
Proceedings of EMNLP 2022 Industry Track, pages 110–120
December 9–11, 2020. ©2022 Association for Computational Linguistics

110

Ask-and-Verify: Span Candidate Generation and Verification for
Attribute Value Extraction

Yifan Ding1∗ , Yan Liang2, Nasser Zalmout2, Xian Li2, Christan Grant3, Tim Weninger1
University of Notre Dame1, Amazon.com2, University of Oklahoma3,

{yding4, tweninge}@nd.edu, {ynliang, nzalmout, xianlee}@amazon.com, cgrant@ou.edu

Abstract

The product attribute value extraction (AVE)
task aims to capture key factual information
from product profiles, and is useful for several
downstream applications in e-Commerce plat-
forms. Previous contributions usually formu-
late this task using sequence labeling or read-
ing comprehension architectures. However, se-
quence labeling models tend to be conservative
in their predictions resulting in a high false neg-
ative rate. Existing reading comprehension for-
mulations, on the other hand, can over-generate
attribute values which hinders precision. In the
present work we address these limitations with
a new end-to-end pipeline framework called
Ask-and-Verify. Given a product and an at-
tribute query, the Ask step detects the top-K
span candidates (i.e., possible attribute values)
from the product profiles, then the Verify step
filters out false positive candidates. We evalu-
ate Ask-and-Verify model on Amazon’s prod-
uct pages and AliExpress public dataset, and
present a comparative analysis as well as a de-
tailed ablation study. Despite its simplicity, we
show that Ask-and-Verify outperforms recent
state-of-the-art models by up to 3.1% F1 abso-
lute improvement points, while also scaling to
thousands of attributes.

1 Introduction

The product profiles in e-Commerce platforms are
usually comprised of free-form natural language
description of the main product features. The prod-
uct attribute value extraction (AVE) task is used to
extract key factual information from textual prod-
uct descriptions. Properly extracted attribute val-
ues can facilitate several downstream applications,
such as search (Xiao et al., 2021), recommendation
systems (Hwangbo et al., 2018), and task-oriented
dialogue systems (Yan et al., 2017). In the vari-
ous retail categories there are millions of different
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Figure 1: An example of attribute value extraction task
on a dairy product. Corresponding attribute values are
extracted for several different attributes including flavor,
target age, brand, gluten, and organic information.

product types with thousands of unique attributes,
so AVE should ideally be scalable with respect to
the number of attributes, providing high coverage
for all possible values, while maintaining accurate
overall predictions. Fig. 1 shows an example for
the AVE task on a dairy product. In this case, AVE
aims to extract the corresponding attribute values of
multiple product attributes including flavor, target
age, gluten information, among others.

AVE is a central organizational task in online
shopping systems, significant attention has been
paid to the task resulting in a handful of highly-
optimized systems (Zalmout et al., 2021; Yan et al.,
2021; Lin et al., 2021; Wang et al., 2020; Xu et al.,
2019; Zheng et al., 2018). Most of these models
use either a sequence labeling formulation, or a ma-
chine reading comprehension (MRC) formulation.
Sequence labeling is a popular formulation in the
named entity recognition literature. However, its
application on the AVE task tends to generate con-
servative outputs, resulting in many false negatives.
This is mostly caused by an overabundance of neg-
ative token labels (i.e., the ‘O’ in BIOE schema).

Recently, the AVEQA model (Wang et al., 2020)
addressed the AVE task using a reading compre-
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hension formulation (i.e., question answering –
hence AVEQA). This formulation tends to be more
flexible and scalable than sequential labelling ap-
proaches, however, we observed that AVEQA tends
to over-generate irrelevant outputs and does not
generalize to multiple attribute values.

In the present work, we address these limita-
tions in existing systems with a new end-to-end
framework we dub Ask-and-Verify, consisting of
a span candidate generation step (Ask) and a span
verification step (Verify). The Ask step first identi-
fies relevant span candidates by locating potential
boundaries (i.e.starting and ending indices) with
two individual multi-label classifiers based on to-
ken features. The goal of the Verify step is to elim-
inate irrelevant span candidates with span features.
The overall framework is attribute-agnostic, which
can capture salient attribute information from the
input sequence, and can generalize to thousands of
attributes without attribute-specific parameters.

In summary, we present the Ask-and-Verify
framework, which disentangles the attribute value
extraction task into an end-to-end pipeline of (1)
span candidate generation and (2) verification. We
design the multi-label classifiers and span candi-
date collection module to obtain valid high-quality
span candidates within the model. The verification
module is an attribute-agnostic binary classifier
based on span features. Through extensive experi-
ments on two real-world E-commerce datasets, we
show that the Ask-and-Verify framework outper-
forms the current crop of state-of-the-art models,
and is able to scale to thousands of attributes.

2 Related Work

2.1 Attribute Value Extraction

The goal of the attribute value extraction task is
to extract key factual information about a product
from its text description. Recent contributions typi-
cally formulate the AVE task as a sequence labeling
task (Yan et al., 2021; Karamanolakis et al., 2020;
Xu et al., 2019; Zheng et al., 2018). The main idea
is to assign token-wise attribute labels with context-
aware token features. To extract different attributes,
multiple strategies have been presented in previous
works. OpenTag (Zheng et al., 2018) utilized sep-
arate tag-sets for each attribute, SuOpenTag (Xu
et al., 2019) and Adatag (Yan et al., 2021) utilized
single tag-set for all the attributes while attribute
information is explicitly injected at the encoder or
decoder. Recently, AVEQA (Wang et al., 2020)

utilizes machine reading comprehension to extract
attribute values by treating attributes as questions
and text descriptions as the passage.

2.2 Machine Reading Comprehension

Machine reading comprehension (MRC) is a gen-
eral task within the fields of information retrieval
(IR) and natural language processing (NLP), which
aims to find correct answers to a question in a given
passage (Rajpurkar et al., 2016, 2018; Zhang et al.,
2020). Illustrated via questions at the bottom of
Fig. 1, the AVE task can naturally be formulated as
an MRC task, which is to extract correct attribute
values (answer) within a product text description
(passage) for a given attribute query (question).
One complication is that the AVE task must handle
unanswerable attribute queries (unanswerable ques-
tions) and multiple attribute values for an attribute
(multiple answers to a single question).

2.3 Candidate Generation and Selection

Candidate generation and selection is widely used
in object detection (Carion et al., 2020; Ren et al.,
2015) and instance segmentation (Wang et al.,
2021; He et al., 2017) in computer vision. The can-
didate generation step generates candidate bound-
ing boxes which can carry instance information
used in the selection step. Recently, NLP re-
searchers have developed span-based models (Shen
et al., 2021; Joshi et al., 2020; Yamada et al., 2020;
Li et al., 2020) to obtain state-of-the-art perfor-
mance on span-based or entity-centered tasks like
named entity recognition (Ding et al., 2021; Huang
et al., 2015), entity linking (Ding et al., 2022;
Botzer et al., 2022), and machine reading com-
prehension (Rajpurkar et al., 2018) among others.
A key insight of the Ask-and-Verify framework is
to show that this kind-of candidate generation and
selection formulation used widely in computer vi-
sion can also be used to benefit the the AVE task
and potentially other span-level NLP tasks.

3 Methodology

Task Definition: Given a product description
X = [x1, x2, ..., xL] with L tokens, and an at-
tribute A from a pre-defined attribute set A, the
AVE task aims to extract all of the unique attribute
values Y = {y1, y2, ..., yM} corresponding to A.
Each attribute value ym is composed of one or more
consecutive tokens within X . If no proper attribute
values is found in X for A, an empty set should
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Figure 2: Overview of the Ask-and-Verify framework, a two-step attribute value extraction framework with Span
Candidate Generation (Ask) and Span Candidate Verification (Verify). The framework takes input sequences of
entity text descriptions and a single attribute of interest. In the Span Candidate Generation step, the input sequence
is first passed to a Transformer Encoder to obtain hidden states. The Span Candidate Collection module processes
the hidden states to obtain top-K valid span candidates. In the Span Candidate Verification step, span embeddings
composed of start-token hidden states, end-token hidden states and a span-length embedding, are obtained in Span
Feature Extraction module for each generated span candidate. Finally, the span embedding is passed to the Span
Binary Classification module to obtain the extracted attribute values.

be returned for Y . Following common practice
in question answering, we also call this case as
unanswerable case.

Ask-and-Verify: Our framework addresses the
AVE task in an end-to-end manner with two major
components: (1) span candidate generation (Ask),
and (2) span candidate verification (Verify). For an
attribute of interest A, the first step generates the
potential span candidates. The second verification
step filters the candidates and selects a subset.

3.1 Span Candidate Generation
This step generates potential span candidates.
Specifically, we employ two individual multi-label
classifiers to locate starting index and ending index
of span candidates. Formally, given a product with
text description X and an attribute of interest A,
we use a sub-word tokenizer to tokenize original
tokens along with the attribute into sub words SW :

(1)SW = Tokenizer({[CLS], X, [SEP], A})

Following common practice, we pad the se-
quences to some fixed length K and longer se-

quences are also fixed to the same length K by
truncating the tokens of text description. The pro-
cessed tokens are then fed into a BERT encoder to
obtain d-dimensional hidden states H ∈ RK×d:

(2)H = Encoder(SW )

The hidden states Hs of index s are further fed
through a linear layer and Softmax to obtain the
probabilities for the starting token. Similarly, the
probability index e for the ending token is obtained
by feeding the corresponding hidden states He

through another linear layer and Softmax.

P θ
start(s|X,A) =

exp(wT
startHs)∑K

k=1 exp(w
T
startHk)

(3)

P θ
end(e|X,A) =

exp(wT
endHe)∑K

k=1 exp(w
T
endHk)

(4)

At the training stage, two K-class (K is the fixed
length of input sentence) classifiers are used in-
dividually on start indexes and end indexes with
multi-label cross-entropy loss (see Eq. (5)-(6)).
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Note that start token(s) of Y forms a set YS , and
end token(s) of Y forms a set YE . Any correct
token in YS is considered as a positive starting to-
ken and any correct token in YE is considered as a
positive ending token.

Lstart = −
K∑
s=1

1(SWs ∈ YS) logP
θ
start(s|X,A)

(5)

Lend = −
K∑
e=1

1(SWe ∈ YE) logP
θ
end(e|X,A)

(6)

To obtain the actual span candidates M, each
span candidate m(s,e) has to have top-K probabil-
ities within valid spans (see Eq. (7)). A span is a
valid if and only if all the span tokens are within the
range of text description with positive lengths up
to T tokens (see Eq. (8)). Note that span candidate
generation is part of the model thus span candidates
are obtained in both training and inference stage.

M = {m(s,e) | Mask(s,e) ∧
P θ

start(s|X,A) + P θ
end(e|X,A) ∈ top-K}

(7)

Mask(s,e) = 1(SWs ∈ X ∧ SWe ∈ X

∧ 1 <= e− s <= T )
(8)

3.2 Span Candidate Verification
The span candidate verification step aims to ver-
ify each span candidate generated from previous
step, and choose the final attribute value extraction
output. We utilize a simple but effective uniform
binary classification model for the verification step.
We make individual binary (i.e., yes/no) classifica-
tions for each span candidate with the correspond-
ing span-level features.

Formally, given the same hidden state H from
Eq. (2), each span candidate m(s,e) obtains its span
features Hm(s,e)

by concatenating starting token’s
hidden state Hs, ending token’s hidden state He,
and span candidate’s length embedding ℓe−s.

Hm(s,e)
= Concat([Hs;He; ℓe−s]) (9)

Ĥm(s,e)
= DropOut(ReLU(wT

1 Hm(s,e)
)) (10)

P θ
span(m(s,e)|X,A) =

exp(wT
2 Ĥm(s,e)

)∑
m′∈M exp(wT

2 Ĥm′)

(11)

where ℓ ∈ RT×dF is the learned span length fea-
tures with dF dimension. The span features are
then fed into a single-layer feed forward neural net-
work with DropOut and a ReLU layer to obtain the
corresponding span state Ĥm(s,e)

. Ĥm(s,e)
further

goes through another linear layer and Softmax to
obtain the probabilities.

The objective function Lspan of the verification
step is the sum of the binary cross entropy losses
for each span candidate m(s,e). A span is positive
if and only if it exactly matches one of the ground
truth attribute value(s).

Lspan = −
∑
m∈M

(
1(m ∈ Y) logP (m|X,A) +

1(m /∈ Y) log(1− P (m|X,A)
)

(12)

L = Lstart + Lend + Lspan (13)

3.3 Training and Inference

The training objective function of the Ask-and-
Verify framework is the sum of the starting index
loss, ending index loss, and the span binary classi-
fication loss (see Eq. (13)). During inference, each
span candidate m̂ is ranked according to its binary
classification score P θ

span(m̂|X,A). The span can-
didate with higher score than some threshold value
τ makes it to the ranking step. In the ranking or-
der, a span candidate is selected if it does not have
any overlapping token(s) with any of the already
selected spans. If no spans make it to the rank-
ing step, then an empty set is returned. Additional
details (i.e.hyperparameters) can be found in the
reproducibility section A of the appendix.

4 Experiments

We conduct extensive experiments using the AliEx-
press (Xu et al., 2019) and Amazon datasets and
compare the Ask-and-Verify framework with ten
state-of-the-art methods.

4.1 Datasets

AliExpress: We use the public version of the
AliExpress dataset (AE-110K). Following previous
work (Wang et al., 2020), we randomly partition the
product-instances into an 80/20 train/test split for
scaling experiments. Additionally, we also focus
on the 50 most frequent attributes, but remove 2
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Table 1: Test macro precision (P), recall (R) and F1 scores on AE-48, AZ-15 and AZ-33. Best scores are highlighted
in bold, second best scores are underlined.

Model AE-48 AZ-15 AZ-33
P R F1 P R F1 P R F1

BiLSTM (Huang et al., 2015) 0.788 0.771 0.776 0.742 0.519 0.593 0.731 0.511 0.586
BERT (Devlin et al., 2019) 0.787 0.814 0.800 0.720 0.506 0.582 0.736 0.509 0.589
OpenTag (Zheng et al., 2018) - - - 0.751 0.519 0.594 0.708 0.482 0.557
SuOpenTag (Xu et al., 2019) 0.806 0.795 0.798 0.749 0.503 0.585 0.711 0.533 0.593
AdaTag (Yan et al., 2021) 0.801 0.805 0.799 0.751 0.518 0.591 0.712 0.542 0.599
AVEQA (Wang et al., 2020) 0.806 0.807 0.804 0.618 0.512 0.551 0.633 0.523 0.563
MRC-For-NER (Li et al., 2020) 0.753 0.800 0.774 0.562 0.428 0.470 0.652 0.482 0.543
W2NER (Li et al., 2022) - - - 0.847 0.304 0.405 0.838 0.271 0.369
Locate-and-Label (Shen et al., 2021) 0.713 0.673 0.669 0.655 0.564 0.569 0.697 0.512 0.549
Sequence-to-Set (Tan et al., 2021) 0.778 0.621 0.665 0.786 0.411 0.501 0.763 0.420 0.501

Ask-and-Verify 0.821 0.813 0.814 0.750 0.551 0.625 0.744 0.562 0.629

that fail on the AdaTag model (Yan et al., 2021).
This setting is referred to as AE-48 dataset.
Amazon: Similar to previous work (Yan et al.,
2021), we collected datasets from Amazon’s prod-
uct pages. The raw training data includes 33 fre-
quent attributes and 745, 216 total samples. Ex-
ample attributes including color, flavor, skin type,
hair type, pattern type, and age range description.
Test data is annotated by Amazon employees, in-
cluding 15 attributes (from the 33 attributes) and
11, 000 total samples. We consider two experiment
settings: first we use all 33 attributes (AZ-33) from
the training set; in the second setting we restrict
the training instances to include at least one of 15
attributes present in test set (AZ-15).

4.2 Existing Models

We compared the AVE task performance of the
Ask-and-Verify against ten state-of-the-art models
including two standard sequential labeling mod-
els: BiLSTM (Huang et al., 2015) and BERT (De-
vlin et al., 2019); four state-of-the-art attribute
value extraction models: OpenTag (Zheng et al.,
2018), SuOpenTag (Xu et al., 2019), AdaTag (Yan
et al., 2021), and AVEQA (Wang et al., 2020); four
state-of-the-art named entity recognition models:
MRC-for-NER (Li et al., 2020), W2NER (Li et al.,
2022), Locate-and-Label (Shen et al., 2021), and
Sequence-to-Set (Tan et al., 2021).

4.3 Metrics

Following the previous contributions, we use the
exact entity matching criteria for evaluation. A
predicted attribute value is considered to be a true

Table 2: Test micro precision (P), recall (R) and F1
scores on AE-110k. Many models are not included be-
cause they could not scale to the large size of attributes
in the AE-110K dataset. Best scores are highlighted in
bold. ♣: our reported scores are different from original
reported values, details can be found in section B and D
of appendix.

Model AE-110K
P R F1

SuOpenTag (Xu et al., 2019) 0.641 0.575 0.607
AVEQA (Wang et al., 2020) ♣ 0.784 0.711 0.746

Ask-and-Verify 0.798 0.723 0.759

positive if and only if it exactly matches one of
the ground truth values. In the main experiments
shown in Table 1 we compute macro precision (P),
recall (R) and F1 scores (F1) by aggregating across
testing attributes. In the scaling experiment shown
in Table 2, we use micro precision, recall and F1
scores following previous work (Wang et al., 2020).

4.4 Results

The results of our principal experiments over the
three E-Commerce dataset settings (AE-48, AZ-15
and AZ-33) are listed in Table 1. We observe that
the Ask-and-Verify framework outperforms the ex-
isting methods on all three settings with absolute
improvements in the F1 score of +1.0%, +3.1% and
+3.0% respectively, compared to second best base-
line. Specifically, Ask-and-Verify obtains the best
or second best recall scores. As for precision, only
state-of-the-art NER models obtain higher preci-
sion than Ask-and-Verify but with the cost of much
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Table 3: Ablation study of different model choices on
span candidate generation (Ask) and verification (Ver-
ify). Best scores are highlighted in bold.

AZ-15 AZ-33
P R F1 P R F1

Ask-and-Verify 0.750 0.551 0.625 0.744 0.562 0.629

w/o Verify 0.279 0.601 0.374 0.328 0.618 0.421
Verify w/ PURE 0.825 0.316 0.418 0.829 0.287 0.388
Ask w/ n-gram 0.717 0.510 0.587 0.708 0.507 0.582
Ask w/ nouns 0.611 0.264 0.361 0.580 0.266 0.357

more downgrade on the recall.
We further conduct experiments to test the scal-

ability of the Ask-and-Verify framework on the
AE-110K setting with more than two thousand at-
tributes. Results of this experiment are listed in Ta-
ble 2. We compared Ask-and-Verify with AVEQA
and SuOpenTag only because the other models are
not able to scale up to all attributes. We find the
AVEQA model shows significantly better scala-
bility compared to the SuOpenTag. Compared to
AVEQA, the Ask-and-Verify framework is able to
further boost the performance, with improvements
in precision, recall and F1 scores at +1.4%, +1.2%
and 1.3% respectively.

5 Ablation Studies

5.1 Effectiveness of the Ask-Step
We study the effect of using alternative formula-
tions for the Ask step to provide span candidates.
Intuitively, we can remove the Ask component and
replace it with a basic n-grams setup. Specifically,
we use n-grams and noun phrase chunking as alter-
natives for the Ask step. For the n-grams model,
we consider all the possible spans up to five words.
For the noun-phrase chunking model, we utilize
spaCy’s chunker1 to extract all the nouns of the
input text. We keep the same Verification step and
conduct experiments on AZ-15 and AZ-33 settings.
As shown in Table 3, both n-grams and noun phrase
chunking show a lower performance compared to
the Ask component. Using n-grams drops f1 by
3.8% on AZ-15, and 4.7% on AZ-33. While noun
phrases result in a larger drop, by more than 20%
on both settings.

5.2 Effectiveness of the Verification-Step
To study the effect of the Verification step, we first
consider removing the Verification step completely,

1https://github.com/explosion/spaCy
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Figure 3: Number of false positive samples in Ask-only
and Ask-and-Verify settings. The Verify-step substan-
tially reduces false positives.

and use the span candidates directly as the output.
As shown in Table 3, removing the verification step
leads to significant precision drop of about 47.1%
and 41.6%, with moderate recall improvement of
5.0% and 5.6% on the AZ-15 and AZ-33. We also
replace the Verification step with the PURE (Zhong
and Chen, 2021) model. Even though the alterna-
tive can improve precision with 7.5% and 8.5%, it
drops recall by about 23.5% and 27.5%.

Further, to quantitatively understand how the
Verify model can reduce the number of false pos-
itives presented in the span candidates, we count
the false positives in the Ask-and-Verify output
and Ask-only-top1 span output. Compared to Ask-
only-top-1, the addition of the Verify model in our
framework can significantly reduce the false posi-
tives in both answerable and unanswerable cases.
In the AE-48 setting, answerable false positive sam-
ples are reduced by about 20%. On the AZ-15 and
AZ-33 settings, Ask-and-Verify can filter-out more
than 40% of the unanswerable cases, and more than
20% of the answerable cases.

6 Deployment Considerations

The Ask-and-Verify framework is currently under
deployment evaluation. Investigation is going on
to verify if the framework can be deployed with
minimal changes of the existing workflow. In our
deployment tests, we found that the Ask-and-Verify
framework has better precision and recall perfor-
mance. Ask-and-Verify is also flexible, and can
adapt to a wide application scenarios that might re-
quire varying precision and recall levels, by chang-
ing the threshold values. Moreover, a single model
can cover a large number of attributes – this is par-
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ticularly important since E-commerce platforms
can hold billions of different products with thou-
sands of attributes.

7 Conclusions

In this paper we described a new end-to-end frame-
work, Ask-and-Verify, for the attribute value ex-
traction task. This framework has two main com-
ponents: (1) a span candidate generation step, and
(2) a verification step. The span candidate gen-
eration step can provide high-quality span candi-
dates and the verification step can further remove
irrelevant span candidates. Ask-and-Verify utilizes
two individual multi-label classifiers in the candi-
date span generation step and an attribute agnostic
span-based binary classifier in the verification step.
We performed a comparative analysis on an Ama-
zon products dataset as well as a publicly avail-
able dataset from AliExpress. We evaluate Ask-
and-Verify compared to ten other baseline models.
Despite its simplicity, Ask-and-Verify consistently
outperforms these state-of-the-art methods, and is
able to scale up to thousands of unique attributes.
Ask-and-Verify also has high flexibility and allows
for effective threshold tuning.
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A Reproducibility

Ask-and-Verify is implemented using the PyTorch
and transformers packages based on the uncased
BERT model. We use the transformers’ trainer
and default AdamW optimizer with the learning
rate setting to 3e−5 in all the experiments. Training
epoch and batch size vary for different datasets (see
Table 4). The experiments on AZ-15 and AE-33
takes about 18 hours to run on 4 NVIDIA TITAN
XP GPUs. The experiments on AE-48 and AE-
110E take less than six hours on single GPU.

dataset AE-48 AE-110E AZ-15 AZ-33

A
sk batch-size 48 48 48 96

epoch 30 30 5 30

Ve
ri

fy batch-size 128 128 128 128
epoch 100 30 10 10

Table 4: batch size and epoch used by Ask-and-Verify
on different experiments

The Ask-and-Verify framework has a handful of
hyper-parameters. The mentioned values are ap-
plicable for all the experiments unless specifically
indicated. The maximum number of sub-words
for a span candidate is set to 5. The verification
model considers at most 5 span candidates in both
training and inference stages. Both span candidate
generation and verification input a list of tokens
consisting of a text description, a single attribute of
interest, and special tokens. The length (i.e.number
of tokens) of the input sequence K is set to 512.
Shorter sentences are padded with a special token.
Longer sentences are truncated. In the verifica-
tion step, the dimension of the span length features
dF is set to 150 and the dropout rate is set to 0.2.
The inference threshold τ uses the default value of
binary classifier 0.5.

B Preprocessing and Postprocessing

Attribute value extraction is formalized as different
tasks by different methods in our experiments, in-
cluding machine reading comprehension (i.e., ques-
tion answering), sequence labeling, and span can-
didate generation and verification. There can be
multiple ways to conduct preprocessing and post-
processing in these tasks. For example, the labels
of MRC can be defined on word-level (before to-
kenization) or sub-word-level (after tokenization).
We tried to ask for the preprocessing code used for
the AVEQA (Wang et al., 2020) paper, but were

[“Stonyfield”, “Organic”, “Kids”, “Whole”, “Milk”, “Yogurt”]
Product Text Description:

Attribute: “Brand”
Ground Truth: “Stonyfield Organic”
Span Candidates: [“Stony”, “Stonyfield Organic”]
(1) + (2):

“Stony” => “Stonyfield”: (0, 0, 1); label: 0

Tokenized Input Sequence:
[“[CLS]”, “brand”, “[SEP]”, “stony”, “##field”, “organic”, … ,“[SEP]”]

(3):
“Stonyfield”: (3, 3, 1); label: 0

“Stonyfield  Organic” => “Stonyfield  Organic”: (0, 1, 2); label: 1

index: [ 0, 1, 2, 3, 4, 5]

index: [0, “br11 1, 2, 13, 4, 5, … , 110]

“Stonyfield Organic”: (3, 5, 2); label: 1

Figure 4: An example of processing span candidates.

unable to obtain it. Following previous sequence
labeling work (Zheng et al., 2018; Yan et al., 2021),
we first prepare tokens and associated labels in the
sequence labeling format for each experiment set-
ting. Then labels of other formats are transformed
from the sequence labeling format in the prepro-
cessing step. Output results are later transformed
back to sequence labeling format to conduct eval-
uation. Specifically, we required all the possible
extracted attribute values being a subset of contin-
uous full words within the input sequence X for
each method. In comparison, standard sub-word
tokenizer (e.g.BERT) can generate sub-words not
necessarily forming full words. For example, if
a word is called "swimglass" and sub-word tok-
enizer can generate "swim" only. We observe the
differences have impacts on the evaluation results
of different experiment settings.

C Span Candidate Process

In Ask-and-Verify, a span candidate m(s,e) is rep-
resented as a tuple (with start-index s, end-index
e, span-length ℓ = e − s). The span candidate
must consist of continuous context sub-words with
no more than the predefined maximum number
of sub-word tokens. Additionally, the span candi-
dates from the generation step are composed of sub-
words which do not necessarily form full words.
This setting may cause extra errors in final eval-
uation. Furthermore, the index s and e are not
the same as original span candidate’s positions be-
cause of sub-word tokenization and the attribute
injected in the input sequence. To overcome the in-
terface challenge, we present a processing pipeline
in the span candidate collection module to: (1) lo-
cate or transform span candidates to nearest tokens
forming in the full-word formats; (2) assign binary
classification labels with strict string matching be-
tween the processed span candidates and ground
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Table 5: Models that address the attribute value extrac-
tion task and their features on M product attribute types.

# of models Scales to
AE-110K

Negative
Words

OpenTag M ✓
SuOpenTag 1 ✓ ✓
AdaTag 2 ✓
AVEQA 1 ✓
Ask-and-Verify 1 ✓ ✓

truth (only in training phase); and (3) capture the
correct position of sub-word tokens corresponding
to the start token and end token. An example is
illustrated in Fig. 4.

D AE-110K dataset

We utilize the public version of AE-110K dataset.
However, the data split process, pre-processing,
post-processing and evaluation code are not pub-
lic released. We observed our experiment values
for AVEQA (74.6% F1) and SuOpenTag (60.7%
F1) are both lower than the values reported in the
AVEQA paper: AVEQA (85.01% F1) and SuOpen-
Tag (74.92% F1). This is most likely coming from
different data splits and pre-processing strategies.

E Contribution Matrix

In the attribute value extraction task, we argue that
there are three major dimensions to judge a frame-
work in the industry production environment: effi-
ciency, scaling ability, and performance. A good
framework should have few number of models, ca-
pable of scaling up to large number of attributes
while obtaining good performances as shown in
the Table 5. Compared to all the previous methods,
Ask-and-Verify has only one model for multiple
attributes, scaling up to thousands of attributes on
the public AE-110K dataset, and also carefully con-
sidering negative words resulting superior perfor-
mances on two real word datasets.

F Precision-Recall curve

We present the precision-recall curve of the Ask-
and-Verify model on the AZ-15 and AZ-33 settings
by changing the threshold values of the Verify step.
The performances of other baseline methods are
also included in the same figures. From the results
in Fig. 5, we can see that the precision and recall
keeps a high performance score in a wide range.
Compared to the performance of other baselines,
the precision and recall curve of Ask-and-Verify
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Figure 5: precision and recall curves of Ask-and-Verify
on AZ-15 and AZ-33 settings. Ask-and-Verify has a
good performance and high flexibility. Both precision-
recall curves are above all the comparing methods.
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Figure 6: Ablation study on changing the number of
span candidates on AZ-15 and AZ-33 settings. With
number of span candidates increase, the ask-only pro-
vides spans with higher recall but lower precision. In
comparison, Ask-and-Verify model has a moderate in-
crease from 1 to 5 span candidates and keeps a stable
performance with 5 or more span candidates.

is always on the top right. Interestingly, the mar-
gin gets larger on the AZ-33 compared to AZ-15,
showing the better scalability of Ask-and-Verify.

G Effectiveness of Changing the Number
of Span Candidates

Span candidate plays a central role in the frame-
work by bridging Ask model and Verify model. In-
tuitively, increasing the number of span candidates
can potentially include extra positive span samples
but also bring more negative samples at the same
time. It is also interesting to investigate how the
trade offs impact the performances of overall archi-
tecture. Fig. 6 shows the metrics of Ask-only and
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Ask-and-Verify models by generating or utilizing
the same number of span candidates. We first ana-
lyze the Ask-only performances from the dash lines.
When the number of span candidates increases, we
can see that the recall curve is constantly increas-
ing while precision and f1 curves keep decreasing.
Considering the top-20 span candidates, the recall
can be even larger than 75% while the precision
is only around 25%. As for the Ask-and-Verify
performance represented with solid lines, it shows
interesting patterns. With top-1 span candidates on
AZ-15 setting, it has slightly larger precision and
slightly lower recall compared to Ask-only outputs.
As the number of span candidates increases to 5,
both precision and recall increase. As the number
of span candidates keeps increasing, both precision
and recall drop slightly but still keep stable scores.

H Case Study

We present some examples to show how Ask-and-
Verify span candidate verification step can bet-
ter capture the correct attribute values from the
span candidates. These examples are illustrated in
Fig. 7 (A-D). The AVE task of (A) is to extract
the “skin tone” attribute from the tanning prod-
uct. The Ask model produces span candidates with
“darker”, “softening and tan extending DHA”, “all”
and “black”, sorted by the ranking scores of the Ask
model. The “darker” span candidate ranks first and
is the output of the Ask-only model. However, the
verification model chooses the third-ranked span
candidate “all” as the output, matching the ground
truth. The AVE task of example (B) is to extract the
“hair type” attribute from a Hair Conditioner prod-
uct. All span candidates are incorrect and Ask-and-
Verify is able to reject all the irrelevant attribute
values. Example (C) seeks to extract the same
“hair type” attribute from a gel product. Even if
the correct attribute values are not included within
the span candidates, Ask-and-Verify can still reject
each candidate and therefore reduce false positives.
Finally, in example (D) we seek to extract the “Age
Range” attribute from a pack of diapers. Ask-and-
Verify can correctly identify the “Baby” attribute
value in the second span candidate.

In summary, we find that the Ask-step predicts
frequent and contextually-coherent span candidates.
However, these span candidates carry many false
positives Introducing the verification-step into the
framework appears to substantially reduce the oc-
currence of false positives.

(A)
Bella Black 100x Bronzing Tanning Bed Lotion 13. 5 oz -
Safe for use on all Tanning Beds & Skin types.

Extreme Silicone for skin softening and tan extending
DHA Bronzers for Delayed and immediate results

New Factory Sealed 13. 5oz Bottle

Melanin booster for quicker, darker, longer lasting
results

What’s the skin tone?
Attribute Question:

About this item:

Title:

All
Ground Truth:

darker, softening and tan extending DHA, all, black
QA span candidates: Verification result:

All

(B)

GIBS Grooming Con Man Hair & Beard Pudding , 19 Fl Oz . 

The product you didn ' t know you needed . Literally nothing 
else like this ! 

Pudding gives you a vibrant look to your hair & a stronger 
beard Ideal for short to mid - length hair 

Attribute Questions:

About this item:

Title:

What’s the hair type?
Ground Truth:

short to mid

QA span candidates:
Literally, nothing, else, beard

Verification result:
(empty) 

(C)

Kaleidoscope Miracle Edges 2 Fl Oz

Attribute Questions:

Title:

What’s the hair type?
Ground Truth:

(empty) 

QA span candidates:
Edges, Kaleidoscope, Miracle, Edges 2 Fl Oz

Verification result:
(empty) 

(D)

Diapers Size 7 , 44 Count - Pampers Swaddlers Disposable 
Baby Diapers, Super Pack.

No . 1 choice of hospitals, Nurses and Parents (Hospitals : 
based on hospital sales data vs Other hospital brands)

2x softer with up to 12 hours of protection

Attribute Questions:

About this item:

Title:

What’s the Age Range?
Ground Truth:

Baby

QA span candidates:
Diapers, Baby, Other hospital brands

Verification result:
Baby

Figure 7: Case study with four illustrative examples of
(A) tanning lotion, (B) hair conditioner, (C) hair gel, and
(D) diapers. We find that the Ask-step of the Ask-and-
Verify model is able to produce reasonable, but noisy
candidates each of the product attributes. However, the
Verify-step is able to filter-out spurious candidates and
reduce the rate of false positives.


