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Abstract

Most evaluations of attribution methods focus
on the English language. In this work, we
present a multilingual approach for evaluating
attribution methods for the Natural Language
Inference (NLI) task in terms of faithfulness
and plausibility. First, we introduce a novel
cross-lingual strategy to measure faithfulness
based on word alignments, which eliminates
the drawbacks of erasure-based evaluations.
We then perform a comprehensive evaluation
of attribution methods, considering different
output mechanisms and aggregation methods.
Finally, we augment the XNLI dataset with
highlight-based explanations, providing a mul-
tilingual NLI dataset with highlights, to sup-
port future exNLP studies. Our results show
that attribution methods performing best for
plausibility and faithfulness are different.1

1 Introduction
The opaqueness of large pre-trained models like
BERT (Devlin et al., 2019) and GPT (Radford
and Narasimhan, 2018) motivates developing ex-
planation methods (Wallace et al., 2020), which
aim to attribute importance to particular input fea-
tures (Springenberg et al., 2015; Bach et al., 2015;
Ribeiro et al., 2016; Sundararajan et al., 2017),
such as words in a textual input. Two main crite-
ria for evaluating such methods are plausibility and
faithfulness (Jacovi and Goldberg, 2020). Plausibil-
ity can be defined as the consistency between expla-
nations and human expectations, while faithfulness
is defined as the consistency between explanations
and the model’s underlying decision-making pro-
cess.

Prior evaluations of attributions along these di-
mensions (Atanasova et al., 2020; DeYoung et al.,
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2020; Ding and Koehn, 2021) suffer from several
limitations. First, they have been limited in the
range of considered attribution methods and the
mechanism of calculating the attributions. Second,
standard faithfulness evaluations, such as erasure-
based ones (DeYoung et al., 2020), entail running
the model on examples outside of the training distri-
bution (Bastings and Filippova, 2020). Third, prior
plausibility evaluations are limited to English-only
datasets due to the lack of multilingual datasets
with highlighted explanations.

In this work, we aim to fill these gaps. Our main
contribution is a new framework for evaluating the
faithfulness of attribution methods. Inspired by
Jacovi and Goldberg (2020)’s criterion for faith-
ful explanations as giving similar explanations for
similar inputs, we propose to use cross-lingual sen-
tences (translations) as similar inputs. Given a mul-
tilingual model, we argue that faithful attributions
should point to words that are aligned in two trans-
lations of the same sentence. This approach avoids
out-of-distribution inputs by utilizing cross-lingual
sentences as naturally ocurring input perturbations.

We focus on Natural Language Inference (NLI)
as a case study, since it is a central task that has
been widely used as a test bed for attribution meth-
ods (Atanasova et al., 2020; DeYoung et al., 2020;
Jain and Wallace, 2019; Kim et al., 2020; Wiegreffe
and Marasović, 2021; Prasad et al., 2021). We com-
pare eight attribution methods, including different
mechanisms of computation varying the output and
the aggregation of input feature importance scores.

First, we experiment with the cross-lingual
XNLI dataset (Conneau et al., 2018), multilingual
BERT (Devlin et al., 2019), and XLM-R (Con-
neau et al., 2020), and discover large differences
in the faithfulness of different attribution methods.
Second, we find that certain attributions are more
plausible and that the choice of computation mech-
anism has a large effect in some cases. As far as
we know, this is the first comprehensive study in-
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vestigating the effect of different types of outputs
when evaluating attributions.

Informed by our comprehensive evaluation, we
augment the multilingual XNLI dataset (Conneau
et al., 2018) with highlight-based explanations by
extracting highlights for the English part of XNLI
and projecting along word alignments to other lan-
guages. We perform a plausibility evaluation with
the resulting dataset, which we dub e-XNLI, and
perform a human evaluation on a subset of the
dataset to validate its adequacy.

Finally, when comparing the ranking of attribu-
tion methods by plausibility and faithfulness, we
find that no single method performs best. Differ-
ent methods have different pros and cons, and may
therefore be useful in different scenarios. In sum-
mary, this work provides:

• A novel faithfulness evaluation framework.

• A comprehensive evaluation of attribution
methods, which may guide practitioners when
applying such methods.

• A dataset containing explanations in multiple
languages for the NLI task, which may sup-
port future multilingual exNLP studies.

2 Background

2.1 Properties for Evaluating Attributions

Many properties have been defined to evaluate ex-
planations with respect to different aspects, such as
plausibility and faithfulness (Jacovi and Goldberg,
2020), sufficiency (DeYoung et al., 2020), stabil-
ity and consistency (Robnik-Sikonja and Bohanec,
2018), and confidence indication (Atanasova et al.,
2020). As two prominent ones, we focus on faith-
fulness and plausibility.

2.1.1 Faithfulness

Faithfulness is the measure of how much an inter-
pretation overlaps with the reasoning process of
the model. In other words, if the scores given by
an attribution method are compatible with the deci-
sion process behind the model, the interpretation is
considered faithful. Such compatability may be in-
stantiated in different ways. For instance, Ding and
Koehn (2021) measure faithfulness through model
consistency and input consistency. For model con-
sistency, they compare attribution scores of a given
model and its distilled version. For input consis-
tency, they compare attribution scores of perturbed
input pairs.

Perturbing inputs or erasing parts of the input

is a widely-used technique for faithfulness evalua-
tion (Arras et al., 2017; Serrano and Smith, 2019;
DeYoung et al., 2020; Ding and Koehn, 2021;
Atanasova et al., 2020). The basic idea is to ob-
serve the effect of changing or removing parts of
inputs on model output. For instance, if remov-
ing words with high attribution scores changes the
model output, then the explanation is faithful. For
these methods, the change in prediction score is
usually assumed to be caused by deletion of the
significant parts from the input. However, the main
reason might be the out-of-distribution (OOD) in-
puts created by the perturbations (Bastings and
Filippova, 2020). The dependence on perturbations
that result in OOD inputs is the main drawback of
common faithfulness evaluation methods. In Sec-
tion 3 we propose a new evaluation that overcomes
this drawback.

2.1.2 Plausibility

Plausibility is a measure of how much an ex-
planation overlaps with human reasoning (Ding
and Koehn, 2021). In particular, if an attribution
method gives higher scores to the part of the in-
puts that affect the decision according to humans,
then it is plausible. Typically, human-annotated
highlights (parts of the input) are used for plausi-
bility evaluation (Wiegreffe and Marasović, 2021),
which we also follow in this work. However, some
recent studies use lexical agreement (Ding and
Koehn, 2021), human fixation patterns based on
eye-tracking measurements (Hollenstein and Bein-
born, 2021), and machine translation quality esti-
mation (Fomicheva et al., 2021).

2.2 Overview of Attribution Methods

In this work, we focus on the evaluation of local
post-hoc methods, which provide explanations to
the output of a model for a particular input by apply-
ing additional operations to the model’s prediction
(Danilevsky et al., 2020). Local post-hoc meth-
ods can be grouped into three categories: methods
based on gradients, perturbations, or simplification
(Atanasova et al., 2020). In gradient-based meth-
ods, the gradient of the model’s output with respect
to the input is used in various ways for calculating
attribution scores on the input. Perturbation-based
methods calculate attribution scores according to
the change in the model’s output after perturbing
the input in different ways. Simplication-based
methods simplify the model to assign attributions.
For instance, LIME (Ribeiro et al., 2016) trains a
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simpler surrogate model covering the local neigh-
borhood of the given input. Other post-hoc meth-
ods outside of these 3 categories (Kokhlikyan et al.,
2020) include Layer Activation (Karpathy et al.,
2015), which uses activations of each neuron in
the output of a specific layer, and NoiseTunnel
(Smilkov et al., 2017; Adebayo et al., 2018).

The attribution methods we evaluate are:
InputXGradient (Shrikumar et al., 2017), Saliency
(Simonyan et al., 2014), GuidedBackprop (Sprin-
genberg et al., 2015), and IntegratedGradients
(Sundararajan et al., 2017) as gradient-based
methods; Occlusion (Zeiler and Fergus, 2014) and
Shapley Value Sampling (Ribeiro et al., 2016) as
perturbation-based; LIME (Ribeiro et al., 2016)
as simplification-based; and Layer Activation
(Karpathy et al., 2015). Details about these
methods appear in Appendix B.

2.3 Output Mechanisms and Aggregation
Methods

Most previous studies compute attributions when
the output is the top prediction score. More for-
mally, let f(x(i)) denote the output of a classi-
fication layer, where x(i) is i-th instance of the
dataset. Then, the score of the top predicted class
can be expressed max f(x(i)). We also compare
with the case when the output is the loss value
calculated with respect to the gold label. For the
common cross-entropy loss, the loss output can be
expressed as y(i)log(f(x(i))) where y(i) is the gold
label. Furthermore, some attribution methods, such
as InputXGradient and Saliency, return importance
scores for each dimension of each input word em-
bedding, which need to be aggregated to obtain a
single score for each word. While prior studies use
different aggregation operations, namely mean and
L2, we examine their effect exhaustively.

Denote the importance score for the k-th dimen-
sion of the j-th word embedding of x(i) as u

(i)
jk .

Then we obtain an attribution score per word, ω(i)
xj ,

using mean aggregation as follows:

ω
(i)
xj =

1

d

d∑

k=0

u
(i)
jk (1)

where d is the number of dimensions for the em-
bedding. Similarly, we define the attribution score
per word using L2 aggregation as follows:

ω
(i)
xj =

√√√√
d∑

k=0

(u
(i)
jk )

2. (2)

2.4 Natural Language Inference

Natural Language Inference (NLI) is a well-
established Natural Language Understanding
(NLU) task where the objective is deciding the
relation between given sentence pairs (Consortium
et al., 1996; Condoravdi et al., 2003; Bos and Mark-
ert, 2005; Dagan et al., 2005; MacCartney and Man-
ning, 2009; Poliak, 2020). When a sentence pair is
given, namely a premise and a hypothesis, there are
3 possible outcomes: (i) premise entails hypothesis;
(ii) premise and hypothesis contradict; or (iii) they
are neutral. This setting makes the task suitable to
be modeled as a text classification task.

Although there are many human-annotated NLI
datasets, we focus on the MNLI (Williams et al.,
2018b), XNLI (Conneau et al., 2018) and e-SNLI
(Camburu et al., 2018) datasets. MNLI is a collec-
tion of 433K sentence pairs from 10 genres of writ-
ten and spoken English where pairs are labeled as
entailment, contradiction or neutral. This dataset
is also part of a general NLU benchmark called
GLUE (Wang et al., 2018). XNLI is the cross-
lingual extension of the MNLI dataset in which
sentence pairs from the validation and test sets of
MNLI are translated into 15 languages. the e-SNLI
dataset is the enhanced version of SNLI (Bowman
et al., 2015a), an English-only NLI dataset having
the same format as MNLI, with human-annotated
explanations in the form of highlights.

3 Faithfulness

3.1 Evaluation Methods

3.1.1 Crosslingual Faithfulness Evaluation

In faithfulness evaluation, erasure-based methods
examine the drop in prediction scores by removing
the important tokens from the input (Section 2.1.1).
However, the drop in the prediction scores may
be the result of the altered, out-of-distribution in-
puts (Bastings and Filippova, 2020). To overcome
this problem, we design a new strategy to evaluate
faithfulness by relying on cross-lingual models and
datasets. Before diving into details, let us recall
Corrolary 2 from Jacovi and Goldberg (2020).

Corrolary 2 An interpretation system is unfaithful
if it provides different interpretations for similar
inputs and outputs.

The key intuition behind our method is to use
translation pairs to provide similar inputs to a sin-
gle model. In particular, we assume a multilin-
gual model that can accept inputs from different
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Figure 1: Illustration of cross-lingual faithfulness evaluation. (a) For any en–XX sentence pair (in this example,
English–German), we pass each item of the pair through the cross-lingual model and attribution method, to get
attribution scores. (b) We extract word alignments by using awesome-align and (c) align scores for the words in
German with the ones in the English language by summing the scores of corresponding German words for each
English word. (d) Finally, we get two different distributions for the English sentence: the calculated attribution
scores and the aligned attribution scores. We compare them to evaluate faithfulness.

languages, such as multilingual BERT (mBERT;
Devlin et al. 2019). Then, we can examine the attri-
bution scores of matching parts (words or phrases)
of the similar inputs.2

This idea consists of several steps. First, con-
struct multiway translation pairs of which source
and targets are English and another languages, re-
spectively. Second, calculate attribution scores for
instances in English and other languages. Third,
align the attribution scores between source and tar-
get through word alignments. Finally, correlate
attribution scores computed for English instances
with the ones for corresponding words in other
languages. By looking at the correlation between
corresponding parts of the inputs, we measure how
consistent the model is for similar inputs. Figure 1
illustrates the cross-lingual faithfulness evaluation
procedure.

More formally, let x(i)
c = ⟨x(i)c,1, x

(i)
c,2, . . . , x

(i)
c,n⟩

denote the i-th instance of the dataset for language
c (out of C languages), where x

(i)
c,j stands for the

j-th word of the instance. Let A = {(x(i)en,k, x
(i)
c,j) :

x
(i)
en,k ∈ x

(i)
en, x

(i)
c,j ∈ x

(i)
c } be the set of words

from x
(i)
c that are aligned with words in the cor-

responding English sentence, x
(i)
en .3 Denote by

2We investigate the similarity of translation pairs via their
multilingual representations in Appendix C, finding that trans-
lation pairs do form similar inputs for a multilingual model.

3We use English as the reference language since our cross-

ω
(i)
xc,j the attribution score for word x

(i)
c,j and let

ω
(i)
xc = ⟨ω(i)

xc,1 , ω
(i)
xc,2 , . . . , ω

(i)
xc,n⟩. In order to align

attribution scores for instances from another lan-
guage with the English ones, we define the aligned
attribution score for each word in the reference lan-
guage as the sum of the attribution scores of the
corresponding words in the target language:

ω(i)
xc,k

=
∑

(x
(i)
en,k,x

(i)
c,j)∈A

ω(i)
xc,j

(3)

By aligning scores, we obtain equivalent attribu-
tion scores in the target language for each word
in the source language. For the example in Fig-
ure 1, we have ω

(i)
8pm = ω

(i)
20 + ω

(i)
Uhr, because

{(8pm, 20), (8pm,Uhr)} ⊂ A.
Finally, we define the cross-lingual faithfulness

(ρ) of a dataset as the average Spearman correlation
between attribution scores for English and aligned
attribution scores for all other languages:

ρ =
1

C − 1

1

M

∑

c ̸=en

M∑

i=0

ρ
ω
(i)
xen ,ω

(i)
xc

(4)

The main advantage of this approach is in
avoiding the OOD problem: Translation pairs
form naturally occurring perturbations that are
part of the model’s training distribution, unlike
the synthetic inputs formed by erasure-based

lingual model performs best on it and since the word aligner
we use was originally fine-tuned and evaluated on en–XX
language pairs.
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methods. We also reduce language-specific bias by
using translations of the same sentence in different
languages. Furthermore, our approach provides
a grayscale notion of faithfulness, as advocated by
Jacovi and Goldberg (2020).

3.1.2 Erasure-based Faithfulness Evaluation

We compare our method with erasure-based faith-
fulness evaluation metrics, namely sufficiency and
comprehensiveness (DeYoung et al., 2020). We
stick to DeYoung et al.’s definitions and choices
along the experiments.

Let m(x(i))j be the model output of the j-th
class for the i-th data point and r(i) be the most
important tokens to be erased, decided according
to attribution scores. Comprehensiveness measures
the drop in prediction probability after removing
the important tokens (higher values are better):

comprehensiveness=m(x(i))j−m(x(i)\r(i))j (5)

Sufficiency measures the drop when only the
important tokens are kept (lower values are better):

sufficiency = m(x(i))j −m(r(i))j (6)

r(i) is the top-kd words according to their attri-
bution scores, where kd depends on the dataset.
However, choosing an appropriate k can be tricky,
especially when human rationales are not available
to decide an average length. Also, the variable
kd makes scores incomparable across datasets. To
solve these issues, DeYoung et al. propose Area
Over Perturbation Curve (AOPC) metrics for suffi-
ciency and comprehensiveness, based on bins of to-
kens to be deleted. They calculate comprehensive-
ness and sufficiency when deleting the top tokens
in each bin, and obtain AOPC metrics by averaging
the scores for each bin. Here we group the top 1%,
5%, 10%, 20%, 50% tokens into bins in the order
of decreasing attribution scores.

3.2 Faithfulness Experiments

Experimental setup We use the XNLI dataset
(Conneau et al., 2018) to construct translation pairs
where source and target are English and other
languages, respectively. We use awesome-align
(Dou and Neubig, 2021) to align attribution scores
for the corresponding words in translation pairs.4

4We use the model provided by the authors, which was
multilingually fine-tuned without consistency optimization,
due to its good zero-shot performance. We examine the effect
of word alignments in Appendix D.

Method
ρ

TP Loss

InputXGradient (µ) .0588 .0756
InputXGradient (L2) .7202 .7208
Saliency (µ) .5676 .5680
Saliency (L2) .5664 .5670
GuidedBackprop (µ) .0026 .0020
GuidedBackprop (L2) .5664 .5670
IntegratedGrads (µ) .1878 .2439
IntegratedGrads (L2) .6095 .5636
Activation (µ) .5552 .5552
Activation (L2) .6965 .6965
LIME .0421 .0677
Occlusion .1480 .2049
Shapley .2283 .2742

Table 1: Cross-lingual faithfulness results: Average cor-
relations measured for different attribution methods on
the XNLI dataset. Scores are averaged across all models
including different architectures and seeds. Attributions
are performed with respect to the top prediction (TP)
score and the loss. InputXGradient with L2 aggregation
is the best performing method in both cases.

Figure 2: Comparison of cross-lingual faithfulness
along output and aggregation dimensions. L2 mostly
outperforms mean (µ) aggregation and calculations with
respect to the loss are the same as or slightly better than
ones with respect to the top prediction score.

We fine-tune mBERT and XLM-Rbase for English
on the MNLI dataset (Williams et al., 2018a) with 3
different seeds for each. For cross-lingual faithful-
ness evaluation, we only use the languages that are
common in the top-5 languages for both types of
cross-lingual models(when performing zero-shot
prediction on non-English languages). This gives
Bulgarian, German, Spanish and French (C = 5).
The cross-lingual performance of our models on all
XNLI languages appears in Appendix A.
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3.2.1 Cross-lingual Faithfulness Experiments

Table 1 shows cross-lingual faithfulness results for
each attribution method, when computing attribu-
tions with regard to top prediction or loss, and when
aggregating input scores with L2 or mean aggre-
gation. The results exhibit a large variation, indi-
cating that our cross-lingual faithfulness evaluation
is able to expose differences between attribution
methods. InputXGradient with L2 aggregation is
the most faithful attribution method for both types
of attribution calculation. We also observe that
gradient-based attribution methods (first 8 rows in
Table 1) usually generate more faithful explana-
tions than perturbation-based ones (last two rows),
in line with prior work (Atanasova et al., 2020).

Figure 2 shows the effect of aggregation meth-
ods and output mechanisms on cross-lingual faith-
fulness. In all cases, L2 aggregation outperforms
mean aggregation by large margins, except for
Saliency, where mean aggregation is slightly better
than L2 aggregation. Since Saliency returns the
absolute value, which is analogous to L1 aggre-
gation, the exception in the results makes sense.
Considering output mechanisms, attribution scores
calculated with respect to loss are more faithful
than ones calculated with respect to the top pre-
diction score in almost all cases. For Integrated
Gradients with L2 aggregation and GuidedBack-
prop with mean aggregation, calculating attribution
scores with respect to the top prediction score per-
forms better.

Recall that our cross-lingual faithfulness mea-
sure averages correlations across languages (Eq. 4).
To analyze the effect of languages, especially the
ones that are poorly represented by multilingual
models, we repeat the same experiments with the
worst-performing 3 languages: Thai, Swahili, and
Urdu. Table 2 shows correlations per language
when averaged across all combinations of methods,
outputs and aggregations. The results show little
variation across top-performing languages. When
the relation between NLI performance and faith-
fulness is considered, it turns out there is a strong
correlation between them (Pearson correlation co-
efficient and p-value are as follows: r = 0.83,
p = 0.02) and poorly represented languages yield
lower faithfulness scores. Detailed results per lan-
guage and attribution method are given in Ap-
pendix G.

bg de es fr th sw ur

ρ .36 .38 .41 .40 .14 .27 .25
Acc .73 .74 .77 .76 .63 .58 .62

Table 2: Cross-lingual faithfulness results (ρ) per lan-
guage averaged across all attribution methods on the
XNLI dataset, and NLI accuracies for comparison.

Method
comp. ↑ suff. ↓
TP Loss TP Loss

InputXGradient (µ) .2945 .3072 .2812 .2784
InputXGradient (L2) .3146 .2980 .2479 .2682
Saliency (µ) .3075 .3017 .2588 .2584
Saliency (L2) .3158 .3010 .2640 .2642
GuidedBackprop (µ) .2845 .2851 .2739 .2902
GuidedBackprop (L2) .3158 .3010 .2640 .2642
IntegratedGrads (µ) .3043 .2931 .2860 .2308
IntegratedGrads (L2) .3098 .3160 .2670 .2800
Activation (µ) .2781 .2781 .2551 .2551
Activation (L2) .3111 .3111 .3209 .3209
LIME .2968 .3034 .2888 .2961
Occlusion .2898 .3080 .2887 .2656
Shapley .2908 .3113 .2788 .2592

Table 3: Erasure-based faithfulness results: Average
AOPC comprehensiveness and sufficiency scores for
different attribution methods on the English split of
XNLI. The scores are averaged across all models in-
cluding different architectures and seeds. Attribution
calculations are performed with respect to the top pre-
diction score (TP) and the loss. Different attribution
methods perform best for different output mechanisms
in terms of comprehensiveness and sufficiency.

3.2.2 Erasure-based Faithfulness Experiments

Table 3 shows the results of erasure-based faith-
fulness evaluation (comprehensiveness and suffi-
ciency), for each attribution method. In terms
of comprehensiveness, Saliency and GuidedBack-
propagation with L2 aggregation are the most faith-
ful attribution methods when the output is the top
prediction score; IntegratedGradients with L2 ag-
gregation is the most faithful one when the output
is the loss. For sufficiency, InputXGradient with
L2 and IntegratedGradients with mean aggregation
seem to be the most faithful method for cases when
the output is the top prediction score and loss, re-
spectively. Interestingly, most of the results are
quite similar and differences between methods are
not as large as in the cross-lingual faithfulness eval-
uation.

Figure 3 shows the effect of aggregation method
and output mechanism on comprehensiveness. For
all attribution methods, L2 beats mean aggregation
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Figure 3: Comparison of comprehensiveness results
along output and aggregation dimensions (higher is bet-
ter). L2 outperforms mean aggregation for most cases
and calculations with respect to the loss outperform or
are on par with calculations with respect to the top pre-
diction score for non-gradient-based attribution meth-
ods.

Figure 4: Comparison of sufficiency results along output
and aggregation dimensions (lower is better). Different
aggregation and different output mechanisms perform
better for different attribution methods.

except for Saliency and InputXGradient with loss
as output. While different output mechanisms are
better for different methods, calculating attributions
with respect to loss is as good as or slightly better
than calculating with respect to the top prediction
score for all non-gradient-based methods.

Figure 4 shows the effect of the aggrega-
tion method and output mechanism on suffi-
ciency. Unlike comprehensiveness, there is no clear
supremacy of one method over another for either
aggregation methods or output mechanisms.

3.2.3 Cross-lingual vs. Erasure-based
Faithfulness

The results of cross-lingual faithfulness and
erasure-based metrics (comprehensiveness and suf-
ficiency) differ in two main aspects:

• Perturbation-based methods exhibit more faithful
explanations when evaluated by erasure-based
metrics than when evaluated by cross-lingual

faithfulness. We interpret this pattern as a result
of the OOD issue caused by erasure-based eval-
uation, which unjustifiably favors perturbation-
based attributions. The relative improvement
for perturbation-based methods can be attributed
to noise due to the OOD perturbations used for
calculating comprehensiveness and sufficiency.

• Erasure-based faithfulness metrics are unable to
properly distinguish between different attribution
methods, since the differences are dwarfed by the
noise introduced by the OOD perturbations. The
standard deviation of faithfulness scores across
all attribution methods is 0.25 for cross-lingual
faithfulness, but only 0.01 and 0.02 for compre-
hensiveness and sufficiency, respectively.

4 Plausibility

In this section, we present details about plausibility
evaluation and results, and introduce a new dataset
containing highlight-based explanations in multiple
languages.

4.1 Plausibility Evaluation

To evaluate the plausibility of attribution methods,
we measure agreement with human rationales, fol-
lowing Atanasova et al. (2020). This evaluation
measures how much the attribution scores overlap
with human annotations by calculating Mean Aver-
age Precision (MAP) across a dataset. For each
instance in the dataset, Average Precision (AP)
is calculated by comparing attribution scores ω(i)

with gold rationales, w(i), where ω(i) stands for the
attribution scores calculated for the dataset instance
x(i) and w(i) stands for the sequence of binary la-
bels indicating whether the token is annotated as
the rationale. For a dataset X = {x(i)|i ∈ [1,M ]},
the MAP score is defined as:

MAP(ω,X) =
1

M

∑

i∈[1,M ]

AP (w(i),ω(i)) (7)

Note that AP is the weighted mean of precisions
at each threshold where the weight is the change in
recall between two successive thresholds.

4.2 Plausibility Experiments

Experimental Setup We use the e-SNLI dataset
(Camburu et al., 2018) to obtain human annotated
highlights. As the classifier, we use a BERT-base
model fine-tuned on the SNLI dataset (Bowman
et al., 2015b) with 2 different seeds, as well as the
one provided by TextAttack (Morris et al., 2020).
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Method
MAP

TP Loss

InputXGradient (µ) .395 .397
InputXGradient (L2) .651 .653
Saliency (µ) .653 .655
Saliency (L2) .653 .655
GuidedBackprop (µ) .413 .414
GuidedBackprop (L2) .653 .655
IntegratedGrads (µ) .473 .465
IntegratedGrads (L2) .633 .599
Activation (µ) .230 .230
Activation (L2) .437 .437
LIME .407 .400
Occlusion .547 .476
Shapley .522 .460

Table 4: Plausibility results: MAP scores for differ-
ent attribution methods on the e-SNLI dataset averaged
across models. Attribution calculations are performed
with respect to the top prediction score (TP) and the loss.
Saliency with both aggregations and GuidedBackprop
with L2 aggregation are the best performing methods in
both cases.

Results Table 4 shows GuidedBackprop with
L2 aggregation and Saliency with both aggrega-
tions are the most plausible methods for both types
of output. Like cross-lingual faithfulness results,
gradient-based methods mostly generate more plau-
sible explanations than perturbation-based ones, as
in prior work (Atanasova et al., 2020).

Figure 5 shows the effect of aggregation method
and output mechanism on plausibility. In all cases,
L2 outperforms mean aggregation by large mar-
gins except for Saliency, where the scores for mean
aggregation are the same as those for L2 aggrega-
tion. Considering that Saliency returns the absolute
value, which is analogous to L1 aggregation, the
exception in the results makes sense as in the cross-
lingual faithfulness results. In almost all cases,
calculating attribution scores with respect to loss
is the same or slightly better than calculating with
respect to the top prediction score. For Integrated
Gradients, Occlusion, and LIME, choosing the top
prediction score as output outperforms the loss.

4.3 e-XNLI dataset

Since prior studies for plausibility evaluation are
limited to English-only datasets for the NLI task,
we augment the multilingual XNLI dataset (Con-
neau et al., 2018) with highlight-based explanations

Figure 5: Comparison of plausibility results along
output and aggregation dimensions. L2 outperforms
mean aggregation for almost all attribution methods and
choosing loss as output is mostly the same or slightly
better than the top prediction score.

Lang MAP Lang MAP Lang MAP

ar 0.663 es 0.766 th 0.932
bg 0.701 fr 0.739 tr 0.665
de 0.732 hi 0.604 ur 0.575
el 0.696 ru 0.686 vi 0.572
en 1.0 sw 0.58 zh 0.543

Table 5: Plausibility results: MAP scores measured on
the newly introduced e-XNLI dataset (using Saliency
with loss as output and L2 aggregation).

by utilizing attribution methods.
First, we compute attribution scores on the En-

glish split of the XNLI dataset using an mBERT
model fine-tuned on MNLI and Saliency with L2

aggregation and loss as output, which gave the
most plausible attribution on e-SNLI (Section 4.2).
To extract rationales from the English split, we
binarize the attribution scores with respect to the
threshold, 0.167, giving the best F1 score on e-
SNLI with the TextAttack model.5 Finally, we
project extracted rationales to other languages us-
ing awesome-align.

To validate the automatically generated high-
lights, we follow two approaches. First, we mea-
sure the plausibility of the same attribution method
used to extract rationales for those languages. This
approach investigates whether the aligned ratio-
nales are able to follow the same reasoning paths
for each language. As Table 5 shows, the automat-
ically aligned highlights in e-XNLI are similarly
plausible explanations for most languages.

5Since there are no human-annotated highlights available
for the English split of the XNLI, we first extract rationales by
using the attribution method that perfromed best on a similar
dataset having highlights, e-SNLI.
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Language Precision Recall F1

ar .64 .73 .68
en .79 .78 .79
ru .93 .78 .85
tr .77 .71 .74

Table 6: Human evaluation for a sample of e-XNLI:
Precision, recall and F1 scores for four languages.

Second, we perform a human evaluation on a
subset of the created dataset. For four XNLI lan-
guages, we sample 10 examples per label (30 total)
and request annotators to evaluate the correctness
of highlights by following the same procedure car-
ried out in e-SNLI (Camburu et al., 2018). Then,
we measure precision, recall, and F1 scores be-
tween automatically generated highlights and those
manually edited by human annotators. As Table 6
shows, automatically generated highlights mostly
agree with human reasoning. We present more
details about the human evaluation in Appendix H.

We make the e-XNLI dataset publicly available
under MIT license to facilitate research on explain-
able NLP in a multilingual setting.

5 Limitations

In this work, we examine a wide range of attribu-
tion methods along output and aggregation dimen-
sions. Prior work (Madsen et al., 2021) shows that
faithfulness of attribution methods depends on both
tasks and models, but our work is limited to the NLI
task while considering different models. Despite
the importance of NLI for evaluation in NLP (Po-
liak, 2020), our conclusions might not generalize
to other tasks. In addition, while we experiment
with multiple random seeds, our experiments are
limited to two architectures: BERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020).

The results of cross-lingual faithfulness experi-
ments are sensitive to language choice as discussed
in Section 3.2.1, so we present the results calcu-
lated with the languages well-represented by mul-
tilingual models. The multilingual dataset we pro-
vide, e-XNLI, consists of automatically-extracted
highlight-based explanations and should be used
with caution for future exNLP studies since we only
performed a human evaluation on a small subset
of the dataset. Especially, training self-explanatory
models with this dataset can lead to undesired out-
comes, such as poor explanation quality.

6 Conclusion
We introduce a novel cross-lingual strategy to eval-
uate the faithfulness of attribution methods, which
eliminates the out-of-distribution input problem
of common erasure-based faithfulness evaluations.
Then, we perform a comprehensive comparison of
different attribution methods having different char-
acteristics in terms of plausibility and faithfulness
for the NLI task. The experiments show that there
is no one-size-fits-all solution for local post-hoc ex-
planations. Our results highlight that practitioners
should choose an attribution method with proper
output mechanism and aggregation method accord-
ing to the property of explanation in question:

• For most attribution methods, L2 aggregation
and attribution calculation with respect to loss
provide more faithful and plausible explana-
tions.

• Erasure-based faithfulness metrics cannot
properly differentiate different attribution
methods.

• Gradient-based attribution methods usually
generate more plausible and faithful explana-
tions than perturbation-based methods.

• To obtain the most plausible explanations,
one should choose Guided Backpropagation
with L2 and Saliency with either aggregation
method, and calculate scores with respect to
the loss.

• To obtain the most faithful explanations, one
should choose InputXGradient with L2 regard-
less of output mechanism.

Finally, we present e-XNLI, a multilingual
dataset with automatically generated highlight ex-
planations, to facilitate multilingual exNLP studies.
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A Cross-lingual performance of
multilingual classifiers

Table 7 shows the average accuracies of the
mBERT and XLM-R models fine-tuned on MNLI
for each language in the XNLI dataset. Both mod-
els are fine-tuned for 3 epochs with learning rate
2e-5 , total batch size of 256 and 3 different seeds.

Language mBERT XLM-Rbase

ar 0.6574 0.7132
bg 0.6952 0.7745
de 0.7120 0.7649
el 0.6724 0.7597
en 0.8147 0.8436
es 0.7504 0.7887
fr 0.7358 0.7774
hi 0.6061 0.6959
ru 0.6906 0.7549
sw 0.5137 0.6558
th 0.5468 0.7143
tr 0.6323 0.7269
ur 0.5856 0.6528
vi 0.7043 0.7466
zh 0.6952 0.7318

Table 7: Accuracies averaged across seeds of the
mBERT and XLM-Rbase models fine-tuned on MNLI
for each XNLI language.

B Attribution Methods
In this work, we focus on a wide range of attribu-
tion methods by investigating different combina-
tions of output mechanisms and aggregation meth-
ods. We consider two different output options
while calculating importance scores per word: (a)
top prediction score; (b) loss value calculated when
the ground truth label is given. In the following, we
refer to the output as ftp when it is the top predic-
tion score and fL when it is the loss. While some
methods inherently return a single score per word,
some of them return importance scores for each
dimension of the corresponding word vector. Since
we want to obtain a single score per word, those
scores need to be aggregated. We investigate L2

and mean aggregations separately.

Implementation Details We build our frame-
work upon the Captum library (Kokhlikyan et al.,
2020) to use existing implementations of many at-
tribution methods. We use the HuggingFace trans-
formers (Wolf et al., 2020) and datasets (Lhoest

et al., 2021) libraries to access pretrained models
and datasets. Also, we rely upon Scikit-learn (Pe-
dregosa et al., 2011) for evaluation scores such as
Average Precision (AP) and Spearman Correlation.

B.1 Saliency

Saliency (Simonyan et al., 2014) calculates attribu-
tion scores by calculating the absolute value of the
gradients with respect to inputs. More formally, let
uj be the embedding for word xj of x(i), the i-th
instance of any dataset. Then the attribution score
per each dimension of the embedding is defined as∣∣∇ujk

f(x(i))
∣∣ (8)

We obtain an attribution score per word, ω(i)
xj , by

aggregating scores across each word embedding.
Using mean aggregation, it is defined as follows:

ω(i)
xj

=
1

d

d∑

k=0

∣∣∇ujk
f(x(i))

∣∣ (9)

where d is the number of dimensions for the word
embedding. Similarly, using L2 aggregation, we
obtain

ω(i)
xj

=

√√√√
d∑

k=0

∣∣∇ujk
f(x(i))

∣∣2 (10)

B.2 InputXGradient

InputXGradient (Shrikumar et al., 2017) calculates
attribution scores by multiplying the input with the
gradients with respect to the input. More formally,
the attribution score per each dimension is defined
as

∇ujk
f(x(i))ujk (11)

We obtain attribution scores per word in the same
way as Saliency using mean/L2 aggregations.

B.3 Guided Backpropagation

Guided Backpropagation (Springenberg et al.,
2015) produces attribution scores by calculating
gradients with respect to the input. Different from
other methods, it overrides the gradient of the
ReLU activation so that only positive gradients pass
through. We obtain attribution scores per word us-
ing L2 and mean aggregations as in the previously
described methods.

B.4 Integrated Gradients

Integrated Gradients (Sundararajan et al., 2017)
produces attribution scores by summing gradients
along each dimension from some baseline input
to a given input. The attribution score per each
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dimension is defined as
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jk ))
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(i)
jk

× 1

m

(12)
where m is the number of steps for a Riemannian
approximation of the path integral and u

(i)
j is the

baseline input. We use the word embedding of the
[PAD] token as the baseline input for each word
except for [SEP] and [CLS] tokens (Sajjad et al.,
2021). We obtain attribution scores per word us-
ing L2 and mean aggregations as in the previous
methods.

Higher values of m would produce a better ap-
proximation, but also make attribution calculation
computationally expensive. We need to find a sweet
spot between approximation and computational re-
sources. For plausibility experiments, we select m
according to validation performance based on MAP
scores. Among {50, 75, 100}, we choose m = 100
for mean aggregation on calculations with respect
to top prediction and m = 50 for all other combi-
nations of aggregation methods and output mecha-
nisms. For cross-lingual faithfulness experiments,
we select m according to the evaluation on the
validation set based on the Spearman correlation
coefficient values. Among {50,75,100}, we choose
m = 100 for all calculations with XLM-Rbase and
mBERT except calculations involving mean aggre-
gation on mBERT, for which we choose m = 75.
For erasure-based faithfulness experiments, we use
the same values of m for the sake of a fair compar-
ison.

B.5 LIME

LIME (Ribeiro et al., 2016) produces attribution
scores by training a surrogate linear model using
the points around the input created by perturbing
the input and output of perturbations from the origi-
nal model. A random subset of the input is replaced
by a baseline value to create perturbations. We use
the word embedding of the [PAD] token as the base-
line value (as in Integrated Gradients). Since we
create the perturbations by replacing whole word
vectors, we obtain a single score per word, which
eliminates the need for aggregation. We use 50 sam-
ples for training the surrogate model as the default
value for the LIME implementation in Captum.

B.6 Occlusion

Occlusion (Zeiler and Fergus, 2014) produces at-
tribution scores by calculating differences in the

output after replacing the input with baseline val-
ues over a sliding window. We select the shape of
the sliding window so that it occludes only the em-
bedding of one word at a time, and we use the word
embedding of the [PAD] token as a baseline value
(as in Integrated Gradients and LIME). Since we
create the perturbations by replacing whole word
vectors, we obtain a single score per word.

B.7 Shapley Value Sampling

In Shapley Value Sampling (Štrumbelj and
Kononenko, 2010), we take a random permutation
of input, which is word embeddings of input se-
quence in our case, and add them one by one to
a given baseline, embedding vector for [PAD] to-
ken in our case, to produce attribution score by
calculating the difference in the output. The scores
are averaged across several samples. We choose
the feature group so that one score corresponds
to a single word, which eliminates the need for
aggregation. We take 25 samples for calculating
attributions as the default value for Shapley Value
Sampling implementation in Captum.

B.8 Activation

Layer Activation (Karpathy et al., 2015) produces
attribution scores by getting the activations in the
output of the specified layer. We select the embed-
ding layer for this purpose, which yields an attri-
bution score per each dimension of the embedding
equal to ujk. Then, we obtain attribution scores per
word using L2 and mean aggregations as in other
methods.

C Representational Similarity of
Translation Pairs

Our cross-lingual faithfulness strategy relies on the
assumption that translation pairs constitute similar
inputs for a multilingual model. To test our as-
sumption, we create a setup comparing representa-
tional similarities of inputs. First, we take premise-
hypothesis pairs and their translations from XNLI
dataset for the selected language pair. We encode
each pair by obtaining the last hidden state rep-
resentations before the classifier head. We take
n representations from the source language and
the corresponding representations from the target
language to create source and target batch pairs,
namely (bs, bt). Then, we create k random batches,
bi, by selecting n representations among target rep-
resentations for each one and we measure the CKA
similarity (Kornblith et al., 2019) of representation
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Figure 6: Accuracies for CKA similarity analysis for dif-
ferent models. XLM-R-finetuned and mBERT-finetuned
results are averaged across models fine-tuned with dif-
ferent seeds for each.

batch in the source language with each batch of
representation in the target language. For the sake
of our assumption, we expect matching represen-
tation batches to be more similar than any batch
pairs. For each batch in the source langauge, we
test whether the CKA similarity measure assigns
the highest similarity to the matching batches or
not and compute the accuracy over batches.

We use 5000 examples from the test split of the
XNLI dataset by selecting n = 8 and k = 10.

Figure 6 shows accuracies for different models.
We perform our similarity analysis on multilingual
models, which are vanilla mBERT, mBERT and
XLM-Rbase models fine-tuned on MNLI and used
in our faithfulness experiments, and monolingual
models, which are BERTbase fine-tuned on MNLI
and a Turkish BERT (Schweter, 2020). The re-
sults show that translation pairs form similar inputs
for multilingual models compared to monolingual
models regardless of being fine-tuned. While the
accuracies of fine-tuned mBERT are lower than
standard mBERT, it differs among language pairs
for XLM-Rbase case. Although monolingual rep-
resentations of translation pairs lead to the lowest
accuracies as expected, higher accuracies of Turk-
ish BERT, which is pre-trained on a completely un-
related language, compared to fine-tuned English
BERTbase need further investigation.

D Ablation Study on Cross-lingual
Faithfulness

To investigate the effect of word alignments, we
run our cross-lingual faithfulness evaluation frame-
work with random word alignments for a set of
attribution methods and compare the results with
the ones obtained with awesome-align (Dou and

Figure 7: Comparison of cross-lingual faithfulness
scores that are calculated with awesome-align and ran-
dom word alignments for different attribution methods

Neubig, 2021). To obtain random alignments be-
tween translation pairs, we modify the IterMax
algorithm, which Dou and Neubig (2021) proposed
as a baseline method, by replacing the similarity
matrix with a random matrix. We perform both
types of evaluations with one of the mBERT mod-
els we fine-tuned.

Figure 7 shows the comparison of awesome-
align with random word alignments. While us-
ing awesome-align provides comparable scores
across attribution methods, random alignments lead
to near-zero correlations (ρ). Thus we empirically
show that word alignment forms a significant part
of our method.

E Cross-lingual Faithfulness Results per
Architecture

Table 8 shows cross-lingual faithfulness results for
each architecture, mBERT and XLM-Rbase, sepa-
rately.

F Erasure-based Faithfulness Results per
Architecture

Table 9 and Table 10 show comprehensiveness and
sufficiency scores for each architecture, mBERT
and XLM-Rbase, separately.
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Method

ρ

mBERT XLM-Rbase

TP Loss TP Loss

InputXGradient (µ) .0562 ± .002 .0758 ± .002 .0615 ± .001 .0754 ± .003
InputXGradient (L2) .7067 ± .001 .7078 ± .001 .7336 ± .003 .7338 ± .003
Saliency (µ) .6269 ± .003 .6283 ± .003 .5082 ± .001 .5078 ± .002
Saliency (L2) .6276 ± .003 .6290 ± .003 .5053 ± .001 .5050 ± .002
GuidedBackprop (µ) .0024 ± .003 -.0000 ± .001 .0028 ± .000 .0041 ± .001
GuidedBackprop (L2) .6276 ± .003 .6290 ± .003 .5053 ± .001 .5050 ± .002
IntegratedGrads (µ) .1860 ± .008 .2680 ± .007 .1897 ± .021 .2198 ± .008
IntegratedGrads (L2) .5910 ± .009 .5302 ± .005 .6279 ± .018 .5970 ± .017
Activation (µ) .6974 ± .001 .6974 ± .001 .4130 ± .001 .4130 ± .001
Activation (L2) .6992 ± .000 .6992 ± .000 .6938 ± .000 .6938 ± .000
LIME .0659 ± .014 .0934 ± .006 .0182 ± .009 .0420 ± .008
Occlusion .2281 ± .007 .3132 ± .005 .0680 ± .028 .0966 ± .007
Shapley .3734 ± .049 .4058 ± .040 .0833 ± .016 .1426 ± .033

Table 8: Cross-lingual faithfulness results: Scores are measured for different attribution methods on the XNLI
dataset and averaged across models trained with different seeds for each architecture. Attribution calculations are
performed with respect to the top prediction (TP) score and the loss.

G Cross-lingual Faithfulness Results per
Language

Our cross-lingual faithfulness evaluation averages
correlations across languages. For completeness,
we provide in Tables 11–17 the results of cross-
lingual faithfulness evaluation per language.

H Human Evaluation for e-XNLI
A subset of our dataset is evaluated by NLP
researchers—the authors and a colleague of one
of the authors—from Turkey, Israel, and Russia.

The annotators followed the e-SNLI guidelines
specified in Section 3 of Camburu et al. (2018)
for evaluating whether automatically-extracted
highlight-based explanations are correct. Note that
incorrectly predicted examples are ignored during
the evaluation.

I Computational Resources
We mainly used Google Colab for the experiments
and Titan RTX in some cases. All experiments for
gradient-based attribution methods and Activation
take a period of time ranging from 5 minutes to
1 hour, while perturbation-based approaches take
several hours. Especially, experiments for Shapley
Value Sampling take a few days since its implemen-
tation does not use batched operations.

1571



Method

comprehensiveness ↑
mBERT XLM-Rbase

TP Loss TP Loss

InputXGradient (µ) .2658 ± .016 .2959 ± .012 .3232 ± .011 .3186 ± .031
InputXGradient (L2) .3136 ± .011 .3080 ± .005 .3155 ± .021 .2880 ± .005
Saliency (µ) .3009 ± .018 .2891 ± .036 .3141 ± .008 .3142 ± .005
Saliency (L2) .3128 ± .018 .2896 ± .037 .3188 ± .009 .3123 ± .004
GuidedBackprop (µ) .2709 ± .002 .2514 ± .039 .2981 ± .023 .3187 ± .015
GuidedBackprop (L2) .3128 ± .018 .2896 ± .037 .3188 ± .009 .3123 ± .004
IntegratedGrads (µ) .2557 ± .033 .2618 ± .010 .3529 ± .021 .3244 ± .018
IntegratedGrads (L2) .2989 ± .004 .2969 ± .014 .3208 ± .028 .3350 ± .031
Activation (µ) .2504 ± .009 .2504 ± .009 .3057 ± .006 .3057 ± .006
Activation (L2) .2940 ± .010 .2940 ± .010 .3282 ± .017 .3282 ± .017
LIME .2733 ± .026 .2657 ± .016 .3203 ± .028 .3412 ± .024
Occlusion .2727 ± .034 .3101 ± .014 .3068 ± .029 .3060 ± .016
Shapley .2660 ± .032 .3123 ± .007 .3157 ± .019 .3103 ± .023

Table 9: Comprehensiveness scores per architecture on the English split of XNLI dataset: Scores are measured for
different attribution methods on the XNLI dataset and averaged across models trained with different seeds for each
architecture. Attribution calculations are performed with respect to the top prediction (TP) score and the loss.

Method

sufficiency ↓
mBERT XLM-Rbase

TP Loss TP Loss

InputXGradient (µ) .2812 ± .013 .2716 ± .021 .2812 ± .007 .2852 ± .014
InputXGradient (L2) .2616 ± .043 .2684 ± .027 .2342 ± .023 .2681 ± .026
Saliency (µ) .2451 ± .028 .2613 ± .029 .2724 ± .011 .2555 ± .004
Saliency (L2) .2477 ± .022 .2629 ± .027 .2804 ± .008 .2654 ± .007
GuidedBackprop (µ) .2637 ± .031 .2913 ± .007 .2841 ± .032 .2891 ± .023
GuidedBackprop (L2) .2477 ± .022 .2629 ± .027 .2804 ± .008 .2654 ± .007
IntegratedGrads (µ) .2985 ± .008 .2471 ± .024 .2734 ± .020 .2145 ± .011
IntegratedGrads (L2) .2784 ± .010 .2788 ± .021 .2556 ± .006 .2812 ± .025
Activation (µ) .2024 ± .017 .2024 ± .017 .3079 ± .010 .3079 ± .010
Activation (L2) .3340 ± .003 .3340 ± .003 .3078 ± .005 .3078 ± .005
LIME .2610 ± .005 .2610 ± .012 .3167 ± .048 .3311 ± .005
Occlusion .2820 ± .006 .2475 ± .008 .2955 ± .015 .2837 ± .006
Shapley .2538 ± .008 .1967 ± .008 .3037 ± .035 .3218 ± .013

Table 10: Sufficiency scores per architecture on the English split of XNLI dataset: Scores are measured for
different attribution methods on the XNLI dataset and averaged across models trained with different seeds for each
architecture. Attribution calculations are performed with respect to the top prediction (TP) score and the loss.
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Method

ρ

mBERT XLM-Rbase

TP Loss TP Loss

InputXGradient (µ) .0302 ± .001 .0406 ± .001 .0506 ± .003 .0661 ± .002
InputXGradient (L2) .6731 ± .001 .6741 ± .002 .7188 ± .003 .7189 ± .003
Saliency (µ) .5778 ± .004 .5793 ± .004 .4954 ± .000 .4951 ± .002
Saliency (L2) .5787 ± .004 .5803 ± .004 .4935 ± .000 .4930 ± .001
GuidedBackprop (µ) .0015 ± .001 -.0045 ± .003 .0020 ± .001 .0023 ± .004
GuidedBackprop (L2) .5787 ± .004 .5803 ± .004 .4935 ± .000 .4930 ± .001
IntegratedGrads (µ) .1248 ± .005 .2003 ± .002 .1768 ± .021 .2037 ± .009
IntegratedGrads (L2) .5287 ± .014 .4585 ± .011 .6165 ± .016 .5827 ± .016
Activation (µ) .6080 ± .001 .6080 ± .001 .3824 ± .001 .3824 ± .001
Activation (L2) .6653 ± .000 .6653 ± .000 .6825 ± .000 .6825 ± .000
LIME .0561 ± .015 .0803 ± .008 .0115 ± .007 .0359 ± .009
Occlusion .1635 ± .008 .2395 ± .004 .0509 ± .021 .0754 ± .004
Shapley .3348 ± .055 .3639 ± .044 .0649 ± .016 .1165 ± .032

Table 11: Cross-lingual faithfulness results for the Bulgarian split of XNLI dataset: Scores are measured for
different attribution methods on the XNLI dataset and averaged across models trained with different seeds for each
architecture. Attribution calculations are performed with respect to the top prediction (TP) score and the loss.

Method

ρ

mBERT XLM-Rbase

TP Loss TP Loss

InputXGradient (µ) .0493 ± .003 .0717 ± .004 .0621 ± .001 .0752 ± .003
InputXGradient (L2) .7052 ± .001 .7067 ± .001 .7321 ± .003 .7329 ± .003
Saliency (µ) .6152 ± .003 .6168 ± .003 .4936 ± .002 .4929 ± .004
Saliency (L2) .6159 ± .003 .6175 ± .003 .4906 ± .002 .4900 ± .003
GuidedBackprop (µ) .0041 ± .005 .0008 ± .002 .0030 ± .001 .0010 ± .001
GuidedBackprop (L2) .6159 ± .003 .6175 ± .003 .4906 ± .002 .4900 ± .003
IntegratedGrads (µ) .1919 ± .011 .2788 ± .011 .1814 ± .019 .2219 ± .008
IntegratedGrads (L2) .5935 ± .007 .5361 ± .005 .6245 ± .018 .5930 ± .017
Activation (µ) .6960 ± .000 .6960 ± .000 .4115 ± .001 .4115 ± .001
Activation (L2) .7012 ± .000 .7012 ± .000 .6934 ± .000 .6934 ± .000
LIME .0692 ± .012 .0955 ± .005 .0186 ± .009 .0399 ± .008
Occlusion .2226 ± .006 .3117 ± .005 .0695 ± .028 .0978 ± .005
Shapley .3843 ± .046 .4145 ± .036 .0840 ± .017 .1381 ± .030

Table 12: Cross-lingual faithfulness results for the German split of XNLI dataset: Scores are measured for different
attribution methods on the XNLI dataset and averaged across models trained with different seeds for each architecture.
Attribution calculations are performed with respect to the top prediction (TP) score and the loss.
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Method

ρ

mBERT XLM-Rbase

TP Loss TP Loss

InputXGradient (µ) .0747 ± .001 .1009 ± .003 .0726 ± .003 .0856 ± .005
InputXGradient (L2) .7179 ± .001 .7186 ± .001 .7460 ± .003 .7461 ± .003
Saliency (µ) .6576 ± .002 .6592 ± .002 .5205 ± .001 .5205 ± .002
Saliency (L2) .6582 ± .002 .6598 ± .002 .5170 ± .001 .5172 ± .001
GuidedBackprop (µ) .0004 ± .003 .0026 ± .003 .0035 ± .003 .0049 ± .002
GuidedBackprop (L2) .6582 ± .002 .6598 ± .002 .5170 ± .001 .5172 ± .001
IntegratedGrads (µ) .2189 ± .008 .3041 ± .005 .2037 ± .020 .2374 ± .006
IntegratedGrads (L2) .6145 ± .010 .5584 ± .006 .6384 ± .018 .6083 ± .018
Activation (µ) .7521 ± .001 .7521 ± .001 .4311 ± .001 .4311 ± .001
Activation (L2) .7071 ± .000 .7071 ± .000 .7135 ± .000 .7135 ± .000
LIME .0716 ± .013 .1032 ± .009 .0259 ± .012 .0500 ± .006
Occlusion .2693 ± .008 .3594 ± .006 .0839 ± .035 .1202 ± .014
Shapley .3928 ± .047 .4238 ± .039 .1041 ± .022 .1716 ± .035

Table 13: Cross-lingual faithfulness results for the Spanish split of XNLI dataset: Scores are measured for different
attribution methods on the XNLI dataset and averaged across models trained with different seeds for each architecture.
Attribution calculations are performed with respect to the top prediction (TP) score and the loss.

Method

ρ

mBERT XLM-Rbase

TP Loss TP Loss

InputXGradient (µ) .0707 ± .003 .0902 ± .003 .0605 ± .001 .0746 ± .001
InputXGradient (L2) .7308 ± .001 .7317 ± .001 .7374 ± .003 .7372 ± .003
Saliency (µ) .6570 ± .003 .6578 ± .002 .5234 ± .001 .5226 ± .002
Saliency (L2) .6574 ± .003 .6583 ± .002 .5202 ± .001 .5199 ± .002
GuidedBackprop (µ) .0034 ± .005 .0010 ± .003 .0028 ± .000 .0082 ± .002
GuidedBackprop (L2) .6574 ± .003 .6583 ± .002 .5202 ± .001 .5199 ± .002
IntegratedGrads (µ) .2082 ± .009 .2887 ± .009 .1968 ± .025 .2163 ± .009
IntegratedGrads (L2) .6274 ± .008 .5676 ± .004 .6321 ± .017 .6040 ± .016
Activation (µ) .7333 ± .001 .7333 ± .001 .4271 ± .001 .4271 ± .001
Activation (L2) .7234 ± .000 .7234 ± .000 .6857 ± .000 .6857 ± .000
LIME .0668 ± .016 .0945 ± .005 .0168 ± .011 .0420 ± .008
Occlusion .2568 ± .008 .3422 ± .007 .0678 ± .029 .0929 ± .007
Shapley .3816 ± .047 .4209 ± .040 .0803 ± .011 .1442 ± .034

Table 14: Cross-lingual faithfulness results for the French split of XNLI dataset: Scores are measured for different
attribution methods on the XNLI dataset and averaged across models trained with different seeds for each architecture.
Attribution calculations are performed with respect to the top prediction (TP) score and the loss.
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Method

ρ

mBERT XLM-R

TP Loss TP Loss

InputXGradient (µ) .0024 ± .001 .0051 ± .001 .0076 ± .002 .0174 ± .001
InputXGradient (L2) .2924 ± .001 .2953 ± .001 .2749 ± .001 .2761 ± .001
Saliency (µ) .2166 ± .003 .2196 ± .004 .1712 ± .002 .1702 ± .002
Saliency (L2) .2168 ± .003 .2198 ± .004 .1705 ± .002 .1692 ± .002
GuidedBackprop (µ) .0007 ± .003 .0007 ± .001 .0017 ± .001 .0025 ± .000
GuidedBackprop (L2) .2168 ± .003 .2198 ± .004 .1705 ± .002 .1692 ± .002
IntegratedGrads (µ) .0286 ± .008 .0758 ± .012 .0963 ± .014 .1173 ± .017
IntegratedGrads (L2) .2597 ± .009 .2433 ± .009 .2059 ± .008 .1970 ± .008
Activation (µ) .2462 ± .000 .2462 ± .000 .1307 ± .000 .1307 ± .000
Activation (L2) .2127 ± .000 .2127 ± .000 .2007 ± .000 .2007 ± .000
LIME .0281 ± .022 .0173 ± .008 .0041 ± .002 .1552 ± .003
Occlusion .0451 ± .011 .0591 ± .009 .0128 ± .003 .0305 ± .002
Shapley .3001 ± .063 .2461 ± .051 .0283 ± .013 .0741 ± .015

Table 15: Cross-lingual faithfulness results for the Thai split of XNLI dataset: Scores are measured for different
attribution methods on the XNLI dataset and averaged across models trained with different seeds for each architecture.
Attribution calculations are performed with respect to the top prediction (TP) class and the loss.

Method

ρ

mBERT XLM-R

TP Loss TP Loss

InputXGradient (µ) .0064 ± .001 .0132 ± .002 .0167 ± .002 .0253 ± .003
InputXGradient (L2) .4598 ± .001 .4616 ± .001 .5254 ± .002 .5255 ± .002
Saliency (µ) .4083 ± .002 .4107 ± .002 .4136 ± .002 .4132 ± .002
Saliency (L2) .4084 ± .002 .4108 ± .002 .4110 ± .002 .4104 ± .002
GuidedBackprop (µ) .0043 ± .002 -.0015 ± .003 .0002 ± .003 .0015 ± .001
GuidedBackprop (L2) .4084 ± .002 .4108 ± .002 .4110 ± .002 .4104 ± .002
IntegratedGrads (µ) .0713 ± .005 .1239 ± .006 .1137 ± .021 .1223 ± .005
IntegratedGrads (L2) .3806 ± .005 .3298 ± .005 .4883 ± .009 .4634 ± .011
Activation (µ) .4686 ± .001 .4686 ± .001 .3400 ± .001 .3400 ± .001
Activation (L2) .4987 ± .000 .4987 ± .000 .5449 ± .000 .5449 ± .000
LIME .0257 ± .015 .0752 ± .002 .0128 ± .005 .1854 ± .001
Occlusion .0537 ± .003 .0988 ± .001 .0416 ± .016 .0628 ± .010
Shapley .2424 ± .044 .2622 ± .044 .0612 ± .015 .1174 ± .014

Table 16: Cross-lingual faithfulness results for the Swahili split of XNLI dataset: Scores are measured for different
attribution methods on the XNLI dataset and averaged across models trained with different seeds for each architecture.
Attribution calculations are performed with respect to the top prediction (TP) class and the loss.
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Method

ρ

mBERT XLM-R

TP Loss TP Loss

InputXGradient (µ) .0156 ± .003 .0211 ± .005 .0147 ± .002 .0225 ± .004
InputXGradient (L2) .5522 ± .002 .5533 ± .002 .5031 ± .003 .5037 ± .003
Saliency (µ) .4492 ± .004 .4509 ± .004 .2512 ± .004 .2513 ± .004
Saliency (L2) .4499 ± .004 .4515 ± .004 .2495 ± .004 .2496 ± .004
GuidedBackprop (µ) -.0003 ± .003 .0006 ± .001 -.0017 ± .003 .0011 ± .006
GuidedBackprop (L2) .4499 ± .004 .4515 ± .004 .2495 ± .004 .2496 ± .004
IntegratedGrads (µ) .0700 ± .003 .1453 ± .003 .0886 ± .009 .1187 ± .008
IntegratedGrads (L2) .4451 ± .012 .3909 ± .008 .4168 ± .012 .3955 ± .014
Activation (µ) .4700 ± .000 .4700 ± .000 .2407 ± .001 .2407 ± .001
Activation (L2) .5688 ± .000 .5688 ± .000 .4820 ± .000 .4820 ± .000
LIME .0398 ± .013 .0593 ± .003 .0049 ± .003 .1077 ± .006
Occlusion .0815 ± .005 .1382 ± .006 .0037 ± .012 .0213 ± .013
Shapley .2557 ± .044 .2915 ± .038 .0229 ± .008 .0490 ± .009

Table 17: Cross-lingual faithfulness results for the Urdu split of XNLI dataset: Scores are measured for different
attribution methods on the XNLI dataset and averaged across models trained with different seeds for each architecture.
Attribution calculations are performed with respect to the top prediction (TP) class and the loss.
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