 reports results when
training the neural POS tagger on GLP-B data and
on GLP-SL data. GLP-B performs better than
GLP-SL for four languages: Afrikaans, Lithuanian,
Portuguese, and Turkish; but the performance dif-
ference is small (1.2 percentage points difference
on average). In eight out of thirteen languages,
GLP-SL gives better results (2.3 percentage points
difference on average). This shows that the trans-
former architecture and the self-learning strategy
are effective for most languages.

Contextualized vs. Static embeddings Our
GLP models use XLM-R embeddings for lan-
guages for which they are available, otherwise
static embeddings (see §3.2). In order to under-
stand their usefulness in the transfer process, we
compare with the performance obtained when static
embeddings are used by GLP-SL. Results reported
in Appendix B show an average improvement of 3
percentage points when XLM-R embeddings are
used. The largest differences (> 5%) are observed
for Hindi, Persian, and Marathi. However, for the
four languages not supported by XLM-R, the POS
tagging accuracy is substantially lower when us-
ing contextualized embeddings compared to static
embeddings (16.6 points drop on average).

6.2 Quality of artificial training sets

In order to evaluate the quality of the training sets
generated by GLP-SL (“GLP sets”), we create a
“silver” reference and compute the accuracy of GLP
sets with respect to it. To build the silver reference,
we annotate the training sets with the Stanza POS
tagger for the languages for which it is available
(12 out of 17). We obtain an average accuracy of
78.7, with Belarusian being the best and Basque
the worst. The best predicted tokens are punctua-
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tion marks, coordinating conjunctions, and verbs,
while the worst ones are symbols, interjections,
and particles (see Figure 4). The high accuracy of
78.7 illustrates the ability of GLP-SL to success-
fully project annotations from high to low-resource
languages.

7 Conclusion and future work

We presented GLP, a novel method for transferring
labels from high-resource source to low-resource
target languages, based on a formalization of anno-
tation projection as graph-based label propagation.
We exploited the Parallel Bible Corpus and showed
that reasonably accurate POS taggers can be boot-
strapped from projected labels. Since we do not use
PBC-specific or language-specific features, GLP
is in principle applicable to the more than 1000
languages of PBC and to any other multiparallel
corpus.

One direction for the future is to employ a sim-
ilar model to transfer higher-level structures such
as dependency trees. Since our method works with
graph structures, one might be able to project de-
pendency trees effectively. We could also extend
our projection method to other tagging tasks like
named entity recognition – although this requires
using other parallel corpora to mitigate the domain
shift problem of such a task. Another line for future
work is to study the best combinations of source
languages to transfer to any target language.

Limitations

Our method is evaluated on 17 languages carefully
chosen to be from different families and scripts.
However, we don’t consider the other languages
(more than 1000) in PBC due to computational
constraints and lack of test sets.

A limitation of the GLP is that training over a
MAG (multilingual alignment graph) created for
all PBC languages requires a prohibitively large
amount of resources, and based on our experiments,
if we use a larger number of target languages at
the same time, the performance will likely drop.
Therefore one has to process languages in smaller
batches (in our case, 36 languages). Accordingly,
to cover all PBC subcorpora, 1341/36 = 38 GLP
models should in principle be trained.

Ethic statement

Our work is based on the Parallel Bible Corpus of
Mayer and Cysouw (2014) that consists of Bible
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that we treat the data simply as a multiparallel cor-
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the opinions of the authors nor of the institutions
funding the authors.
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A Reproducibility details

A.1 Data editions
Table 8 lists the PBC editions used for all the ex-
periments in this paper.

A.2 Universal Dependency tests specification
Table 9 lists the Universal Dependency testsets used
in our experiments.
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afr amh eus bul hin ind lit pes por tel tur bel mar AVG bam myv glv yor AVG

with XLM-R 87.7 82.4 70.9 90.1 81.8 85.3 85.7 81.8 89.2 83.8 80.1 85.9 87.9 84.1 43.0 55.2 50.0 39.0 46.8
without XLM-R 88.4 82.8 72.7 89.3 73.7 80.2 83.9 71.3 85.0 80.1 77.8 85.2 82.0 81.0 65.4 64.4 63.9 59.9 63.4

Table 7: Accuracy on UD v2.10 for GLP-SL when transferring from all training languages (i.e., GLP-SL-All) with
and without using XLM-R for the transfer in GLP-SL.

Lang Edition Lang Edition

Arabic arb-x-bible Hungarian hun-x-bible-newworld
Chinese zho-x-bible-newworld Afrikansc afr-x-bible-newworld
Danish dan-x-bible-newworld Amharic amh-x-bible-newworld
English* eng-x-bible-mixed Basque eus-x-bible-navarrolabourdin
Finnish* fin-x-bible-helfi Belarusian bel-x-bible-bokun
French fra-x-bible-louissegond Bulgarian bul-x-bible-newworld
German deu-x-bible-bolsinger Hindi hin-x-bible-bsi
Irish gle-x-bible Indonesian ind-x-bible-newworld
Italian ita-x-bible-2009 Lithuanian lit-x-bible-ecumenical
Polish pol-x-bible-newworld Marathi mar-x-bible
Russian rus-x-bible-newworld Persian pes-x-bible-newmillennium2011
Spanish spa-x-bible-newworld Portuguese por-x-bible-newworld1996
Swedish swe-x-bible-newworld Telugu tel-x-bible
Tamil tam-x-bible-newworld Turkish tur-x-bible-newworld
Urdu urd-x-bible-2007 Bambara bam-x-bible
Czech ces-x-bible-newworld Erzya myv-x-bible
Greek ell-x-bible-newworld Manx glv-x-bible
Hebrew* heb-x-bible-helfi Yoruba yor-x-bible-2010

Table 8: PBC editions for all used languages. *Edition
from Imani et al. (2022).

Lang Test

Afrikaans af_afribooms-ud-test
Amharic am_att-ud-test
Basque eu_bdt-ud-test
Belarusian be_hse-ud-test
Bulgarian bg_btb-ud-test
Hindi hi_hdtb-ud-test
Ind id_gsd-ud-test
Lithuanian lt_alksnis-ud-test
Marathi mr_ufal-ud-test.
Persian fa_seraji-ud-test
Portuguese pt_bosque-ud-test
Telugu te_mtg-ud-test
Turkish tr_imst-ud-test
Bambara bm_crb-ud-test
Erzya myv_jr-ud-test
Manx gv_cadhan-ud-test
Yoruba yo_ytb-ud-test

Table 9: Universal Dependency test sets used in our
experiments.

A.3 Models parameters

GLP The GLP is implemented using the PyTorch
geometric library.11 All hyperparameters are tuned
on the dev set. GLP-B has 2 layers of MLP of size
2048 while GLP-SL uses four layers of transformer
with hidden size 2048 and 16 attention heads. Al-
though we didn’t observe a difference between dif-
ferent sizes from 512 to 2048. We tuned the learn-
ing rate, batch size, and γ (the self-learning thresh-
old) over the validation languages. In GLP-B learn-
ing rate and batch size are respectively 0.001, 8,

11https://pytorch-geometric.readthedocs.io/en/
latest/

and in GLP-SL 0.00001, and 32. In general, when
using XLM-R embeddings, the model has higher
confidence, so the γ parameter is set to 0.95 when
not using XLM-R embeddings and 0.98 when us-
ing XLM-R embeddings. The whole model needs
about 16GB of GPU memory. GLP-B takes about
2 hours to train and GLP-SL about 12 hours. We
used early stopping with patience of 8 for both
GLP-B and GLP-SL.

Neural POS tagger We run our method on up
to 48 cores of Intel(R) Xeon(R) CPU E7-8857 v2
with 1TB memory and a single GeForce GTX 1080
GPU with 8GB memory. The POS tagger uses the
Flair framework (Akbik et al., 2019) and Sequenc-
eTagger model with 128 hidden size, the "xlm-
roberta-base" embeddings, and AdamW optimizer
Loshchilov and Hutter (2018). The hyperparam-
eters, including the fixed number of epochs (15)
are tuned using the UD development sets of the
development languages. Each Neural POS tagger
was trained in less than 30 minutes.

B Contextualized vs. Static embeddings

Table 7 shows results obtained with our GLP-SL
with and without using XLM-R embeddings for
projection. Note that the final neural POS tagger
models always use XLM-R embeddings, even for
languages unseen during XLM-R pretraining.
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