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Abstract

Complex knowledge base question answering
can be achieved by converting questions into se-
quences of predefined actions. However, there
is a significant semantic and structural gap be-
tween natural language and action sequences,
which makes this conversion difficult. In this
paper, we introduce an alignment-enhanced
complex question answering framework, called
ALCQA, which mitigates this gap through
question-to-action alignment and question-to-
question alignment. We train a question rewrit-
ing model to align the question and each ac-
tion, and utilize a pretrained language model to
implicitly align the question and KG artifacts.
Moreover, considering that similar questions
correspond to similar action sequences, we re-
trieve top-k similar question-answer pairs at the
inference stage through question-to-question
alignment and propose a novel reward-guided
action sequence selection strategy to select
from candidate action sequences. We con-
duct experiments on CQA and WQSP datasets,
and the results show that our approach out-
performs state-of-the-art methods and obtains
a 9.88% improvements in the F1 metric on
CQA dataset. Our source code is available at
https://github.com/TTTTTTTTy/ALCQA.

1 Introduction

Complex knowledge base question answering
(CQA) aims to answer various natural language
questions with a large-scale knowledge graph.
Compared to simple questions with single or multi-
hop of relations, complex questions have more
kinds of answer types such as numeric or boolean
types and require more kinds of aggregation oper-
ations like min/max or intersection/union to yield
answers. Semantic parsing approaches typically
map questions to intermediate logical forms such
as query graphs (Yih et al., 2015; Bao et al., 2016;
Bhutani et al., 2019; Maheshwari et al., 2019; Lan
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and Jiang, 2020; Qin et al., 2021), and further trans-
form them into queries like SPARQL query lan-
guage. Recently, many works (Liang et al., 2017;
Saha et al., 2019; Ansari et al., 2019; Hua et al.,
2020a,b,c) predefine a collection of functions with
constrained argument types and represent the inter-
mediate logical form as a sequence of actions that
can be generated using a seq2seq model. Sequence-
based methods are natural to accomplish more com-
plex operations by simply expanding the function
set, thus making some logically complex questions
answerable while they’re difficult to answer using
query graphs.

The seq2seq model has been widely used and
achieved good results on many text generation
tasks, such as machine translation, text summariza-
tion and style transfer. In these tasks, the source and
the target sequence are both natural language texts
and thus share some low-level features. However,
semantic parsing aims to transform unstructured
texts into structured logical forms, which requires
a difficult alignment between them. This problem
becomes more serious when the complexity of the
question rises. Some works propose to solve this
problem by modelling the hierarchical structure of
logical forms. Dong and Lapata (2016) introduces
a sequence-to-tree model with an attention mecha-
nism. Dong and Lapata (2018) proposes to decode
a sketch of the logical forms which contain a set
of functions at first and then decode low-level de-
tails like arguments. Guo et al. (2021) iteratively
segments a span from the question by a segmenta-
tion model and parses it using a base parser until
the whole query is parsed. Li et al. (2021) uses a
shift-reduce algorithm to obtain token sequences
instead of predicting the start and end positions of
the span. However, most of these works require
intermediate logical forms or sub-questions to train
models, which are usually difficult to obtain. Guo
et al. (2021) and Li et al. (2021) propose to pretrain
a base parser firstly, and then search good segments
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Figure 1: An overview of the proposed approach. The question is first converted into a more structured form, then
multiple candidate action sequences are generated by the seq2seq model, and finally the candidate action sequences
are scored based on similar question-answer pairs.

that predicted sub logical forms are part of or can
be composed into the golden meaning representa-
tion. They don’t necessarily require training pairs
but have the limitation that decomposed utterances
are continuous segments of the original question.

In this paper, we propose a novel framework to
boost the alignment between unstructured text and
structured logical forms. We decompose the seman-
tic parsing task into three stages: question rewrit-
ing, candidate action sequences generation and ac-
tion sequence selection. In the question rewriting
stage, we utilize a question rewriting model to ex-
plicitly transform a query into a set of utterances,
each corresponding to a single action, thus reduc-
ing the complexity of the question. We propose
a two-phase training method to train the rewrit-
ing model on the lack of training pairs. In the
candidates generation stage, we build a seq2seq
model to generate logical forms with beam search
algorithm and consider KG artifacts like entities as
candidate vocabularies in the decoding stage. To
further align the question and action sequence, we
concatenate a question and a KG artifact as input
and encode it using a pretrained language model
(PLM) like BERT (Devlin et al., 2018). The cross
attention mechanism of PLM can effectively align
between the question and KG artifacts implicitly,
which makes decoding easier. Moreover, we inno-
vatively propose to improve complex knowledge
base question answering via question-to-question
alignment. Motivated by the phenomenon that the
more similar two questions are, the more similar
their corresponding action sequences will be, we

build a memory consisting of question-answer pairs
and retrieve a set of question-answer pairs as the
support set based on the similarity with the current
question during action sequence selection phase.
We then propose a reward-guided selection strategy
that scores each candidate action sequence accord-
ing to the support set.

Our main contributions are as follow:

• We propose a novel framework that mitigates
the gap between natural language questions
and structural logical forms through question-
to-action alignment and question-to-question
alignment.

• We propose a novel question rewriting mech-
anism that rewrites a question into a more
structured form without requiring a dataset or
adding any constraints, and employ a reward-
guided action sequence selection strategy that
utilizes similar question-answer pairs to score
candidate action sequences.

• We conduct experiments on several datasets,
and experimental results show that our ap-
proach is comparable to the state-of-the-art
on WQSP dataset and obtains a 9.88% im-
provements in the F1 metric on CQA dataset.

2 Methodology

2.1 Overview
In this task, with training set T =
{(q1, a1), ..., (qs, as)}, where (qi, ai) is a
question-answer pair, the objective is to transform
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complex questions into logical forms, which can
be further derived into KG queries to find answers.
We define the logical form as a sequence of actions
involving a function and multiple arguments.
Following NS-CQA (Hua et al., 2020c), we
design 16 functions with arguments comprised
of numerical values and KG artifacts including
entities, relations, and entity types. We recognize
these arguments in the preprocessing step. Denote
the input question as q, the set of predefined
functions as function set F , question related
numerical values and KG artifacts as argument
set G, parameters of model as θ, our goal can
be normalized as maximizing the probability
P (L | q ;θ), where L is the action sequence that
produces correct answers and each word in L
belongs to F or G.

As shown in Figure 1, our framework consists of
three stages: question rewriting, candidate action
sequences generation, and action sequence selec-
tion. In the first stage, we rewrite a complex query
into a more structured form by a seq2seq model, the
details of training the model will be described in
2.2. The rewritten query then can be combined with
the original question as input, and a newly seq2seq
model is used to generate multiple candidate action
sequences sequentially. And finally, We retrieve k
question-answer pairs that are most similar to the
current question from a pre-constructed memory.
The candidates are then modified according to the
KG artifacts in these k questions and scored based
on the comparison results between the execution
results and respective answers, separately.

2.2 Question Rewriting

An action sequence consists of multiple consecu-
tive actions, and it is difficult for the seq2seq model
to decide which part of the question to focus on
when generating each action. We train a question
rewriting model that transform a query into a set
of utterances which are concatenated by the sym-
bol "#" and each utterance corresponds to a single
action. With the rewritten question, the model can
focus on a certain part of the question when gen-
erating action in the sequence, thus reducing the
difficulty of decoding.

To train the rewriting model, we require an ad-
equate training corpus which is difficult to obtain.
On the lack of golden datasets, we propose a two-
phase approach to convert queries into rewritten
questions and use them for training of the rewriting

Module 1: Question Rewriting Training
Input: T = {(q1, a1), ..., (qn, an)}
Output: Mr, which is the trained model for

rewriting questions
1 Search pseudo action sequences and obtain

T ′ = {(q1, a1,L1), ..., (qn, an,Ln)},
where Li = {f1; f2; ...fk} is the pseudo
action sequence of (qi, ai);

2 Train Mq which transforms action
sequences into questions using T ′;

3 Q ← {};
4 for (qi,Li) in T ′ do
5 qori ← qi ;
6 for j ∈ [k, 1] do
7 L′ ← {f1; f2; ...; fj−1};
8 qdel ← Translate(L′,Mq);
9 q′ij ← Compare(qori, qdel);

10 qori ← qdel ;
11 end
12 Q ← Q∪ {qi, {q′i1; q′i2; ...; q′ik}} ;
13 end
14 Train Mr using Q;

model as shown in Module 1. In the first phase
(line 1-2), we employ a breadth-first search algo-
rithm to find pseudo action sequences for some
questions, and then train a seq2seq model that
translates an action sequence into a query. In the
second phase (line 3-13), we construct a training
corpus for question rewriting based on searched
question-logical form pairs and the model trained
in the previous stage. Specifically, given an ac-
tion sequence L = {f1; f2; ...fk}, we delete the
last action fk, back-translate the shorter action se-
quence into a new query, and compare it with the
original question. We can determine that the to-
kens which appear in the original question but not
in the current generated question are the ones we
should most focus on when generating the deleted
action. For example, the left part of Figure 1 il-
lustrates the process of decomposing the question
"how many musical instruments can lesser num-
ber of people perform with than glockenspiel". We
firstly delete the last action "Count()" and then
the seq2seq model translates the newly formed
sequence "SelectAll(...)LessThan(...)" into query
"which musical instruments can lesser number of
people perform with than glockenspiel". The words
"how many" should be paid more attention because
they do not appear in the generated question. We
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iteratively perform delete, back-translate and com-
pare operations until the action sequence is empty
and concatenate the compare results of each step
using symbol "#".

Thus, we can construct the question rewriting
dataset Q and train a question rewriting model Mr.
To make the rewriting model learn to output KG
artifacts in the rewritten query, we concatenate the
original question and KG artifacts as input, and
wrap KG artifacts with symbols like 〈entity〉 and
〈/entity〉. We initialize models in both phases
using BART (Lewis et al., 2020), an outstanding
pretrained seq2seq model that demonstrates high
performance on a wide range of generation tasks,
and finetune them by constructed datasets.

2.3 Encoder-decoder Architecture

We use BERT and BiLSTM (Hochreiter and
Schmidhuber, 1997) to construct the encoder.
Given a question q with n tokens and the argument
set G = {g1, ..., gm}, where m is the size of argu-
ment set with respect to q and gi = {gi1, ..., gil}
is a KG artifact or numerical value with l tokens,
we concatenate the question and each argument
separately using [SEP] as the delimiter to construct
BERT input sequences. In this case, we obtain
question embedding Eq ∈ Rn×de , and argument
embedding �gi ∈ Rde by mean pooling over Egi .
We then stack embeddings of arguments to con-
struct a matrix EG ∈ Rm×de and feed Eq into a
BiLSTM encoder to obtain the final question repre-
sentation H ∈ Rn×dh .

E = BERT({[CLS], q, [SEP], gi, [SEP]})
H = BiLSTM(Eq)

�gi = MeanPooling(Egi) (1)

Decoding is implemented using LSTM, and at
each time step, the current hidden state st ∈ Rds

is updated based on the hidden state and output of
the previous time step as follows:

st = LSTM([ot−1; τt−1; ct], st−1)

ct =
∑

i

αtihi

αt = Softmax(et)

et = st−1WaH
T (2)

where [;] denotes vector concatenation. ot−1 is
the embedding of output in the last step which
obtains from learnable embedding matrix Wfunc

if the output is a function or from EG if the output
is an argument. τt−1 is a vector that obtains from
learnable embedding matrix Wtype according to the
type of last output. ct is the context vector resulting
from the weighted summation of hi, the i-th row of
the question embedding H , based on the attention
mechanism. Wa ∈ Rds×dh is a projection matrix.

We then calculate the vocabulary distribution
based on hidden state st. Our vocabulary consists
of two parts, a fixed vocabulary containing a col-
lection of predefined functions and a dynamic vo-
cabulary consisting of arguments, i.e., numerical
values and KG artifacts related to the question. We
feed st through one linear layer Wo and a softmax
function to compute the probability of each word
in the fixed vocabulary. To obtain the probabili-
ties of the words in the dynamic vocabulary, we
project the hidden vectors st to the same dimension
through the projection matrix Wp ∈ Rds×de and
then compute the similarities with each word by
taking the dot product.

Pfix = Softmax(Wost)

Pdyn = Softmax(stWpE
T
G ) (3)

Next, we calculate the probability Pt that gener-
ate from the fixed vocabulary at the current time
step through a linear layer followed by the acti-
vation function, and combine the two vocabulary
distributions based on Pt. Note that if w is a word
in fixed vocabulary, then Pdyn(w) is zero; similarly
Pfix(w) is zero when w is in dynamic vocabulary.

P (w) = PtPfix(w) + (1− Pt)Pdyn(w)

Pt = σ(Wfct) (4)

2.4 Reward-guided Action Sequence Selection
Strategy

To improve accuracy, we generate multiple candi-
date action sequences with beam search algorithm
and design a reward-guided action sequence selec-
tion strategy. In general, the more similar the struc-
ture and semantics of the two questions are, the
more similar their corresponding action sequences
will be. Therefore, we propose that similar ques-
tions can be used to help the selection of correct
action sequence. Specifically, we build a memory
consisting of question-answer pairs in the training
set. Note that we don’t require golden logical forms
of these questions.

To retrieve similar questions with answers from
memory, we use edit distance to calculate the simi-
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larity between two questions. To improve the gen-
eralization of the questions, we replace the entity
mentions, type mentions and numerical values in
the questions with the symbol [ENTITY], [TYPE]
and [CONSTANT], respectively. We don’t mask
relations because it is always hard to recognize re-
lation mentions. In addition, the presence of some
antonyms including atmost and atleast, less and
greater, can lead to the exact opposite semantics
of questions with similar contexts. Therefore, we
construct a set of antonym pairs and set the sim-
ilarity to 0 when there is an antonym pair in the
two questions. We retrieve k question-answer pairs
with the highest similarity to form the support set
S = {{q1, a1, d1}, ..., {qk, ak, dk}}, where di is
the similarity computed by edit distance.

Which families are House of Shishman a part of or did Clara Maria of Pomerania belong to ?

Which

[TYPE1] [ENTITY1] [ENTITY2] 

[TYPE1] [ENTITY1] [ENTITY2] 
situated in ?Bella part of or areAsia are geographic locations

(a) question-to-question alignment

Select(House of Shishman, part of, family) Union(Clara Maria of Pomerania, noble family, family)

Select(

[ENTITY1] [ENTITY2] [TYPE1]

[ENTITY1] [ENTITY2] [TYPE1] [TYPE1]

continent   /   part of

[TYPE1]

[RELATION2] [RELATION1]

geographic location)[relation y], Bell, Union(geographic location)[relation x], Asia,

part of   /   continent
[RELATION1] [RELATION2]

(b) action-to-action alignment

Figure 2: An example of adjusting candidate action
sequences. The upper and lower parts of (a) are the
original question and a question in the support set, re-
spectively. We first obtain a relation-masked action
sequence (the second line of (b)) based on the alignment
results of entities and types between two questions as
shown in (a), and then output multiple action sequences
according to all possible combinations of relations.

We then propose a reward-guided action se-
quence selection strategy that scores each candidate
action sequence according to its fitness to the re-
trieved support set. Specifically, given a candidate
Ai and an item {qj , aj , dj} in the support set, we
adjust the arguments in Ai to arguments of qj ac-
cording to their positions in the text as Figure 2,
and then score it by compute F1 scores between
aj and execution results of modified sequences on
the lack of golden action sequences. Due to the
positions of the relations being unknown, we ob-
tain all possible orders of relations and generate
multiple modified action sequences. We then take
the highest F1 as the score of {qj , aj , dj} to Ai and
denote it as rji . The overall score of Ai then can be

calculated as follows:

si =

∑k
j=1 djr

j
i∑k

j=1 dj
(5)

where
∑k

j=1 dj is a normalized term. We take the
candidate action sequence with the highest score
as the output sequence in the inference stage.

2.5 Training

We use REINFORCE (Williams, 1992) algorithm
to train our model. We view F1 scores of the
answers generated by predicted action sequence
with respect to ground-truth answers as original re-
wards. To improve the stability of training, we use
the adaptive reward function (Hua et al., 2020c)
to adjust rewards. Moreover, we use a breadth-
first search algorithm on a subset of data to obtain
pseudo-action sequences and pretrain the model to
prevent the cold start problem.

3 Experiments

3.1 Experimental Setup

Our method aims to solve various complex ques-
tions, and we mainly evaluate it on ComplexQues-
tionAnswering (CQA) (Saha et al., 2018) dataset
which is a large-scale KBQA dataset containing
seven types of complex questions, as shown in Ta-
ble 1. We show the details and some examples of
this dataset in Appendix A. We also conduct exper-
iments on WebQuestionsSP (WQSP) (Yih et al.,
2015) which contains 4737 simple questions. The
results show that our method also works well on
simple datasets.

We employ standard F1-measure between pre-
dicted entity set and ground truth answers as evalu-
ation metrics. For some categories whose answers
are boolean values or numbers on CQA dataset, we
view answers as single-value sets and compute the
corresponding F1 scores. The training details and
model parameters can be found in Appendix B

3.2 Baselines

We compare our framework with seq2seq based
methods. KVmem (Saha et al., 2018) presents a
model consisting of a hierarchical encoder and a
key value memory network. CIPITR (Saha et al.,
2019) proposes to mitigate reward sparsity with
auxiliary rewards and restricts the program space to
semantically correct programs. CIPITR proposes
two training ways, one training a single model for
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Question Category KVmem CIP-All CIP-Sep NSM MRL-CQA MARL NS-CQA Ours

Simple Question 41.40% 41.62% 94.89% 88.33% 88.37% 88.06% 88.83% 88.73%
Logical Reasoning 37.56% 21.31% 85.33% 81.20% 80.27% 79.43% 81.23% 88.73%
Quantitative Reasoning 0.89% 5.65% 33.27% 41.89% 45.06% 49.93% 56.28% 76.30%
Comparative Reasoning 1.63% 1.67% 9.60% 64.06% 62.09% 64.10% 65.87% 83.09%

Verification (Boolean) 27.28% 30.86% 61.39% 60.38% 85.62% 85.83% 84.66% 88.18%
Quantitative (Count) 17.80% 37.23% 48.40% 61.84% 62.00% 60.89% 76.96% 80.41%
Comparative (Count) 9.60% 0.36% 0.99% 39.00% 40.33% 40.50% 43.25% 60.80%

Overall macro F1 19.45% 19.82% 47.70% 62.39% 66.25% 66.96% 71.01% 80.89%
Overall micro F1 31.18% 31.52% 73.31% 76.01% 77.71% 77.71% 80.80% 85.31%

Table 1: The overall performances on CQA dataset. Best results are bolded for each category and second-best
results are underlined.

all question categories, denoted by CIP-ALL, and
the other training a separate model for each cat-
egory, denoted by CIP-SEP. NSM (Liang et al.,
2017) utilizes a key-variable memory to handle
compositionality and helps find good programs by
pruning the search space. MRL-CQA (Hua et al.,
2020a) and MARL (Hua et al., 2020b) propose
meta-reinforcement learning approaches that ef-
fectively adapts the meta-learned programmer to
new questions to tackle potential distributional bi-
ases, where the former uses an unsupervised re-
trieval model and the latter learns it alternately
with the programmer from weak supervision. NS-
CQA (Hua et al., 2020c) presents a memory buffer
that stores high-reward programs and proposes an
adaptive reward function to improve training per-
formance. SSRP (Ansari et al., 2019) presents a
noise-resilient model that is distant-supervised by
the final answer. CBR-KBQA (Das et al., 2021)
generates complex logical forms conditioned on
similar retrieved questions and their logical forms
to generalize to unseen relations.

We also compare our method with graph-based
methods on WQSP dataset. STAGG (Yih et al.,
2015) proposes a staged query graph generation
framework and leverages the knowledge base in
an early stage to prune the search space. TEX-
TRAY (Bhutani et al., 2019) answers complex
questions using a novel decompose-execute-join
approach. QGG (Lan and Jiang, 2020) modifies
STAGG with more flexible ways to handle con-
straints and multi-hop relations. OQGG (Qin et al.,
2021) starts with the entire knowledge base and
gradually shrinks it to the desired query graph.

3.3 Overall Performances

The overall performances of our proposed frame-
work against KBQA baselines are shown in Table 1

and 2. Our framework significantly outperforms
the state-of-the-art model on CQA dataset while
staying competitive on WQSP dataset. On CQA
dataset, our method achieves the best overall per-
formance of 80.89% and 85.31% in macro and
micro F1 with 9.88% and 4.51% improvement, re-
spectively. Moreover, it can be observed that our
method achieves the best result on six of seven
question categories. On Logical Reasoning and
Verification (Boolean), which are relatively sim-
pler, our model obtain a 3.40% and 2.35% improve-
ment in macro F1, respectively. On Quantitative
Reasoning, Comparative Reasoning, Quantitative
(Count) and Comparative (Count), whose ques-
tions are complex and hard to parse, out model
obtain a considerable improvement. To be spe-
cific, the macro F1 scores increase by 20.02%,
17.22%, 3.45% and 17.55%, respectively. Our
proposed method doesn’t outperform CIP-Sep on
Simple Question which trains a separate model on
this category but still achieves a comparable result
with the second-best baseline. On WQSP dataset,
our method outperforms all the sequence-based
methods and stay competitive with the graph-based
method which having the best results. Our method
doesn’t gain a lot because most questions in this
dataset are one hop and simple enough while our
frameword aims to deal with various question cate-
gories. We don’t compare with graph-based meth-
ods on CQA dataset because they always start from
a topic entity and interact with KG to add relations
into query graphs step by step, which can not solve
most question types like Quantitative Reasoning
and Comparative Reasoning in this dataset.

The experimental results demonstrate the ability
of our method to parse complex questions and gen-
erate correct action sequences. The main improve-
ment of the proposed method comes from two as-
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Method F1

NSM 69.0%
SSRP 72.6%
NS-CQA 72.0%
CBR-KBQA† 72.8%

STAGG 66.8%
TEXTRAY 60.3%
QGG 74.0%
OQGG 66.0%

Ours 73.6%

Table 2: The overall performances on WQSP dataset. †
denotes supervised training.

pects. On the one hand, we employ a rewrite model
to decompose a complex question into several ut-
terances, allowing the decoder to focus on a shorter
part when decoding each action. On the other hand,
we make full use of existing question-answer pairs
and determine the structure of action sequences
indirectly through the alignment between question-
question pairs.

3.4 Ablation Studies

We conduct a series of ablation studies on CQA
dataset to demonstrate the effectiveness of the main
modules in our framework. To explore the im-
pact of question rewriting module, we remove it
and only use the original question as input of the
seq2seq model. The performance drops by 1.79%
in macro F1 as shown in Table 3. To prove the
effectiveness of the action sequence selection mod-
ule, we generate candidate action sequences using
beam search mechanism and directly use the action
sequence with the highest probability as the output
instead of selecting by action sequence selection
module. The macro F1 drops by 2.49% after remov-
ing this module. To verify that the cross-attention
mechanism in BERT can lead to alignment between
question and KG artifacts and further improve the
generation result, we encode question and KG arti-
facts separately and find the performance drops by
0.97%. Experimental results show that every main
module in our framework has an important role in
performance improvement.

Settings macro F1 micro F1

Full Model 80.89% 85.31%

w/o question rewriting 79.10% 84.15%
w/o candidates selection 78.40% 83.55%
w/o cross-attention 79.92% 84.63%

Table 3: Ablation studies on main components.

To explore the impact of employing different
underlying embeddings, we conduct experiments
on two settings, initializing an embedding matrix
randomly and encoding with BERT. We finetune
the embedding matrix during the training stage in
the first setting while freezing the parameters of
the BERT model. As shown in Table 4, BERT
embedding achieves the best result and improves
by 4.40% compared to random embedding. It is
reasonable because BERT is pretrained with a large
corpus to represent rich semantics and uses a cross-
attention mechanism to align the question and KG
artifacts better. Note that our proposed method still
outperforms state-of-the-art methods without using
BERT.

Settings macro F1 micro F1

Random Embedding 76.49% 81.63%
BERT Embedding 80.89% 85.31%

Table 4: Ablation studies for different underlying em-
beddings.

To investigate the effect of the number of candi-
date action sequences and the size of the support set
on the selection of action sequences, we conduct
experiments and plot the results in Figure 3. It can
be observed that the macro F1 score increases with
the size of the support set at the beginning, what-
ever the number of candidates. This trend slows
down gradually and the macro F1 score peaks when
the size is about 6. Then, as the size of the support
set continues to increase, the macro F1 score de-
creases slightly. It’s mainly caused by the simple
and rough method we use to calculate the question
similarity, which leads to the assumption that sim-
ilar questions have similar action sequence struc-
tures not always hold. In contrast, a certain number
of similar questions can alleviate this problem and
improve performance. However, when the number
reaches a certain level, the newly added questions
become less similar to the original questions and
introduce noise instead. In addition, the increase in
the number of generated candidates also improves
performance. If the number is too high, this boost
becomes less apparent or even negative because of
the lower quality of the newly added candidates.

3.5 Case study

We show some examples to illustrate the ability of
our modules. Table 5 shows a complex question of
category Quantitative (Count). We can observe that
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Figure 3: Trends of macro F1 when the size of support
set increases.

Question how many works of art feature approxi-
mately 5 fictional taxons or people

Rewritten
Question

which works of art contain which fictional
taxon # and which common name # approx-
imately 5 people # how many

w/o Mod-
ule

SelectAll(fictional taxon, present in work,
work of art) SelectAll(common name,
present in work, work of art) AtLeast(5)
Count()

w/ Module SelectAll(fictional taxon, present in work,
work of art) SelectAll(common name,
present in work, work of art) Around(5)
Count()

Table 5: Test case on quesiton rewriting module

the model wrongly predicts the third action in the
absence of rewriting module but makes a correct
generation with the help of rewritten utterances.
It’s reasonable because the seq2seq model learns
to focus on "approximately 5 people" when pre-
dicting the third action. Table 6 shows a query of
category Verification (Boolean). It’s confusing for
the model to decide which entity to output, and the
correct action sequence is given a lower probability.
However, it’s much easier to choose through ac-
tion sequence selection module. The wrong logical
form produces an incorrect result in the majority of
cases and thus receives a lower selection score, as
shown.

4 Related Work

Semantic parsing is the task of translating natural
language utterances into executable meaning repre-
sentations. Recent semantic parsing based KBQA
methods can be categorized as graph-based (Yih
et al., 2015; Bao et al., 2016; Bhutani et al.,
2019; Lan and Jiang, 2020; Qin et al., 2021) and
sequence-based (Liang et al., 2017; Saha et al.,
2019; Ansari et al., 2019; Hua et al., 2020a,b,c; Das
et al., 2021). Graph-based methods build a query

Question Does Janko Kroner have location of birth at
Peraia, Pella and Povazska Bystrica ?

w/o Mod-
ule

Select(Janko Kroner, place of birth, admin-
istrative territorial entity) # Bool(Povazska
Bystrica) # Bool(Povazska Bystrica)
Prob: 0.6085 Selection Score: 0.7333

w/ Module Select(Janko Kroner, place of birth, admin-
istrative territorial entity) # Bool(Peraia,
Pella) # Bool(Povazska Bystrica)
Prob: 0.3519 Selection Score: 1.0000

Table 6: Test case on action sequence selection module

graph which is a graph-like logical form proposed
by (Yih et al., 2015). (Bao et al., 2016) proposed
multi-constraint query graph to improve perfor-
mance. Ding et al. (2019) and Bhutani et al. (2019)
decomposed complex query graph into a set of
simple queries to overcome the long-tail problem.
(Lan and Jiang, 2020) employed early incorpora-
tion of constraints to prune the search space. (Chen
et al., 2021) leveraged the query structure to con-
strain the generation of the candidate queries. (Qin
et al., 2021) generated query graph by shrinking
the entire knowledge base. Sequence-based meth-
ods define a set of functions and utilize a seq2seq
model to generate action sequences. Liang et al.
(2017) augmented the standard seq2seq model with
a key-variable memory to save and reuse intermedi-
ate execution results. Saha et al. (2019) mitigated
reward sparsity with auxiliary rewards. Ansari
et al. (2019) learned program induction with much
noise in the query annotation. Hua et al. (2020a,b)
employed meta-learning to adapt programmer to
unseen questions quickly. Hua et al. (2020c) pro-
posed a adaptive reward function to control the
exploration-exploitation trade-off in reinforcement
learning.

Compared to graph-based methods, sequence-
based methods can generate logical forms directly
using the seq2seq model, which is easier to im-
plement and can handle more question categories
by simply expanding the set of action functions.
However, the semantic and structural gap between
natural language utterances and action sequences
leads to poor performance on translation.

5 Conclusion

In this paper, we propose an alignment-enhanced
complex question answering framework, which
reduces the semantic and structural gap between
question and action sequence by question-to-action
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and question-to-question alignment. We train a
question rewriting model to align question and sub-
action sequence in the absence of training data and
employ a pretrained language model to align the
question and action arguments implicitly. More-
over, we utilize similar questions to help select the
correct action sequence from multiple candidates.
Experiments show that our framework achieves
state-of-the-art on the CQA dataset and performs
well on various complex question categories. In the
future, how to better align questions with logical
forms will be considered.

Limitations

In our method, we view KG artifacts as tokens
and generate logical forms using a seq2seq model,
which can handle more types of complex ques-
tions, i.e., superlative quesions without topic enti-
ties. However, for single and multi-hop questions,
graph-based methods may gain better performance.
The reason is that they start from a topic entity
and interact with KG to add relations into query
graphs step by step, which can prune the search
space more effectively. Moreover, we control the
vocabulary size through entity and relation recog-
nition, which makes the preprocessing step more
complex.
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A CQA Dataset

Complex Question Answering(CQA) dataset con-
tains the subset of the QA pairs from the Complex
Sequential Question Answering(CSQA) dataset,
where the questions are answerable without need-
ing the previous dialog context. There are 944K,
100K and 156K question-answer pairs in the train-
ing, validating and test set, respectively. This
dataset has seven types of complex questions, mak-
ing it difficult for the model to answer correctly.
We show some examples of each question category
in Table 7. For simple questions, the correspond-
ing action sequence contains only one action, and
for some complex questions, the length of action
sequence may up to 4.

B Training Details

To compare with previous works and reduce train-
ing time, we also randomly select two small sub-
sets(about 1% each) from the training set to train
models. We use BFS algorithm to search pseudo
action sequences for the first subset to train the
question rewriting model as introduced in 2.2 and
pretrain the action sequence generation model. We
use the second one for subsequent reinforcement
learning of the action sequence generation model.
We evaluate our trained model on the whole test
set.

We initialize two models in the question rewrit-
ing stage with the base version of BART and fine-
tune them using Adam Optimizer with a learning
rate of 1e-5. For the action sequence generation
model, we adopt the uncased base version of BERT
for underlying embeddings and freeze the parame-
ters to improve training stability. We set the dimen-
sion of type embedding to 100, the hidden sizes of
one-layer BiLSTM Encoder and LSTM Decoder
to 300. We train the model for 100 epochs and 50
epochs using Adam with learning rates of 1e-4 and
1e-5 in the pretraining and reinforcement learning
stages, respectively, and finally choose the check-
point with the highest reward in the development
set. We generate 5 candidate action sequences with
a beam size of 10, and retrieve 3 questions with a
similarity greater than threshold 0.6 as the support
set. If no similar question meets the condition, we
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Question Category Example Question

Simple Question (599K) Direct Where did the expiration of Brian Hetherston occur ?

Logical Reasoning
(138K)

union Which people were casted in Cab Number 13 or Hearts of Fire ?
Intersection Who have location of birth at Lourdes and the gender as male ?
Difference Which people are a native of Grenada but not United Kingdom ?

Verification (63K) Boolean Is United Kingdom headed by Jonas Spelveris and Georgius Sebastos ?

Quantitative Reasoning
(118K)

Min/Max Who had an influence on max number of bands and musical ensembles ?

Atleast/Atmost Which applications are manufactured by atleast 1 business organizations and
business enterprises ?

exactly/around n Which films had their voice dubbing done by exactly 20 people ?

Comparative Reasoning
(62K) Less/More/Equal

Which positions preside the jurisdiction over more number of administrative
territories and US administrative territories than Minister for Regional
Development ?

Quantitative Reasoning
(Count) (159K)

Direct How many nucleic acid sequences encodes Dynein light chain 1,
cytoplasmic ?

Union How many system software or operating systems are the computing
platforms for which Street Fighter IV were specifically designed ?

Intersection How many people studied at Harvard University and Ecole nationale
superieure des Beaux-Arts ?

exactly/around n How many musical instruments are played by atmost 7998 people ?

Comparative Reasoning
(Count) (63K) Less/More/Equal How many administrative territories have less number of cities and

mythological Greek characters as their toponym than Bagdad ?

Table 7: The examples of various question types on CQA dataset.

directly select the top one action sequence gener-
ated by beam search as output.
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