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Abstract

Automation of on-call customer support relies
heavily on accurate and efficient speech-to-
intent (S2I) systems. Building such systems
using multi-component pipelines can pose var-
ious challenges because they require large an-
notated datasets, have higher latency, and have
complex deployment. These pipelines are also
prone to compounding errors. To overcome
these challenges, we discuss an end-to-end
(E2E) S2I model for customer support voice-
bot task in a bilingual setting. We show how
we can solve E2E intent classification by lever-
aging a pre-trained automatic speech recogni-
tion (ASR) model with slight modification and
fine-tuning on small annotated datasets. Exper-
imental results show that our best E2E model
outperforms a conventional pipeline by a rela-
tive ~27% on the F1 score.

1 Introduction

Spoken Language Understanding (SLU) systems
that extract the intent from a spoken utterance are
integral in various voicebot applications such as
automated on-call customer support, voice assis-
tants, home or vehicle automation systems, etc.
The extracted intent triggers a standard operating
procedure (SOP) as defined by the respective appli-
cation, e.g. an e-commerce customer query “I want
to return my phone” maps to “Return” intent which
triggers the SOP to help the user with returns. It
helps us reduce the reliance on human agents and
provide faster resolutions. More elaborate exam-
ples are shown in Table 4.

Conventionally, such systems consist of two
components - an Automatic Speech Recognition
(ASR) system followed by a Natural Language
Understanding (NLU) unit. ASR converts audio
to text, and NLU performs intent classification.
Further, each component can have multiple sub-
models. Typically, both these components are de-
veloped and optimized independently. ASR opti-
mizes word error rate (WER) with equal weightage

to individual words. This might not be optimal for
an S2I system since all words are not equally rele-
vant for intent classification. Also, due to the broad
diversity in speech, training reliable ASR models
can be very data intensive and strenuous. An error-
prone ASR results in noisy inputs to NLU models,
typically trained on clean text. This causes error
accumulation which reduces the pipeline’s perfor-
mance. Data-intensive training of multiple models,
high complexity & maintenance, and higher overall
latency make this pipeline approach sub-optimal.

The end-to-end S2I model is an intuitive alterna-
tive to overcome these limitations. It eliminates the
problem of error accumulation, is simple and faster,
and reduces the efforts required for independent
models. Modelling the problem as audio-to-intent
classification simplifies the task since the number
of intents is usually much less than the vocabulary
size used in ASR and NLU. It helps us reduce the
requirement of manually annotated training data.

In this work, we adapt an E2E ASR model to
build an E2E S2I model for Flipkart’s on-call cus-
tomer support. An overview of our contributions is
as follows:

¢ An efficient extension of end-to-end BiLSTM
and CTC based ASR models for S2I task on
noisy datasets;

* A demonstration of how the idea can outper-
form conventional pipeline in customer sup-
port voicebot in real-world settings;

* An investigation on how ASR pre-training,
offline active learning and pseudo labelling
reduce data labeling requirements for S21I.

Next, we discuss some related work in Section 2.
Section 3 & 4 describe the baseline S2I pipeline
and our E2E approach respectively. We talk about
datasets, preprocessing and experimental setup in
Section 5. Finally, we conclude with a discussion
on results and limitations in Section 6.
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Figure 1: Text-based baseline system

2 Related Work

There have been several attempts to mitigate ASR
error propagation in text-based pipelines. One
straightforward idea is to correct the ASR out-
put, using error correction models (Weng et al.,
2020; Tam et al., 2014) or by ranking n-best hy-
potheses (Ogawa et al., 2018, 2019; Fohr and II-
lina, 2021). Other approach is to leverage extra
information from ASR - output lattice (Ladhak
et al., 2016; Huang and Chen, 2019, 2020), n-
best hypotheses (Morbini et al., 2012; Li et al.,
2020; Liu et al., 2021) or word confusion net-
works/embeddings (Tiir et al., 2002; Shivakumar
et al., 2019). Though these approaches make NLU
robust to some ASR errors, they still use a strict
multi-component pipeline.

There have been an increasing number of at-
tempts toward building end-to-end SLU models.
Qian et al. (2017); Serdyuk et al. (2018); Chen et al.
(2018) investigate end-to-end SLU models which
do not use ASR at all whereas Haghani et al. (2018)
optimizes ASR and NLU in a joint setup. Such end-
to-end models can require a large amount of paired
speech and intent data which may not always be
available. Wang et al. (2020); Morais et al. (2021)
explore unsupervised pre-training which helps in
low-resource settings but is usually very compute
intensive. An alternative approach is to initialize
SLU models using weights trained for ASR (Lu-
gosch et al., 2019; Kuo et al., 2020; Qian et al.,
2021). Since ASR datasets are more easily avail-
able, this approach presents a much easier method
of pre-training than unsupervised methods.

Inspired by ASR pre-training, we explore how to
augment a pre-trained ASR model for end-to-end
S2I task for Flipkart customer support voicebot in
Hindi and English languages.

3 Text-based Pipeline

Our baseline consists of 3 components - ASR,
transliteration and text-to-intent as shown in Fig. 1.
We use a bilingual ASR system which predicts
text in Devanagari script for both Hindi and En-
glish. The transliteration model converts this text
into Roman script. Finally, the text-to-intent model
extracts intent from Roman text.

Inputs

Pre-processing

ASR Model

5-layer BILSTM- | _ |+ Linear 74 +

attention Block Softmax E‘"*Characters
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attention Block Softmax 1 *Subword 300 |
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i | 2-layer BILSTM- Linear 5001 + I
1 [ attention Block Softmax Subword 5000 :
Linear 28 + Intent
Softmax ents

Intent Prediction Head

Figure 2: E2E Speech-to-Intent. Features from the last
ASR block are used as inputs for intent classification.

Automatic Speech Recognition

Inspired by Ferndndez et al. (2007), we use a 3-
level HCTC architecture based on LSTM and atten-
tion (Vaswani et al., 2017) as shown in Fig. 2. Go-
ing in a fine-to-course fashion, the model predicts
characters (73 tokens), short subwords (300 tokens)
and long subwords (5000 tokens) at the respective
levels. We use unigram models from Sentencepiece
(Kudo and Richardson, 2018) for text segmentation.
Each level consists of an N-layer LSTM-attention
block (Fig. 3), N being 5-5-2, followed by a linear
softmax layer.

‘ﬁ BiLSTM Add T Norm}v—)[ MHA )—}

N-repetitions

Figure 3: N-layer BiLSTM-attention block
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For inference, the output of the last block, with
5000 subword units, is used for decoding the text
using prefix beam search. The top 100 candi-
dates are then re-ranked using a 3-gram KenLM
(Heafield, 2011) to select the best one.

Transliteration

A manually curated mapping and a fallback trans-
former encoder-decoder model (Vaswani et al.,
2017), with a single layer each in encoder and de-
coder, is used for transliteration. The transformer
uses a sum of character and position embeddings
as inputs. Together, this combination has a WER
of <1% on unique utterances from a blind test set.

Text-to-Intent

For text-to-intent classification, we have 28 cat-
egories (26 intents + others + blank) related to
different customer queries, e.g. “Delivery status”,
“Product return” etc. We use the “Blank™ intent
when the output text is blank. For the baseline, we
try different models, out of which XGBoost (Chen
and Guestrin, 2016) with TF-IDF features gives the
best results. We observe that neural network-based
models - BILSTM and BERT (Devlin et al., 2018)
overfit on our dataset. BERT when pre-trained on
a large corpus performs at par with XGBoost.

4 E2E Speech-to-Intent

For the S2I task, we augment the pre-trained ASR
model (same as used in the baseline) with intent
prediction head as shown in Fig. 2. We summarize
the hidden features from the last block of the ASR
model using a dot-product based multi-headed self-
attention (MHA) layer. We use the output sequence
of the last block as key-value vectors and the final
cell state of the last BILSTM layer as the query
vector. A linear layer then predicts probability dis-
tribution over the intent classes. Since there’s no
text output from the model, the "Blank" intent is
also predicted the by E2E S2I model. We train the
intent prediction head (and fine-tune the BiLSTM
blocks) using cross entropy loss.

5 Experiments

5.1 Datasets

Automatic Speech Recognition

A collection of datasets is used to train the ASR
model - Flipkart customer support voicebot queries,
voice search queries and general domain speech

data. We transcribe all the utterances using an ex-
isting ASR system and manually correct the errors.
The ASR system used to generate reference text is
incrementally improved as more data is available.
There’s no control over the recording environment,
and the correction of ASR transcripts instead of
transcription from scratch leaves some errors intro-
duced by the ASR model. This causes the dataset
to have a lot of acoustic and textual noise. The
datasets collectively amount to ~11 M audio-text
pairs which correspond to roughly 17k hours of
audio. It has a mix of Hindi and English (possibly
code-mixed) languages.

We train KenLLM and Sentencepiece on a large
corpus collected from various sources such as Flip-
kart’s customer support chatbot and voicebot, voice
search queries and product catalogue. The ~920k
Voicebot utterances (in-domain data) are upsam-
pled during training.

Transliteration

The transformer model is trained on ~96k unique
words which are manually transliterated. This
dataset consists of high frequency words in Hindi
and English in equal proportions. We add manual
transliterations of words frequent for our use case
in the look-up dictionary.

Text-to-Intent

For training text-to-intent, ~90k manually labeled
unique text-intent pairs are used. This mainly con-
sists of customer support voicebot and chatbot
queries. For deep neural-network based models
- BiLSTM and BERT, a large pre-training corpus
from e-commerce domain is also used.

Speech-to-Intent

For fine-tuning the model for S2I, we use a set of
10k randomly sampled voicebot queries (we call
it V1) and manually label the intents. We also use
additional 25k audios for offline active learning.
We name this complete 10k+25k set as V2.

Since the legacy system uses independent mod-
els, training data, to be annotated, was sampled
independently and randomly for each model. The
training datasets for ASR and Text-to-Intent don’t
have a large intersection. Therefore, we don’t have
a large dataset for training E2E S21 models and in-
stead use smaller, independently labelled datasets.

5.2 Pre-processing and Experimental Setup

We use standard log-mel-spectrogram features with
a window of 20ms, a stride of 10ms, and FFT size
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Task Model Source Rough Size of Dataset
ASR BiLSTM Voicebot 893 hrs
Voice Search 9.9k hrs

Generic 6.4k hrs

SPM, KenLM Voicebot 920k sentences

Others 10M sentences

Transliteration Transformer  Generic 96k word pairs
Text-to-Intent all Voicebot 55k text-intent pairs
Chatbot 35k text-intent pairs

Speech-to-Intent V1 Voicebot 10k audio-intent pairs
V2 Voicebot 10k+25k audio-intent pairs

Table 1: Breakup of various datasets used for training.

of 512. The number of filterbanks used is 80. We
use masking (Park et al., 2019) for data augmen-
tation. We also stack 5 consecutive frames with a
stride of 3 frames giving an input feature vector of
400 size with a receptive field of 60ms and stride
of 30ms for each time step.

We use a cyclical learning rate (LR) (Smith,
2017) to train the ASR model for 8 epochs with a
batch size of ~42 minutes. For S2I, we use con-
stant LR, batch size of ~26 minutes and fine-tune
it in 2 steps - on V1 dataset for 10 epochs + V2
dataset for 6 epochs. Training takes ~2.5 days for
ASR and ~24 minutes for S2I on 1 A100 GPU.

6 Results

We compare the baseline and E2E model on 14606
voicebot queries manually transcribed and anno-
tated for text and target intent resp. We report accu-
racy and F1 score for intent classification and word
error rate (WER) for ASR in Table 2. The ASR
system used for baseline has a WER of 8.34%. As
mentioned earlier in Section 3, transliteration mod-
ule has a WER of <1%. Together, the WER of the
ASR + transliteration system becomes <9.2%. The
text-to-intent model has an F1 score of 85.84%. We
compute this using manual transcriptions as inputs
to the text-to-intent model.

The S2I model, fine-tuned on just 10k manually
annotated audio-intent pairs (V1), outperforms the
baseline by an absolute 3.07% on the F1 score.
Using this, we predict intent on an unlabeled set
and get a random sample of 25k audios where the
model has low confidence (prediction probability as
given by softmax on the last layer). We correct this
set manually and re-train the model using all 35k
samples (V2), improving the F1 score by 1.28%.
We then re-train the model on the complete set of

voicebot queries (~920k audios from ASR dataset)
using pseudo labels, further improving the score
marginally. Our final E2E model outperforms the
baseline by an absolute 4.59% on the F1 score.
The E2E model has a median latency of ~41ms,
which is 1/3rd of the baseline latency (~123ms).
Since we can deploy the complete model on a GPU,
it can handle inference at a much larger scale than
the baseline - more than 1000 queries per second
using a single A100 GPU. Whereas the decoder
in the ASR system used for the baseline, which is
the bottleneck, can only handle about 90 queries
per second. Thus, the E2E model outperforms the
baseline on accuracy, latency, and scalability.

6.1 Analysis and Discussion

We also evaluate a simple time average of sequence
output from the last ASR block in place of MHA. It
gives almost the same results as MHA showing that
the ASR model can adapt to intent classification
task without extra modelling efforts. We observe
that training the S2I model from scratch performs
very suboptimal, which shows the importance of
initializing the network using the ASR task when
paired audio-intent data is scarce.

The text-to-intent model has a higher F1 score
than the complete pipeline (85.84% vs 82.78%),
suggesting that errors by the ASR model are the
reason for the baseline’s suboptimal performance.
Our S2I model is not only able to mitigate this
but also gives more improvement as it is 1.53%
better than standalone text-to-intent with manual
transcriptions. Table 3 shows some examples to
compare our S2I model with the baseline. In ex-
amples 1-3, ASR makes a mistake due to wrong
pronunciation in 1 and high background noise in
2 & 3. These errors cause the text-to-intent model
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#params All Intents Except blank/other
Model (inM) WER Accuracy F1score Accuracy F1 score
Baseline 48.60 8.34 83.62 82.78 82.76 85.36
Baseline with GT text - 0 86.22 85.84 82.01 84.76
S21 linear (V1) 43.85 - 86.22 85.85 84.35 87.08
S2I MHA (V1) 45.97 - 86.28 85.85 85.88 87.81
S21 MHA from scratch (V1) 45.97 - 70.06 69.31 60.69 61.17
S2I MHA (V2) 45.97 - 87.18 87.13 87.60 89.94
S21 MHA (V2+pseudo lab.) 45.97 - 87.49 87.37 87.00 89.57

Table 2: Results on Intent Prediction. “Baseline” is the text based pipeline where text is given by the ASR system.
“Baseline with GT text” is where we substitute ASR with true transcriptions. All numbers are in %.

# | Utterance ASR output True intent Baseline Ours

1 | Wapas karne ka hai Wapis karne ka hai Return Others Return

2 | Das din ke ander mu- | Das June ke ander mu- | Specific deliv- | Delivery info | Specific deliv-
jhe delivery chahiye | jhe delivery chahiye ery time ery time

3 | Meri watch khrab hai | Meri bahut khrab hai | Return Others Return

4 | Ji zaroor kariye Ji zaroor kariye Yes Others Yes

5 | Delivery ki timing Delivery ke timing Delivery time | Delivery time | Delivery info

6 | Kuchh nhi haan haan | Kuchh nhi haan haan | End End Yes

Table 3: Speech-to-Intent examples. In 1-4, our model does better and in 5 & 6, baseline does better.

to give wrong predictions demonstrating how error
propagation affects the pipeline. In example 4, the
intent model makes an error even with the correct
transcription. In examples 5 and 6, the baseline
outputs the right intent but the E2E model makes
mistakes. In both cases, the E2E model confuses
the intent with another very close category.

6.2 Conclusions

In this work, we show that pre-trained CTC-based
end-to-end ASR models can be adapted for end-to-
end Speech-to-Intent classification with slight aug-
mentation and relatively much less annotated data.
Our S2I model outperforms the text-based pipeline
by an absolute 3.07% on the F1 score while keep-
ing the model size small and requiring only 10k
annotated audio-intent pairs to train. It also simpli-
fies the pipeline by eliminating the requirement of a
dedicated ASR decoder, Text-to-Intent model, and
language models. With just 25k additional labelled
training pairs, our final model is ~27% better than
the baseline on the F1 score (absolute improvement
of 4.59%). Thus, we show that the E2E S2I model,
adapted from ASR, outperforms the conventional
pipeline on accuracy, latency, and scalability while
requiring much less labelled training data, compute
resources, and modelling efforts.

Limitations

The baseline text-to-intent model was trained on a
different dataset from what is used for fine-tuning
the E2E models. But, using a considerably smaller
dataset than the baseline system puts the E2E mod-
els at a disadvantage. Since the E2E models still
outperform the baseline, the absolute difference in
utterances should not affect the credibility of the
results. We also need a transliteration module in
the text-based pipeline because of a mismatch in
scripts used by the ASR and Text-to-Intent models.
One might argue that the transliteration module
weakens the baseline. But being a highly accurate
system (with <1% WER), it should not affect the
baseline much. We have also verified this with
a manual analysis of errors. Also, the ASR pre-
training uses a large dataset which might not be
readily available for low-resource languages.

As the future steps, it would be interesting to see
how such models would work with more than two
languages, where some of the languages are low-
resource from ASR perspective. In such a setting,
the ASR models usually employ a larger vocabu-
lary to accommodate all languages, but since intent
categories are the same, adapted S2I models can
reduce vocabulary size by a greater extent giving
them an even bigger advantage.
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] # \ Customer Utterance \ Intent/SOP

\ Voicebot Response

Welcome Namaste, aapka svagat hai. Main aapki automated
support assistant. (English: Hello and welcome. 1
am your automated support assistant)
Order identifica- | Kya aap apne “curtain” ke bare mein baat karna
tion chahte hain, jo “shipped” hai? (English: Do you want
to ask about your “curtain”, which is “shipped”)
Haan (English: Yes) Yes/Confirmation| Aapka order ship ho chuka hai, aur aapko aaj mil
jayega. Aapko kya madad chahiye? (English: Your
order has been shipped and you will get it by today.
What do you need help with?)
Mera order aaj kitne | Delivery Info Hamare agent aaj shaam 6 bje tak deliver karne ki
time tak ghar pe aa koshish karenge. Yadi nahi ho paya to agle karyadin
jayega (English: By deliver karenge. (English: Our agents will try to
what time today will deliver it by 6 pm today. If not possible, they will
my order reach?) deliver it the next working day.)
Order identifica- | Kya aap “usha air cooler” ke bare poochhna chahte
tion hain, jo “returned” hai? (English: Are you calling
about “Usha Air Cooler”, which is “returned”)
Yes Yes/confirmation | What do you need help with?
When will I get my re- | Return status Your replacement will be delivered within 2 days

placed one cooler?

after pickup of returned product.

Order identifica-
tion

Aapne haal hi mein ek se zyada order place kiye
hain. Aaj apne kis order ke bare mein call kiya hai?
(English: Recently you placed more than 1 order.
Which order are you calling about?)

Integriti jeans

Apka “integriti jeans” ka order delivered hai. Aapko
is order ke bare mein kya madad chahiye? (English:
Your order of “integriti jeans” has been delivered.
What help do you need with this order?)

Customer executive se
baat karwao. (English:
Let me talk to a cus-
tomer executive.

Agent request

Filhal hamare customer support executive vyast hain,
aapse subah 9:51 sampark karenge. Kya main call ki
vyavastha kar du? (English: Currently our executives
are busy. They could call you at 9:51 am in the
morning. Should I arrange for a call back?)

Haan thik hai. (En-
glish: yes it’s fine.)

Yes/Confirmation

Thik hai, maine call ki vyavastha kar di hai. (English:
Ok, I have arranged for a call back.)

Order identifica-
tion

Kya aapne TV ke bare mein call kiya hai? (English:
Have you called about TV?)

Haan ji (English: Yes)

Yes/Confirmation

Aapka order ship ho chuka hai aur 19 November tak
deliver ho jaega. Aapko iss bare mein kya madad
chahiye? (English: Your order has been shipped and
will be delivered by 19th November. What help do
you need regarding this?)

Please deliver it today
itself

Faster delivery
request

Sorry, while faster delivery is not available, please be
assured we will deliver your order on time.

Conversation
end

*** mein call karne ke liye dhanyavaad, apka din
shubh rahe. (English: Thanks you for calling ***,
have a good day.)

Table 4: Illustrations of how an S2I system can help provide faster and automated resolutions in e-commerce.
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