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Abstract

Out of Scope (OOS) detection in Conversa-
tional AI solutions enables a chatbot to handle
a conversation gracefully when it is unable to
make sense of the end-user query. Accurately
tagging a query as out-of-domain is particu-
larly hard in scenarios when the chatbot is not
equipped to handle a topic which has semantic
overlap with an existing topic it is trained on.
We propose a simple yet effective OOS detec-
tion method that outperforms standard OOS de-
tection methods in a real-world deployment of
virtual assistants. We discuss the various design
and deployment considerations for a cloud plat-
form solution to train virtual assistants and de-
ploy them at scale. Additionally, we propose a
collection of datasets that replicates real-world
scenarios and show comprehensive results in
various settings using both offline and online
evaluation metrics.

1 Introduction

In the context of task-oriented dialog, Out of Scope
(OOS) detection is the problem of identifying end-
user queries that are beyond the scope of a chatbot.
While this problem is generally studied under the
umbrella of “out of domain” detection in machine
learning, we show that unique challenges arise in
real-world applications. We study this problem in
the context of our enterprise virtual assistant (VA)
platform which is used by 10,000+ customers to de-
sign chatbots. In this setting, the natural language
understanding models comprising of In Scope (IS)
and OOS detection modules, need to determine
whether an input query belongs to a set of pre-
defined intents or if it is out of scope for the chat-
bot.

Real-world success of OOS systems often in-
volves measuring how good they are at contain-
ment, i.e., the user queries are resolved and con-
tained by the chatbot while minimizing human in-
terventions. Since containment rate can be only
observed after launching the VA online, offline

metrics such as IS accuracy and OOS accuracy are
needed while designing and developing the models.

The average designer using an enterprise VA
platform is not a machine learning expert. This
leads to a variety of challenges in the provided
user data, which constitutes the need for robust
algorithms. Firstly, end-users often provide data
that is heavily imbalanced or noisy for both IS and
OOS detection.

While designing VA for enterprise use-cases,
IS and OOS examples often naturally belong to
the same domain. Such OOS samples are called
In Domain OOS (ID-OOS) as opposed to Out-of-
Domain OOS (OOD-OOS) which are relatively eas-
ier OOS samples from a different domain (Zhang
et al. (2022)). Designers expect the VA to detect
these relevant but unsupported topics (ID-OOS)
even though it has high semantic overlap with IS
examples. Finally, while entities defined by the
designer play an important role for a real-world
VA, they are often ignored in academic OOS set-
tings. We show that entities must be modeled in
conjunction with IS and OOS classification.

In this paper, we discuss the challenges of de-
signing a real-world OOS detection system in depth
and common approaches taken to design such a sys-
tem. We propose a simple but effective algorithmic
modification for OOS detection in a real-world de-
ployed system. This system models entities, intent
and OOS classification jointly and addresses the
challenges around data. We propose a comprehen-
sive benchmark based on public datasets and show
that our method outperforms standard approaches
while being simple to deploy and maintain.

2 Challenges

2.1 Metrics

Containment and Disambiguation For busi-
nesses, the key performance index (KPI) metric
is typically different from the common machine
learning metrics used to test the performance of
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the algorithm. Businesses use containment rate to
measure chatbot performance - the portion of con-
versations not handed off or escalated to a human
agent for quality reasons. Among offline evaluation
metrics, IS performance provides the best estimate
for containment rate. Disambiguation is a mecha-
nism to increase containment by asking end-users
clarification questions and providing more than one
relevant intent. This has to be counter-balanced
with high OOS performance so that we don’t pro-
vide a set of predictions in the form of IS classes
for an OOS query. This is essential to appear "in-
telligent" and handle conversations gracefully.
In Domain Out of Scope Detection refers to de-
tecting OOS samples with high semantic overlap
with IS examples in the same domain (ID-OOS).
ID-OOS queries are often harder to detect than the
easier Out of Domain OOS (OD-OOS) samples.
The algorithm should be able to identify ID-OOS
and also generalize well to unseen OOD-OOS.

2.2 Data Considerations

The average designer of an enterprise VA platform
doesn’t need to have ML background, hence the
expectations of labeled data are very different from
an ML expert end-user.
Class Imbalance is often extreme in data provided
by VA designer, with some intent classes having
more number of examples than others.
Data-scarce scenarios Labeling data is often ex-
pensive for enterprises who desire good perfor-
mance with very few labelled examples per class,
and often no OOS labeled data.
Noisy data Unlike public datasets, enterprise
datasets have semantically similar intents due to
overlap in business use cases. Additionally, real-
world end-user input queries to VAs usually contain
spelling errors, intentionally repeated characters,
emojis, and slang. Proper normalization is required
to improve robustness of OOS algorithms.

2.3 Computational Efficiency

While developing the OOS detection algorithm for
an enterprise VA platform, we need to strike a good
trade-off between cost of serving the model and
performance of the model. Based on our experi-
ence, VA platforms are expected to handle training
sets of more than 10k training examples and more
than 1000 classes.
Model size & memory: There are over 100,000
customer-specific models deployed in production
and each chatbot serves millions of queries per

month. Hence low maintenance, training and infer-
ence costs can increase profitability.
Training time: Designers typically make changes
in an iterative fashion, designing the VA through
trial and error. For an interactive experience in the
product, the OOS detection component needs to
train in 1 minute (Qi et al. (2020)).
Inference time: During the inference, each query
passes through all the natural language understand-
ing (NLU) components - IS classification, OOS de-
tection, entity recognition and spellchecking, and
needs to provide the predictions in 10 milliseconds.

2.4 Entities and OOS Detection
Entities are designed to represent nouns from end-
user inputs and are crucial for VAs to respond ac-
cordingly and haven’t been studied extensively in
OOS detection.
Terminologies Designers can define entities with
special terminologies that are out of vocabulary of
any other public or private corpus. This requires
OOS detection methods to differentiate such termi-
nologies from gibberish sentences.
Synonyms The OOS detection algorithm is ex-
pected to produce similar detection scores across
the multitudes of synonyms of the same entity.
Numeric Values System entities like date, number,
time etc. are pre-configured in a VA to cover a
wide range of concepts. However, there is no one-
size-fits-all solutions for system entities. E.g., the
system entity "11" can be a part of domain specific
terminology "operating system Windows 11". The
OOS detection algorithm needs to be aware of these
system entity values and decide the relevance of
the sentence based on the context.

We introduce several potential solutions for han-
dling entities in OOS detection and analyze their
advantages and disadvantages.
Concatenation of all entity synonyms In the con-
text of Binary OOS detection, we add one synthetic
IS example in to the training data by concatenating
all entity synonyms provided for a chatbot. Context
independent features such as uni-grams, bi-grams
and mean/max pooling of word-embeddings will
help recognizing these entities as IS at the runtime.
This simple approach works well empirically but
has the disadvantage of ignoring the context and
semantic meaning.
Synonyms and Entity proxies in intent templates
In enterprise VA, an entity can be defined with mul-
tiple synonyms. In our product, we support entity
proxies, which is a definition of a certain entity
and its associated synonyms that are considered
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equal. This greatly simplifies training data defini-
tion at the cost of potential instability at runtime:
our intent detection and OOS algorithm should re-
turn the same confidence and same predicted label
if one synonym is replaced by another. For the
example in Table 3, if "cell phone" is defined as
an entity proxy, VA designer only references the
symbol "cell phone" in training examples, and at
runtime "i want an iphone 11" gets the exact same
prediction as "i want an iphone xr".

3 OOS Detection Algorithms

OOS detection algorithms can be broadly classified
into single-stage and multi-stage.
3.1 Single-stage OOS
All the IS classes and optionally the OOS class are
used together train a single model to determine if
the incoming query belongs to one of the IS intents
or is OOS.
Multiclass Classification In this approach, the al-
gorithm treats the OOS examples as an additional
class as explored in (Zhan et al. (2021), Choi et al.
(2021)), alongside the IS classes to train a multi-
class classification model for both IS intent detec-
tion and OOS detection.1 This approach trains a
single algorithm for both OOS detection and IS
detection tasks. In practice, this approach is sus-
ceptible to over-fitting to the provided OOS exam-
ples and might not generalize well to unseen OOS
queries. Additionally, it can fail in the presence of
severe class-imbalance.
In-scope Classification utilizing output distri-
bution This type of methods trains a classifier on
IS data which outputs a probability vector with
low maximum probability or high entropy for an
OOS input, as explored in Lewis and Gale (1994),
Hendrycks and Gimpel (2016), Lee et al. (2018a),
Yilmaz and Toraman (2022). These methods train
a single model for IS detection and applies a thresh-
old on output probability distribution statistics
(such as max and entropy) for OOS detection. How-
ever, in practice, training data typically has seman-
tically overlapped intents which will mislead the
system and increase unnecessary human agent in-
tervention as shown in Table 1.

3.2 Multi-stage OOS
Multi-stage OOS method uses a binary classifier to
determine if a query is IS or OOS in the first stage.

1https://docs.microsoft.com/en-us/azure/
cognitive-services/luis/concepts/intents#
none-intent

In the subsequent stages we determine which of the
IS intent is the closest match.
Binary Classification (IS/OOS): A binary clas-
sifier is trained using the IS examples and OOS
examples as explored in Tax and Duin (1999). The
classification result is used to determine if end-user
query is OOS or ID. In case there are no OOS
training examples, the binary OOS classifier can
be replaced with an one-class classifier or other un-
supervised methods. Another solution for the lack
of OOS training data is synthetic OOS training
examples, refer to Section 4 for more discussion.
In-scope Classification plus unsupervised meth-
ods on internal (hidden state) representation
trains a classifier based on IS training examples,
and utilizes internal representation (for example,
concatenation of hidden states from several lay-
ers of a neural network) of the IS classifier for an
unsupervised OOS detection algorithm, like au-
toencoder with reconstruction loss, distance based
approach (Wu et al., 2022), (Shen et al., 2021), and
density based approach (Lin and Xu, 2019).

3.3 Our Approach
We show a simple modification to the multi-stage
OOS to improve the performance of the system and
alleviate problems with the other approaches men-
tioned previously. Our approach Binary Classifi-
cation(In Scope/OOS) discounting on In Scope
scores treats OOS classification as a binary clas-
sification problem like the previous formulation.
However, the binary classification score of the OOS
detection algorithm is used to discount the IS classi-
fication score to determine the final IS score (more
details to follow). In case no training OOS ex-
amples are available our OOS detection algorithm
becomes one-class classification. This formulation
is related to calibration (Kamath et al., 2020) that
trains a new model to reject inputs when the model
is over-confident. However, our approach applies
the OOS output as discounting factor instead of
binary score leading to better performance in the
context of enterprise VA as shown in Table 4.

In terms of the OOS classification component,
we implement a distance based approach based on
sentence embedding of both IS and OOS training
examples (if labeled). At training time, we first
apply the trick described in Section 2.4 to prepro-
cess entities among other text normalization steps,
then query the sentence embeddings from a sen-
tence encoder. For each IS example, we store the
linear combination of its sentence embedding and
the mean embedding of its corresponding intent

 https://docs.microsoft.com/en-us/azure/cognitive-services/luis/concepts/intents#none-intent
 https://docs.microsoft.com/en-us/azure/cognitive-services/luis/concepts/intents#none-intent
 https://docs.microsoft.com/en-us/azure/cognitive-services/luis/concepts/intents#none-intent
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class in an approximate nearest neighbor(ANN)
search index. If there are OOS training examples,
we store their sentence embeddings in the same
ANN search index. At runtime, a query is pre-
processed the same way as training examples, the
cosine distance to the nearest neighbor will be used
as OOS score to discount the output from the IS
classifier. If the nearest neighbor is OOS, we add
an additional constant to the corresponding nearest
distance, to discount the confidence more. The dis-
counting step uses the OOS score cos_dist and IS
classifier output confidence conf, we apply the for-
mula below to produce the final output confidence
vector final_conf as follows:

final_conf = (1− f(max(cos_dist, 0))) · conf (1)

f(x) =

{
x x ≥ 0.5

sigmoid(a · (x− 0.5)) otherwise
(2)

, where a is a constant that can be tuned for differ-
ent applications. The motivation for Formula 2 is to
reduce the amount of discounting on IS confidence
(comparing to a linear discounting function), when
OOS classifier predicts a low cosine distance (thus
high similarity) for an utterance.

Typically, a fixed threshold T on the final output
confidences is used in real world applications to
determine whether an input utterance is predicted
as IS or OOS: a new input is deemed OOS if its final
output confidence is less than T. Theoretically, this
threshold is not critical to machine learning metrics,
especially threshold independent metrics. Even
for threshold dependent metrics, this threshold can
always be tuned in accordance with the scale of
final output confidence to achieve the same results.
However in practice, as a commercial VA platform,
a fixed threshold reduces the maintenance cost of
a chatbot and only a small fraction of the chatbot
designers will try to tune the threshold. In our
product, 0.2 threshold is set as the default value.

3.4 Benchmark Dataset

We collect 8 intent classification datasets to compre-
hensively evaluate the methods mentioned above re-
garding the challenges, including IS classification,
OOS detection, and scalability. The 8 datasets in-
clude ATIS (Hemphill et al., 1990), BANKING77
(Casanueva et al., 2020), CLINC150 (Larson et al.,
2019), StackOverflow2, SNIPS (Coucke et al.,
2018), HAR (Liu et al., 2019), ROSTD (Gangal
et al., 2020), and HINT3 (Arora et al., 2020). A

2https://storage.googleapis.com/download.
tensorflow.org/data/stack_overflow_16k.tar.gz

Query Intent

I need assistance with my
retirement account retirement account

I need to talk to a agent about
my retirement account agent

Table 1: The two queries shown are semantically over-
lapped. For the query "I need to talk to a assistant about
my retirement account", the correct intent should be
"agent" but one can expect "retirement account" and
"agent" having similar probability. For approaches that
rely on probability vector to detect OOS input, these
examples can mislead them to treat valid IS queries as
OOS.

summary of dataset statistics after preprocessing is
provided in Table 2.

To evaluate methods’ performance on ID-OOS
detection, we ensure all datasets contain ID-OOS
examples. For datasets that only contain IS exam-
ples, we randomly choose a number of IS intents
and treat them as OOS so that the number of ex-
amples in these intents are about 25% of the whole
training dataset. The full list of chosen intents for
each dataset are listed in Appendix A.1.

We reorganize some of the datasets as follows.
CLINC150 includes 2 domains, banking and credit
card, we evaluate them separately along with the
full set. For StackOverflow, 10% examples in train-
ing set is stratified splited as dev set. For HAR,
we remove examples with missing ’answer’, and
stratified split remaining examples into train, dev,
and test set with a 80, 10, and 10 percentage. Dif-
ferent from other selected datasets, ROSTD con-
tains 4,000 OOS examples. ROSTD-coarse is the
version that only keep higher hierarchical intent
types. Examples in “reminder” intent type from
original ROSTD-coarse are treated as ID-OOS.
HINT3 consists of 3 domains, including SOFMat-
tress, Curekart and Powerplay11, so we evaluate
them separately. 10% of training examples in each
of HINT3 datasets is stratified split as dev set.

3.5 Evaluation metrics

Based on current literature, there are 2 types of
commonly used metrics for OOS detection.

Threshold dependent metrics are metrics cal-
culated with predicted labels e.g. accuracy. These
metrics compare the probability score against a
threshold to determine whether a query is consid-
ered OOS or not. Also threshold dependent metrics
encourage joint evaluation of intent detection and
OOS detection that are more suitable under the

 https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz
 https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz
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Dataset Train Dev Test
IS ID-OOS OOD-OOS IS ID-OOS OOD-OOS IS ID-OOS OOD-OOS

CLINC150-FULL 11300 3700 100 2260 740 100 3390 1110 1000
CLINC150-BANKING 400 100 0 400 100 600 400 100 1350
CLINC150-CREDIT 400 100 0 400 100 600 400 100 1350
ATIS 4053 425 0 458 42 0 812 81 0
BANKING77 6533 2089 0 1160 380 0 2320 760 0
Stack Overflow 5400 1800 0 600 200 0 6000 2000 0
SNIPS 9371 3713 0 500 200 0 500 200 0
ROSTD 23621 6900 0 3238 943 1500 6661 1960 3090
ROSTD-coarse 23621 6900 0 3238 943 1500 6661 1960 3090
HAR 15893 4592 0 1986 575 0 1985 576 0
HINT3 (SOFMattress) 229 66 0 26 7 0 158 73 166
HINT3 (Powerplay11) 317 102 0 38 14 0 244 31 708
HINT3 (Curekart) 415 125 0 45 15 0 390 62 539

Table 2: Dataset Statistics. We preprocess all datasets (details in A.1) and numbers reflect their sizes.

context of VA. Following the literature (Wu et al.
(2022), Zhou et al. (2022), Zeng et al. (2021)), the
threshold dependent metrics are listed here:

Overall Accuracy is the percentage of examples
being correctly classified. For an IS query, it’s
predicted correctly if and only if the predicted IS
label is correct and the query is predicted as IS.
For an OOS query, it should be predicted as OOS
to make a correct prediction. IS Accuracy is the
percentage of correctly predicted IS examples out
of all IS examples. IS F1 is the macro averaged
F1 scores across all IS intents. OOS F1 is the F1
score for OOS examples.

Threshold independent metrics are metrics cal-
culated with a vector of scores each of which mea-
sures how confident or likely an OOS algorithm
considers a query irrelevant. Such a score is often a
number between 0 and 1 where 1 represents IS and
0 represents OOS. This paper follows the literature
(Shen et al. (2021), Ryu et al. (2018), Liang et al.
(2017), Lee et al. (2018b)) and defines IS as the
positive class and OOS as the negative class. We
use the metrics for evaluating OOS detection per-
formance: FPRN, where N is an integer between
0 and 100, is the false positive rate(FPR) when
the true positive rate(TPR) is at least N%. A false
positive is an OOS example predicted as IND. We
use FPR90 and FPR95. AUROC is the area under
the Receive Operating Characteristic curve, which
measures TPR against FPR at different thresholds.
AUPR_IN and AUPR_OUT are metrics measur-
ing area under the precision-recall curve, when IS
and OOS are considered as the positive class, re-
spectively.

Training Example
Can I buy a cell phone ?

Training Entities
entity: cell phone
synomyms: iphone, samsung, galaxy, iphone XR, iphone 11, etc..

Inference Queries
A galaxy is a huge collection of gas, dust, stars and their solar systems.
what is the latest model of galaxy s series?

Table 3: VA designer defines the entity "cell phone" with
synonyms. The 1st query contains the word "galaxy"
but it is OOD-OOS. The 2nd with "galaxy" is ID-OOS.

3.6 Experiments and Results

We conduct experiment on the benchmark datasets
to compare different OOS problem formulations
listed in Section 3 (Our discounting approach, Bi-
nary Classification (IS/OOS), Multiclass Classifi-
cation3 , and IS Classification utilizing output dis-
tribution). As a comparison for the OOS problem
formulation only, we keep the IS classification algo-
rithm and OOS algorithm same as our production
setup across the 4 formulations, without focusing
on the exact choice or implementation of the IS and
OOS algorithms. For the discounting method, we
use our production intent detection and OOS detec-
tion as is. For multi-class classification method, we
consider OOS examples as an additional IS intent.
For the IS Classification utilizing output distribu-
tion formulation, we train an IS classifier with IS
training examples and take the max of output con-
fidence vector as the OOS score.
Offline Evaluation Table 4 reports the simple av-
erage of metrics across all our benchmark datasets.

3Threshold independent metrics for Multiclass classifica-
tion is omitted, as our IS classifier outputs confidence vectors
(which do not sum up to 1) instead of predicted probability,
thus it involves no such component as OOS scores.
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Method Overall Acc. IS Acc. IS F1 OOS F1 OOS recall FPR90 FPR95 AUROC AUPR_IN AUPR_OUT

Binary 82.45 86.92 77.87 76.84 74.18 22.76 30.29 91.70 91.21 88.16
Multiclass 74.34 90.36 72.81 74.08 64.84 - - - - -
IS clf + Max 79.17 85.93 77.99 70.02 65.15 32.66 44.45 87.53 87.15 80.27
Discounting (Our Approach) 84.70 86.43 79.71 80.63 79.31 20.07 27.20 92.64 91.07 89.90

Table 4: Performance on all datasets This table compares the discounting method against binary classification,
multiclass classification, the IS classifier + max confidence on the full test sets.

Method Overall Acc. IS Acc. IS F1 OOS F1 OOS recall FPR90 FPR95 AUROC AUPR_IN AUPR_OUT

Binary 53.45 72.70 47.97 45.26 38.40 59.24 78.80 81.37 72.07 86.98
Multiclass 52.97 74.65 49.44 56.15 41.15
IS clf + Max 54.36 75.13 53.46 57.90 43.66 56.38 73.74 76.97 60.33 86.01
Discounting (Our Approach) 61.46 69.38 51.79 60.05 54.94 50.84 71.02 82.83 69.32 88.97

Table 5: Performance on HINT3 This table compares the discounting method against the Multiclass classification
method, the binary classification method, the IS classifier + max confidence on the full test sets.

The discounting approach achieves better perfor-
mance across most metrics. We report the average
metrics in Table 5 on the subset of the 3 HINT3
datasets, which are designed to represent real world
imbalanced datasets.

Table 6 compares the Multi-Class formulation
against our formulation on all datasets. Our ap-
proach performs on par on ID-OOS but general-
ize better to OOD-OOS. In real world application,
limited ID-OOS is provided by customer during
training but the algorithm is expected to perform
well on both categories without overfitting.

Method Test set Overall Acc. IS Acc. IS F1 OOS F1 OOS recall

K+1 Classes IND+ID-OOS 90.65 90.36 86.46 90.82 92.76
discounting IND+ID-OOS 86.14 88.04 84.62 76.25 80.81
K+1 Classes IND+OOD-OOS 60.28 89.41 65.07 46.60 32.69
discounting IND+OOD-OOS 78.31 85.72 76.71 74.36 71.43
K+1 Classes IND+both OOS types 74.34 90.36 72.81 74.08 64.84
discounting IND+both OOS types 84.70 86.43 79.71 80.63 79.31

Table 6: Performance on various test sets We compare
the discounting method against the Multiclass classifica-
tion method on 3 versions of test sets: IS + ID-OOS, IS +
OOD-OOS (average across the datasets with OOD-OOS
test examples), IS + both types of OOS examples.

Online Evaluation During real-world deployment
of this algorithm, we conducted additional online
evaluation by analyzing the output distribution
change on real production traffic because chatbot
designers typically rely on output confidence scores
to make business decisions eg. jumping to a node in
the dialog tree, handing off to human agents or ask-
ing a follow-up question. Therefore, we deployed
the proposed OOS algorithm in production and
monitored different statistics on 10% of randomly
selected real traffic for months before surfacing it to
end-users. We observed that more than 85% of live
traffic queries will have a less than 10% change in
top confidence after the change in OOS algorithms

(Full distribution shown in Figure 1 in Appendix).
For enterprise customers with complex dialog con-
ditions, a new algorithm that does not disrupt the
normal workflow is critical for adoption.
Computational Efficiency and Scalability Our
product has a training set size limit of 25k IS and
OOS training examples each and 2k IS classes.
Based on this maximum training set size setting,
the maximum model size for OOS detection is less
150MB based on offline testing. Based on online
testing, the 99 percentiles for training time and
model size of our OOS algorithm are within 30
seconds and 70MB, respectively.

4 Conclusion

The paper presents a novel Out of Scope (OOS)
detection component in a task-oriented dialog sys-
tem. It allows the assistant to recognize user input
that is not designed to be answered by the assis-
tant and need to be handed off to a human agent.
For business, a well designed Out of Scope detec-
tion system can improve customer satisfaction, user
engagement, lead generation and saves cost. On
one hand, business wants the assistant to hand off
quickly when a user input is Out of Scope. On the
other hand, unnecessary hand off could increase
human intervention and reduce the value of VA. We
design an OOS detection system that overcomes a
multitude of real-world challenges, and deploy it
in production. 4 We list out the lessons learned and
both offline and online evaluation techniques for
designing a robust, efficient and scalable system
for enterprise VA platform.

4https://cloud.ibm.com/docs/assistant?
topic=assistant-irrelevance-detection,
https://cloud.ibm.com/docs/assistant?topic=
assistant-release-notes#assistant-jun162022

 https://cloud.ibm.com/docs/assistant?topic=assistant-irrelevance-detection
 https://cloud.ibm.com/docs/assistant?topic=assistant-irrelevance-detection
https://cloud.ibm.com/docs/assistant?topic=assistant-release-notes##assistant-jun162022
https://cloud.ibm.com/docs/assistant?topic=assistant-release-notes##assistant-jun162022
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Limitations

Extensive benchmarking for other languages is out-
of-scope for this work, but we have extended the
approach to many European languages in the prod-
uct with similar gains in performance (Wang et al.,
2022). Code switching isn’t evaluated in this work,
but it is commonly observed in chatbots deployed
in the wild.

We have not discussed synthetic OOS examples.
Despite its demonstrated effectiveness, they need
caution in real world production system from a
robustness perspective: it’s possible to introduce
spurious correlation by generated synthetic data.
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A Appendix

A.1 List of IN-OOS intents
Here we list the intents for each dataset that are
treated as IN-OOS intents in our benchmark.

Stackoverflow: python
SNIPS: SearchCreativeWork and Search-

ScreeningEvent
HAR: intents, hue_lightoff, explain, remove, ad-

dcontact, wemo_on, podcasts, createoradd, music,
praise, radio, dontcare

ROSTD: reminder/set_reminder, reminder/can-
cel_reminder, reminder/show_reminders

HINT3 SOFMattress:
SIZE_CUSTOMIZATION,
ABOUT_SOF_MATTRESS, LEAD_GEN,
COMPARISON, WARRANTY, DE-
LAY_IN_DELIVERY

HINT3 Powerplay11:
NO_EMAIL_CONFIRMATION,
TEAM_DEADLINE, FAKE_TEAMS,
CANNOT_SEE_JOINED_CONTESTS, RE-
FUND_OF_ADDED_CASH, HOW_TO_PLAY,
FEEDBACK, ACCOUNT_NOT_VERIFIED,
DEDUCTED_AMOUNT_NOT_RECEIVED,
CRITICISM, NEW_TEAM_PATTERN, OF-
FERS_AND_REFERRALS

HINT3 Curekart: EXPIRY_DATE,
CONSULT_START, CHECK_PINCODE,
ORDER_TAKING, INTERNA-
TIONAL_SHIPPING, IMMUNITY,
SIDE_EFFECT, START_OVER, POR-
TAL_ISSUE, MODES_OF_PAYMENTS, OR-
DER_QUERY, SIGN_UP, WORK_FROM_HOME

A.2 Our OOS problem formulation is
algorithm-agnostic:

We conducted the same experiment with another
OOS algorithm: autoencoder with reconstruction
loss as OOS score. The findings are similar: our
OOS formulation demonstrate advantages over oth-
ers. Detailed metrics are shown in Table 7.

A.3 Online evaluation statistics
Figure 1 shows the full distribution of differences
in top confidence between the proposed OOS algo-
rithms vs previous OOS algorithm on a percentage
of live traffic

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Distribution of difference in top confidences between 2 OOS algorithms

Figure 1: Distribution of differences in top confidence
between the proposed OOS algorithms vs previous OOS
algorithm on a percentage of live traffic

.
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Method Overall Acc. IS Acc. IS F1 OOS F1 OOS recall FPR90 FPR95 AUROC AUPR_IN AUPR_OUT

Binary 83.25 85.09 76.68 81.70 77.16 28.24 34.78 91.47 90.37 89.27
Multiclass 74.34 90.36 72.81 74.08 64.84
IS clf + Max 79.17 85.93 77.99 70.02 65.15 32.66 44.45 87.53 87.15 80.27
Discounting (Our Approach) 84.30 85.85 77.88 83.17 79.35 19.65 25.56 93.18 92.24 91.63

Table 7: Performance metrics This table compares the discounting method against the Multiclass classification
method, the binary classification method, the IS classifier + max confidence on the full test sets, using autoencoder
as the OOS detection algorithm.


