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Abstract

Sampling proper negatives from a large docu-
ment pool is vital to effectively train a dense
retrieval model. However, existing negative
sampling strategies suffer from the uninforma-
tive or false negative problem. In this work,
we empirically show that according to the mea-
sured relevance scores, the negatives ranked
around the positives are generally more infor-
mative and less likely to be false negatives.
Intuitively, these negatives are not too hard
(may be false negatives) or too easy (uninfor-
mative). They are the ambiguous negatives
and need more attention during training. Thus,
we propose a simple ambiguous negatives sam-
pling method, SimANS, which incorporates a
new sampling probability distribution to sample
more ambiguous negatives. Extensive experi-
ments on four public and one industry datasets
show the effectiveness of our approach. We
made the code and models publicly available in
https://github.com/microsoft/SimXNS.

1 Introduction

Dense text retrieval, which uses low-dimensional
vectors to represent queries and documents and
measure their relevance, has become a popular
topic (Karpukhin et al., 2020; Luan et al., 2021)
for both researchers and practitioners. It can im-
prove various downstream applications, e.g., web
search (Brickley et al., 2019; Qiu et al., 2022) and
question answer (Izacard and Grave, 2021). A key
challenge for training a dense text retrieval model
is how to select appropriate negatives from a large
document pool (i.e., negative sampling), as most
existing methods use a contrastive loss (Karpukhin
et al., 2020; Xiong et al., 2021) to encourage the
model to rank positive documents higher than neg-
atives. However, the commonly-used negative
sampling strategies, namely random negative sam-
pling (Luan et al., 2021; Karpukhin et al., 2020)

T This work was done during internship at MSRA.
* Corresponding author, email: batmanfly @ gmail.com.

(using random documents in the same batch) and
top-k hard negatives sampling (Xiong et al., 2021;
Zhan et al., 2021) (using an auxiliary retriever to
obtain the top-k documents), have their limitations.
Random negative sampling tends to select uninfor-
mative negatives that are rather easy to be distin-
guished from positives and fail to provide useful
information (Xiong et al., 2021), while top-k hard
negatives sampling may include false negatives (Qu
et al., 2021), degrading the model performance.
Motivated by these problems, we propose to sam-
ple the ambiguous negatives ' that are neither too
easy (uninformative) nor too hard (potential false
negatives). Our approach is inspired by an empir-
ical observation from experiments (in §3) using
gradients to assess the impact of data instances on
deep models (Koh and Liang, 2017; Pruthi et al.,
2020): according to the measured relevance scores
using the dense retrieval model, negatives that rank
lower are mostly uninformative, as their gradient
means are close to zero; negatives that rank higher
are likely to be false negatives, as their gradient
variances are significantly higher than expected.
Both types of negatives are detrimental to the con-
vergence of deep matching models (Xiong et al.,
2021; Qu et al., 2021). Interestingly, we find that
the negatives ranked around positive examples tend
to have relatively larger gradient means and smaller
variances, indicating that they are informative and
have a lower risk of being false negatives, thus
probably being high-quality ambiguous negatives.
Based on these insights, we propose a Simple
Ambiguous Negative Sampling method, namely
SimANS, for improving deep text retrieval. Our
main idea is to design a sampling probability distri-
bution that can assign higher probabilities to the am-
biguous negatives while lower probabilities to the

"We call them ambiguous negatives following the def-
inition of ambiguous examples (Swayamdipta et al., 2020;
Meissner et al., 2021), referring to the instances that are nei-
ther too hard nor too easy to learn.
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possible false and uninformative negatives, based
on the differences of the relevance scores between
positives and candidate negatives. We also incorpo-
rate two hyper-parameters to better adjust the peak
and density of the sampling probability distribu-
tion. Our approach is simple and flexible, which
can be easily applied to various dense retrieval mod-
els and combined with other effective techniques,
e.g., knowledge distillation (Qu et al., 2021) and
adversarial training (Zhang et al., 2021).

To validate the effectiveness of SImANS, we
conduct extensive experiments on four public
datasets and one industrial dataset collected from
Bing search logs. Experimental results show that
SimANS can improve the performance of competi-
tive baselines, including state-of-the-art methods.

2 Preliminary

Dense Text Retrieval. Given a query g, the dense
text retrieval task aims to retrieve the most relevant
top-k documents {d;}%_, from a large candidate
pool D. To achieve it, the dual-encoder architec-
ture is widely used due to its efficiency (Reimers
and Gurevych, 2019; Karpukhin et al., 2020). It
consists of a query encoder F, and a document
encoder F; to map the query g and document d
into k-dimensional dense vectors h; and hg, re-
spectively. Then, the semantic relevance score of ¢
and d can be computed using dot product as

s(q,d) =hg - hy. (D

Recent works mostly adopt pre-trained language
models (PLMs) (Devlin et al., 2019) as the two en-
coders, and utilize the representations of the [CLS]
token as dense vectors.

Training with Negative Sampling. The training
objective of dense text retrieval task is to pull the
representations of the query ¢ and relevant doc-
uments DT together (as positives), while push-
ing apart irrelevant ones D~ = D \ DT (as neg-
atives). However, the irrelevant documents are
from a large document pool, which would lead
to millions of negatives. To reduce the unreachable
training cost, negative sampling has been widely
used. Previous works either randomly sample neg-
atives (Karpukhin et al., 2020), or select the top-k
hard negatives ranked by BM25 or the dense re-
trieval model itself (Xiong et al., 2021; Qu et al.,
2021), denoted as D~ . Then, the optimization ob-

jective can be formulated as:

9*:argm0inz > Lis(g,d?),s(q.d7)),

9 dteDt q—eD-
(€3
where L(-) is the loss function.

3 Motivation Study

We first analyze the uninformative and false neg-
ative problems from the perspective of gradients.
Then, we perform an empirical study to test how
gradients of negatives change w.r.t. ranks accord-
ing to measured relevance scores using a dense
retrieval model, and find that the gradients of neg-
atives ranked near positives have relatively larger
means and smaller variances.

3.1 Analysis for Gradients of Negatives

Existing dense retrieval methods (Karpukhin et al.,
2020; Xiong et al., 2021) commonly incorporate
the binary cross entropy (BCE) loss to compute
gradients 2, where the relevance scores of a positive
and sampled negatives are usually normalized by
the softmax function. In this way, the gradients of
model parameters 6 are computed by

_ J(snla,d) = 1) Vo sn(q,d) if deDF
v@l(Q7d) - {sn(q,d) Vo Sn(q,d) ZfdG,D,

where s, (g, d) is the normalized value of s(q, d)
and is within [0,1]. Based on it, we review the
gradients of uninformative and false negatives. Un-
informative negatives can be easily distinguished
by dense retrieval models, and are more likely to be
selected by random sampling (Xiong et al., 2021).
As their normalized relevance scores are usually
rather small, i.e., s,(¢,d) — 0, their gradient
means will be bounded into near-zero values, i.e.,
Vol(g,d) — 0. Such near-zero gradients are
also uninformative and contribute little to model
convergence. False negatives are usually seman-
tically similar to positives, and are more likely to
be selected by top-k hard negatives sampling (Qu
et al., 2021). Therefore, for the gradients of false
negatives and positives, the right terms </¢sy, (g, d)
may be similar, while the left terms are greater
than zero and less than 0, respectively. As a result,
the variance of gradients will be larger, which may
cause the optimization of parameters to be unstable.
Furthermore, existing works (Katharopoulos and
Fleuret, 2018; Johnson and Guestrin, 2018) have

’In this work, we perform the analysis using BCE loss,
and such analysis can also be extended to other loss functions.
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Figure 1: The mean and variance of gradients change
curves w.r.t. the ranks of negatives on MS-MARCO
Passage Ranking dataset using AR2 (Zhang et al., 2021).

theoretically proved that larger gradient variance is
detrimental to model convergence.

3.2 Empirical Study on Gradients of
Negatives w.r.t. Relevance Scores

Although we have analyzed that the harmful influ-
ence of uninformative and false negatives derives
from the smaller means and larger variances of
gradients respectively, it is time-consuming to com-
pute gradients of all candidate negatives to identify
and remove them. Here, we empirically study if the
query-document relevance scores can be leveraged
to avoid sampling these harmful negatives.

Experimental Setup. We use AR2 (Zhang et al.,
2021) as the retrieval model and investigate its gra-
dients on the development set of MS-MARCO Pas-
sage Ranking dataset (Nguyen et al., 2016). Con-
cretely, for each query, we rank all negatives ac-
cording to their relevance scores, and compute the
means and variances of gradients of all negatives
in the same rank 3. To better show the tendency
w.r.t. ranks of relevance scores, we normalize the
means and variances of gradients by dividing the
maximum values, and only report the results of top
200 ranked negatives.

Results and Findings. As shown in Figure 1, the
mean and variance of gradients will gradually de-
crease with the increase of the rank. Despite that,
the gradient means of the top 200 negatives are still
in the same order of magnitude (1.0 — 0.25),
while the gradient variances of the top 10 ranked
negatives are significantly larger than others. The
reason is that the higher-ranking negatives have
larger probabilities to be false negatives. Besides,
a surprising finding is that the mean rank of posi-

3As AR2 adopts ERNIE-2.0 (Sun et al., 2020) as the
backbone that has millions of parameters, we only compute
gradients on the parameters of its last layer for efficiency.

tives is approximate the boundary point of the high
gradient variance part and the negatives near it can
produce relatively larger gradient means and lower
gradient variances. It means that they are high-
quality ambiguous negatives that can balance the
informativeness and the risk of being false neg-
atives. Therefore, it is promising to rely on the
relevance scores of positives and candidate nega-
tives to devise more effective negative sampling
methods for training dense retrieval models.

4 Approach

Based on the findings in §3, we conjecture that the
ambiguous negatives ranked near positives accord-
ing to relevance scores are high-quality negatives,
as they are neither too easy (uninformative) nor
too hard (may be false negatives). Therefore, we
propose a simple ambiguous negative sampling
method, namely SimANS.

4.1 Ambiguous Negative Sampling

To focus on sampling ambiguous negatives, we
design a new sampling probability distribution that
can estimate the influence of each negative using
the dense retrieval models. As follows, we first
devise a general sampling distribution and then
propose its simple and efficient implementation.

General Sampling Distribution. We draw the fol-
lowing conclusions from our results about how to
choose a good sampling probability distribution for
negatives: (1) Negatives that are clearly irrelevant
and have low relevance scores should be sampled
less frequently; (2) Negatives that are highly rel-
evant and have high relevance scores should also
be sampled less frequently, because they are more
likely to be positives in disguise; (3) Negatives that
are uncertain and have relevance scores similar to
positives should be sampled more frequently, be-
cause they provide useful information and have a
lower chance of being false negatives. We propose
a general formula for negative sampling probability
that reflects these principles:

pi o< f(|s(q,di) — 5(q,d*) —b]),Vd; € D\ D", (3)

where f(-) is a function to determine the ten-
dency of the probability distribution, b is a hyper-
parameter to control the peak of the distribution,
5(q,d") is the mean relevance score of all posi-
tives with the query. f(-) should be a monotone
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decreasing function (e.g., e~ ). In this way, the neg-
atives with the relevance scores close to positives
can be assigned with larger probabilities, while oth-
ers with smaller or larger scores will be punished
with smaller probabilities. Such a distribution can
satisfy the required three characteristics.

Simple Negative Sampling Distribution. We rely
on several empirical priors to determine a simple
and efficient implementation of the above sampling
probability distribution. Generally, the relevance
scores of positives and negatives are bounded by
the modulus of dense vectors, hence they are mostly
in a same order of magnitude. To ensure that the
probabilities of ambiguous negatives should be sig-
nificantly larger than other ones, we choose the
exponential function to implement f(-). As a large
proportion of negatives from D \ D are uninfor-
mative ones, their smaller relevance scores would
lead to near-zero probabilities using the exponential
function. Therefore, we can reduce the computa-
tion cost by narrowing the negative candidates into
the top-k ranked negatives D~. In addition, to fur-
ther reduce the cost, we also replace the mean rel-
evance score of all positives 5(q, d") by the score
of a randomly sampled positive s(¢,d"). Finally,
we can reformulate the sampling probability distri-
bution in equation (3) as:

Pi X exp(—a(s(q7 dz) - S(Q7d+) - 6)2)7le € 577 (4)

where a is a hyper-parameter to control the den-
sity of the distribution, d* € DT is a randomly
sampled positive, D~ is the top-k ranked negatives.
In this way, the complexity of computing the sam-
pling probability distribution will be reduced into
O(k), where k < |D| and we set it to 100.

4.2 Overview and Discussion

Overview. Given a mini-batch, SImANS contains
three major steps to obtain the ambiguous negatives.
The first step is the same as previous top-k£ hard
negatives sampling methods (Xiong et al., 2021;
Qu et al., 2021) that select the top-k ranked neg-
atives D~ from the candidate pool D \ D using
an ANN search tool (e.g., FAISS (Johnson et al.,
2019)). Second, we compute the sampling probabil-
ities for all the top-k negatives using equation (4).
To reduce the time cost, we can pre-compute them
in the first step. Finally, we sample the ambigu-
ous negatives w.r.t. their sampling probabilities.
We present the overall algorithm in Algorithm 1.

Algorithm 1: The algorithm of SimANS.

Input: Queries and their positive documents
{(q, D)}, document pool D, pre-learned
dense retrieval model M
1 Build the ANN index on D using M.

2 Retrieve the top-k ranked negatives D~ for each
query with their relevance scores {s(g, d;)} from D.

3 Compute the relevance scores of each query and its
positive documents {s(q, DT)}.

4 Generate the sampling probabilities of retrieved top-k

negatives {p; } for each query using Eq. 3.
Construct new training data {(¢, D", D™)}.
while M has not converged do

Sample a batch from {(¢, D", D7)}.
Sample ambiguous negatives for each instance
from the batch according to {p;}.
9 Optimize parameters of M using the batch and
sampled negatives.
10 end

® 9N & w»

Note that our proposed SimANS is a negative sam-
pling method and applicable to a variety of dense
retrieval methods.

Relationship with Other Methods. SimANS aims
to sample the ambiguous negatives that rank close
to the positives according to relevance scores for
improving the training of dense retrieval models. It
is a general framework that several previous nega-
tive sampling methods can be included:

e Choosing negative examples randomly
means picking them from a big collection of doc-
uments with equal chances for each one. We
can also use our method to do this by setting
b = s(q,d;) — s(q,d") and making D~ include
all the documents in the collection. But this is not
a good idea, because most of the documents in the
collection are not relevant to the query and do not
help us learn from the feedback. They are easy to
sample but not useful for training.

e Top-k hard negatives sampling utilizes an
auxiliary retriever (e.g., BM25 (Karpukhin et al.,
2020) or DPR (Xiong et al., 2021)) to rank all
negative candidates and pick the top-k ones as neg-
atives. By setting b = —s(q,d") and a = — inf,
our method can also produce extremely large prob-
abilities to the top-k negatives. Whereas, the top-k
ones have a higher risk to be false negatives, which
are harmful to convergence.

S Experiments

5.1 Experimental Setting

We extensively evaluate SimANS by conducting ex-
periments on three public passage retrieval datasets:
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Datasets \ Training Dev Test Documents
NQ 58,880 8,757 3,610 21,015,324
TQ 60,413 8,837 11,313 21,015,324
MS Pas 502,939 6,980 - 8,841,823
MS Doc 367,013 5,193 - 3,213,835
Bing 1,861,102 8,013 - 5,335,927

Table 1: Statistics of the five text retrieval datasets.

Natural Question (NQ) (Kwiatkowski et al., 2019),
Trivia QA (TQ) (Joshi et al., 2017) and MS-
MARCO Passage Ranking (MS Pas) (Nguyen et al.,
2016), a public document retrieval dataset: MS-
MARCO Document Ranking (MS Doc) (Nguyen
et al., 2016), and an industry dataset that is col-
lected from Bing search logs. Their statistics are
shown in Table 1. The details of datasets, baselines
and implementations are presented in Appendix.

5.2 Results Analysis

Performance on Public Retrieval Datasets. Ta-
ble 2 and Table 3 show the experimental results on
three public passage retrieval datasets. First, we can
see that AR2 outperforms most baseline methods
on all datasets. AR2 incorporates an adversarial
training framework to iteratively improve the re-
triever and ranker. Second, SImANS can further
improve the performance of AR2, and outperform
all baselines in terms of all the metrics across all
datasets. SImANS only incorporates a new nega-
tive sampling strategy based on AR2, which aims
to sample the ambiguous negatives that are neither
too hard (potential false negatives) or too easy (un-
informative). According to the findings in §3, such
a way can alleviate the uninformative and false neg-
ative problems that are frequently encountered in
commonly-used random and top-k negatives sam-
pling methods, and is able to sample high-quality
negatives that contribute more to the model con-
vergence. Besides, the improvements of SImnANS
on AR2 are larger in MS Pas and Doc datasets
than others. The reason is that the two datasets are
collected from real-world search logs that suffer
severely from the false negative problem, whereas
SimANS is capable of alleviating this problem and
provides better negatives for training.

Performance on Bing Industry Dataset. For the
Bing industry dataset, we adopt a dual-encoder
mBERT (Devlin et al., 2019) as the baseline model
to deal with multilingual queries and documents,
and implement different negative sampling strate-

gies on it. We simply evaluate the last checkpoint
after training and report the results on the develop-
ment set. As shown in Table 4, after applying the
top-k hard negatives sampling, the performance of
the baseline model is improved by a large margin.
It indicates that hard negatives are more effective
than randomly sampled ones. Furthermore, we
can see that SImANS outperforms all other nega-
tive sampling methods, especially in Hit@5 (2%
absolute improvement). It demonstrates the effec-
tiveness of SIMANS in industrial scenarios. As a
comparison, SIMANS is able to alleviate the un-
informative and false negatives problems that the
random and top-k negatives sampling strategies
may suffer, respectively.

5.3 Further Analysis

Applying SimANS to Other Models. Since
SimANS is a general negative sampling strategy, it
can be applied to a variety of dense retrieval meth-
ods. Thus, in this part, we implement SimANS on
two representative methods, ANCE (Xiong et al.,
2021) and RocketQA (Qu et al., 2021), as they
adopt effective techniques as asynchronous index
refresh and knowledge distillation, respectively.
We only replace the negative sampling strategies in
these methods with SimANS and conduct experi-
ments on TQ and NQ datasets. As shown in Table 5,
our approach can consistently improve the perfor-
mance of the two methods. It shows that SImANS
is general to various dense retrieval methods with
different techniques and can provide more high-
quality negatives to improve their performance.

Variation Study. Our proposed SImANS incor-
porates a new negative sampling probability dis-
tribution that is based on the differences between
the query-document relevance scores of positives
and negative candidates. To verify the effective-
ness of this distribution, we design two varia-
tions of SIMANS: (1) Doc-Sim that leverages the
document-document relevance scores between pos-
itives and negative candidates to replace the query-
document relevance scores; (2) Nearest-K that
directly picks the top-k nearest negatives accord-
ing to the differences of query-document relevance
scores instead of sampling. We implement these
variations on AR2 and conduct experiments on the
development set of MS Pas dataset. As shown in
Table 6, SImANS outperforms all these variations.
It indicates the effectiveness of our devised ambigu-
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Method NQ TQ MS Pas
R@5 R@20 R@100 | R@5 R@20 R@100 | MRR@10 R@50 R@1k

BM25 (Yang et al., 2017) - 59.1 73.7 - 66.9 76.7 18.7 59.2 85.7
GAR (Mao et al., 2021) 60.9 744 85.3 73.1 80.4 85.7 - - -
doc2query (Nogueira et al., 2019b) - - - - - - 21.5 64.4 89.1
DeepCT (Dai and Callan, 2019) - - - - - - 243 69.0 91.0
docTTTTTquery (Nogueira et al., 2019a) - - - - - - 27.7 75.6 94.7
DPR (Karpukhin et al., 2020) - 78.4 85.3 - 79.3 84.9 - - -
ANCE (Xiong et al., 2021) 71.8 81.9 87.5 - 80.3 85.3 33.0 81.1 95.9
COIL (Gao et al., 2021a) - - - - - - 35.5 - 96.3
ME-BERT (Luan et al., 2021) - - - - - - 33.8 - -
Joint top-k (Sachan et al., 2021) 72.1 81.8 87.8 74.1 81.3 86.3 - - -
Individual top-k (Sachan et al., 2021) 75.0  84.0 89.2 76.8 83.1 87.0 - - -
RocketQA (Qu et al., 2021) 74.0 827 88.5 - - - 37.0 85.5 97.9
RDR (Yang and Seo, 2020) - 82.8 88.2 - 82.5 87.3 - - -
RocketQAv2 (Ren et al., 2021b) 75.1 83.7 89.0 38.8 86.2 98.1
PAIR (Ren et al., 2021a) 74.9 83.5 89.1 - - - 37.9 86.4 98.2
DPR-PAQ (Oguz et al., 2022) 74.2 84.0 89.2 - - - 31.1 - -
Condenser (Gao and Callan, 2021) - 83.2 88.4 - 81.9 86.2 36.6 - 97.4
coCondenser (Gao and Callan, 2022) 75.8 84.3 89.0 76.8 83.2 87.3 38.2 - 98.4
ERNIE-Search (Lu et al., 2022) 77.0 85.3 89.7 - - - 40.1 87.7 98.2
AR2 (Zhang et al., 2021) 779  86.0 90.1 782 844 879 39.5 87.8 98.6
AR2+SimANS 78.6  86.2 90.3 78.6  84.6 88.1 40.9 88.7 98.7

Table 2: Performance on the test sets of NQ and TQ, and the development set of MS Pas. The results of baselines
are from original papers. The best and second-best methods are marked in bold and underlined, respectively.

Method MRR@10 R@100
BM25 0.279 0.807
DPR (Karpukhin et al., 2020) 0.320 0.864
ANCE (Xiong et al., 2021) 0.377 0.894
STAR (Zhan et al., 2021) 0.390 0.913
ADORE (Zhan et al., 2021) 0.405 0.919
AR?2 (Zhang et al., 2021) 0.418 0.914
AR2+SimANS 0.431 0.923

Table 3: Performance on MS Doc development set.

Method R@5 R@20 R@100
Baseline+Random Neg | 39.5 59.0 76.2
Baseline+top-k Neg 57.1 73.5 85.1
Baseline+SimANS 59.1 74.9 85.6

Table 4: Experimental results on Bing Industry dataset.

ous negative sampling probability distribution. For
Doc-Sim, it is likely to select the false negatives
that have similar semantics to positives, hurting the
model performance. For Nearest-K, as it always
selects fixed negatives, it may cause overfitting.

Parameter Tuning. Our SimANS has two im-
portant hyper-parameters to tune, a and b, which
control the density and peak of the sampling prob-
ability distribution, respectively. Here, we investi-
gate the performance change of SImANS on AR2
w.r.t. different a and b on NQ dataset. As shown
in Figure 2, our approach achieves the best perfor-
mance when ¢ = 0.5 and b = 0. It indicates that

TQ NQ
Method R@5 R@20 | R@5 R@20
ANCE 724 803 | 718 819
ANCE+SimANS 748 821 | 743 830
RocketQA 761 830 | 740 827
RocketQA+SimANS | 77.1  83.6 | 76.7 848

Table 5: The retrieval performance of applying our

method on other baselines on TQ and NQ datasets

Method MRR@10 R@1 R@50 R@lk
AR2 39.5 26.4 87.8 98.6
AR2+Doc-Sim 40.1 27.3 88.0 98.6
AR2+Nearest-K 40.5 27.6 88.5 98.7
AR2+SimANS 40.9 28.2 88.7 98.7

Table 6: The variation study of our method in AR2 on
MS Pas development set.

0.79 0.79

0.73 0.73

- Recall@] -o Recall@5 -+ Recall@] -» Recall@5
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Figure 2: Performance comparison w.r.t.
parameters a and b on NQ dataset.

hyper-

when the maximum point of the distribution has
the same relevance score as the positive, the nega-
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Ratio AR2 AR2+SimANS

R@5 Latency | R@5 Latency
1:1 76.4 210ms 71.5 210ms
1:5 76.9 330ms 78.1 340ms
1:11 | 77.1 510ms 78.3 540ms
1:15 | 779 630ms 78.7 650ms

Table 7: The retrieval performance and training latency
w.r.t. different sampled negative ratios on NQ dataset.

0.800

0.725

0.650

Hit@1

0.575

- Hit@]1 on Training Set -o- Hit@1 on Test Set

10000 20000 30000 40000 50000
Steps

0.500

Figure 3: Hit@1 of AR2+SimANS on training and test
sets of NQ w.rt. training steps.

tive sampling probability distribution can produce
more high-quality negatives. Moreover, we notice
that the model performance is not very sensitive to
the two hyper-parameters if they are properly set
within a certain range.

Impact of the Sampled Negative Ratio. We inves-
tigate the impact of the sampled negative ratio 1 : k
on retrieval performance and training latency per
batch of SImMANS on AR2. As shown in Table 7,
with the increase of the sampled negative number,
the performance improves consistently while the
training latency increases. Besides, SImANS just
slightly increases the training latency of AR2. It is
because we can pre-compute the sampling probabil-
ities before training, which avoids time-consuming
computation during training.

Performance w.r.t. Training Steps. Our approach
requires continually training the model parameters
that have been pre-trained by the original dense
retrieval method. Here, we investigate the per-
formance changes of the dense retrieval method
before and after using SImANS w.rt. the train-
ing steps. We conduct experiments on AR2 and
show the Hit@1 metric on NQ dataset in Figure 3.
First, we can see that with the increase of the
training steps, the performance of AR2 on train-
ing and test sets improves simultaneously. After
applying our SIimANS, we can see that the perfor-
mance further improves, especially in the training
set (0.777 — 0.791). It indicates that our ap-

proach is capable of improving the fitting of the
training set, and such an improvement can also
generalize to the test set.

6 Conclusion

We investigated how the gradient statistics of neg-
ative documents affect their relevance ranking for
dense text retrieval. We discovered that negative
documents with high gradient means and low gra-
dient variances are more likely to be ambiguous
negatives, which are informative and less prone
to false negatives. Based on this insight, we pro-
posed SimANS, a novel negative sampling method
that balances the difficulty of negative examples by
adjusting their sampling probabilities. SIMANS im-
proved the performance of various dense retrieval
models on four public and one industrial datasets.
We plan to apply our method to other informa-
tion retrieval tasks, such as personal recommenda-
tion, and to develop better pre-training schemes for
dense text retrieval in the future.
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Figure 4: An example of the dense embedding distribu-
tion of a query with its positive document, too easy, too
hard and ambiguous negatives.

A Illustration of Ambiguous Negatives

We illustrate the distribution of the dense embed-
dings of a query with its positive document, too
easy, too hard and ambiguous negatives in Figure 4.
Too hard negatives have a higher risk of being false
negatives, and we can see that their dense embed-
dings locate closely to the ones of the query and
the positive. If we learn to push them away, the
distances between the embeddings of the query and
the positive may also be enlarged, which is harmful
to the goal of pulling the query and its positives
together. Besides, too easy negatives locate rather
far from the query, hence it is unnecessary to learn
to push them even further. As a comparison, the
ambiguous negatives have similar distances as the
positive, which compose the circular boundary for
the document pool consisting of hard negatives re-
quired to learn (i.e., push away). In this way, our
SimANS can be seen as always sampling the bor-
derline hard negatives from the document pool. By
learning to push them away, we can narrow the
circular boundary of hard negatives, which helps
gradually achieve the goal that pulls the query and
positives together while pushing apart negatives.

B More Details on Datasets

We conduct experiments on five datasets, consist-
ing of three passage retrieval datasets: Natural
Question (NQ) (Kwiatkowski et al., 2019), Trivia
QA (TQ) (Joshi et al., 2017) and MS-MARCO Pas-
sage Ranking (MS Pas) (Nguyen et al., 2016), a
document retrieval dataset: MS-MARCO Docu-
ment Ranking (MS Doc) (Nguyen et al., 2016) and
a real-world industry dataset Bing. NQ and TQ are
open domain question answering datasets collected
from Google search logs and authored by trivia
enthusiasts, respectively. In the two datasets, each
question is paired with an answer span and sev-

eral golden passages from Wikipedia articles. Fol-
lowing existing works (Zhang et al., 2021; Sachan
etal., 2021), we adopt Recall@k (R @Xk) as the eval-
uation metrics, which measures if the top-k ranked
documents include the answer span. MS Pas and
MS Doc consist of real questions collected from
Bing search logs, where each question is paired
with several web passages and documents, respec-
tively. As their labels of test sets are not available,
we follow existing works (Ren et al., 2021b; Zhan
et al., 2021) that report results on their develop-
ment sets and adopt MRR@10, R@50 and R@1k
for MS Pas, MRR@10 and R@100 for MS Doc.
Bing is collected from Bing search logs, where
each example consists of a user historical query and
several documents that the user has clicked. These
documents are real-world webpages and may con-
tain hyperlinks and different languages. We select
Hit@5, Hit@20 and Hit@ 100 for evaluation.

C More Details on Baselines

We compare our approach with a variety of meth-
ods, including sparse and dense retrieval models.

e BM25 (Yang et al., 2017) is a widely-used
sparse retriever based on exact matching.

e GAR (Maoetal., 2021), doc2query (Nogueira
et al., 2019a), DeepCT (Dai and Callan, 2019) and
docTTTTTquery (Nogueira et al., 2019b) enhance
BM25 by incorporating neural models.

e DPR (Karpukhin et al., 2020), ANCE (Xiong
etal.,2021) and STAR (Zhan et al., 2021) are dense
retrieval methods that adopt top-k hard negatives
to improve training.

e COIL (Gao et al., 2021b) and ME-
BERT (Luan et al., 2021) combine sparse and
dense representations for text retrieval.

¢ Joint and Individual top-%£ (Sachan et al.,
2021) propose to train the dense retrieval model in
an end-to-end manner.

e RocketQA (Qu et al., 2021), RDR (Yang and
Seo, 2020), RocketQAv2 (Ren et al., 2021b) and
ERNIE-search (Lu et al., 2022) utilize knowledge
distillation technique that leverages a teacher model
to guide the training of the dense retrieval model.

e PAIR (Ren et al., 2021a), DPR-PAQ (Oguz
et al., 2022), Condenser (Gao and Callan, 2021)
and coCondenser (Gao and Callan, 2022) design
special pre-training tasks to improve the backbone
model for the dense retrieval task.

e AR2 (Zhang et al., 2021) incorporates an ad-
versarial framework to jointly train the retriever
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and the ranker. As it has achieved state-of-the-art
performance on most datasets, we implement our
approach on it to verify its effectiveness.

D Experimental Details

Implementation Details on Public Datasets. For
three passage retrieval tasks, we follow the exper-
imental settings in AR2 (Zhang et al., 2021) that
selects ERNIE-2.0-base (Sun et al., 2020) as the
backbone model. For MS Doc dataset, we lever-
age the model parameters of STAR (Zhan et al.,
2021) to initialize AR2, and then train AR2 with
the same hyper-parameters as STAR until conver-
gence. Next, we continue to train the AR2 model
parameters with our proposed SImANS, where we
set @ and b to {(0.5, 1.0), (0.5, 0), (0.5, 0), (0.5,
0)} for NQ, TQ, MS Pas and MS Doc datasets,
respectively. The learning rate is set to 1e-5 for
NQ and 5e-6 for other datasets. The batch size is
256 for MS-Pas and MS-Doc, 64 for NQ and TQ,
and the sampling ratio of positives and negatives
is 1:15. All other hyper-parameter settings are the
same as AR2. All the experiments in this work are
conducted on 8 NVIDIA Tesla A100 GPUs.

Implementation Details on Bing Industry
Dataset. For the industry dataset, Bing, we
adopt mBERT-base (Devlin et al., 2019) as the
backbone of the query and document encoders,
to deal with multilingual queries and documents.
The parameters of the baseline model are trained
with randomly sampled negatives using the in-
foNCE loss (Karpukhin et al., 2020), namely Base-
line+Random Neg, and the sampling ratio of pos-
itives and negatives is 1:5. The learning rate is
le-5, the batch size is 128 and the training step is
100,000. As a comparison, we implement the top-k
negatives sampling strategy on the baseline model,
namely Baseline+top-k Neg, where we utilize the
baseline model to rank and select the top 5 docu-
ments that do not contain the query as hard nega-
tives. In our approach, namely Baseline+SimANS,
we continue to train the Baseline+top-k Neg model,
but apply our SImANS to sample 5 negatives from
the top 100 ranked documents. We set a to 1, b
to 0, and reuse the other hyper-parameters of the
Baseline+top-k Neg model.

E Case Study

In this part, we show four examples of the gen-
erated sampling probability distributions by our

SimANS. These four examples are randomly se-
lected from the training set of MS Pas dataset. As
shown in Figure 5, we can see that SimANS indeed
assigns larger probabilities to the negatives that
rank near the positive while punishing the higher-
ranking and lower-ranking ones that may be false
negatives and uninformative negatives. Further-
more, in Figure 5b where the positive is ranked at
the first place, our approach is similar to the top-
k negatives sampling method that assigns larger
probabilities to the higher-ranking hard negatives.

F Related Work

Recent years have witnessed the remarkable perfor-
mance of dense retrieval methods in text retrieval
tasks (Zhan et al., 2020; Hong et al., 2022; Ram
et al., 2022; Zhou et al., 2022b). Different from tra-
ditional sparse retrieval methods (e.g., TF-IDF and
BM25), dense retrieval approaches typically map
queries and documents into low-dimensional dense
vectors, and then utilize vector distance metrics
(e.g., cosine similarity) for retrieval.

To learn an effective dense retrieval model, it is
key to sample high-quality negatives paired with
the given query and positives for training. Early
works (Karpukhin et al., 2020; Min et al., 2020)
mostly rely on in-batch random negatives and hard
negatives sampled by BM25. After that, a series
of works (Qu et al., 2021; Xiong et al., 2021) find
that sampling top-k ranked examples by the dense
retriever as hard negatives is more helpful to im-
prove the retriever itself. Among them, several
methods (Xiong et al., 2021; Zhan et al., 2021)
adopt a dynamic sampling strategy that actively
samples top-k hard negatives once after an interval
during training. However, these top-k negative sam-
pling strategies are easy to select higher-ranking
false negatives for training. To alleviate it, previ-
ous works have incorporated knowledge distilla-
tion (Qu et al., 2021; Ren et al., 2021b; Lu et al.,
2022), pre-training (Zhou et al., 2022a; Xu et al.,
2022) and other denoising techniques (Mao et al.,
2022; Hofstitter et al., 2021). Despite the effec-
tiveness, these methods mostly rely on complicated
training strategies or complementary models.

In this work, we propose a simple but effective
sampling method that weights the negative candi-
dates with the consideration of their differences of
relevance scores with positives. As a result, the am-
biguous negatives with similar relevance scores to
the positives will receive larger sampling probabili-
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Figure 5: Illustration of four sampling probability distributions of the top 50 ranked negatives generated by our
SimANS on the training set of MS Pas.

ties, while the too hard (potential false negatives)
and too easy negatives (uninformative) will be pun-
ished with smaller probabilities.
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