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Abstract
Factual and logical errors made by Natural
Language Generation (NLG) systems limit
their applicability in many settings. We study
this problem in a conversational search and
recommendation setting, and observe that we
can often make two simplifying assumptions
in this domain: (i) there exists a body of struc-
tured knowledge we can use for verifying fac-
tuality of generated text; and (ii) the text to be
factually assessed typically has a well-defined
structure and style. Grounded in these assump-
tions, we propose a fast, unsupervised and
explainable technique, DepChecker, that as-
sesses factuality of input text based on rules de-
rived from structured knowledge patterns and
dependency relations with respect to the input
text. We show that DepChecker outperforms
state-of-the-art, general purpose fact-checking
techniques in this special, but important case.

1 Introduction and Background

Prior work has noted the benefits of natural lan-
guage text generated by NLG models over fixed
templates, for various language processing and lan-
guage understanding tasks, i.e., fewer grammatical
or structural disfluencies, increased conversational
nature, textual diversity and user satisfaction (Kale
and Rastogi, 2020; Challa et al., 2019; Vedula et al.,
2023). Recent NLG approaches based on language
models allow conversational agent designers to cre-
ate natural-sounding responses in a very wide range
of situations without exhaustively testing template-
based response text (Wang et al., 2022; Asai et al.,
2021; Kim et al., 2021). However, neural NLG
systems may emit hallucinated, factually incorrect
or even nonsensical content that is not entailed by
their inputs (Wang et al., 2020; Tian et al., 2019;
Liu et al., 2021b; Dhingra et al., 2019). For in-
stance, an NLG model may synthesize multiple
∗These three authors contributed equally
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independent hypotheses involving comparisons or
aggregations, which must be verified. There has
been growing attention towards checking the fac-
tual accuracy of statements produced by neural
NLG systems in conversational settings. These
statements fall into two categories depending on
the source input data used for generation (Guo
et al., 2022). First, the input whose factuality is to
be determined can be unstructured, as in abstrac-
tive summarization (Teredesai et al., 2019; Goyal
and Durrett, 2020) or the FEVER task (Thorne
et al., 2018; Zhou et al., 2019; Zhang et al., 2020;
Bekoulis et al., 2021; Vedula and Parthasarathy,
2021). Second, the input to be factually assessed
may involve structured components, like knowl-
edge graphs (Auer et al., 2007; Shiralkar et al.,
2017) or tabular data (Chen et al., 2019; Zhong
et al., 2020; Liu et al., 2021a).

In conversational, high-consequence domains
like health, finance, or e-commerce, we must be
sure that any factual error introduced by an NLG
system is detected (Chen et al., 2021; Di Sotto
and Viviani, 2022; Khan et al., 2022). While su-
perficially similar to other fact verification efforts,
this setting presents both unique challenges, and
unique simplifications. In this work, we investigate
the factuality of fluent e-commerce statements gen-
erated via neural NLG techniques using structured
data, namely, a commercial product catalog (Ni
et al., 2019) containing tables of products and their
attributes. We show that the state-of-the-art sys-
tems typically developed for general-purpose struc-
tured data fail to perform well in our conversa-
tional e-commerce setting. Though we focus on
the e-commerce domain, our proposed system can
be used with any structured data source to check
statements generated from non-e-commerce do-
mains such as finance (e.g., the recent FinQA chal-
lenge (Chen et al., 2021) or health (consider the
consequences of providing inaccurate health rec-
ommendations to users of personal health trackers
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in a system like (Harris and Zaki, 2022)).
We focus on three main challenges while build-

ing our proposed fact checking model, DepChecker.
First, since presenting factually untrue statements
to users in high-consequence domains may lead to
a poor decision, we must achieve very high false
statement recall, and very high true statement pre-
cision. Second, deploying fact verification in a
conversational setting demands speed – during run-
time evaluation of responses to customers of voice
assistants, and in case we want to use fact verifi-
cation output as a signal to improve an accompa-
nying conversational response generation model.
As a result, we seek to avoid using large language
models for fact checking in production, if possi-
ble. Third, data-to-text NLG systems may rephrase
entities from the input values, e.g., if a data entity
is itself disfluent. In benchmark corpora like Tab-
Fact (Chen et al., 2019), data and reference text
mentions of the same entity are generally identical,
which can limit the flexibility of fact verification
models trained on those corpora.

DepChecker also benefits from some simplifica-
tions, especially in the e-commerce domain. We
observe that in the conversational product search
and recommendation setting, NLG systems are un-
likely to generate product statements that have a
complicated linguistic style or form (Jannach et al.,
2021). Thus, unlike TabFact which requires com-
plex hops and joins to reason over structured table
data, we can concentrate on a simpler, reduced set
of operations. We are inspired by (Reddy et al.,
2016), who approached question answering by de-
veloping rules over dependency parse trees. Con-
sider the example in Figure 1: key entities have
very simple structures. The product mention has an
nsubj (nominal subject) dependency1; attributes
are either attr (attribute) or conj (conjunct) de-
pendents of attr. These basic observations hold
over a wide set of examples in this domain, prompt-
ing us to exploit dependency trees to better extract
claims, perform entity linking to match the input
statement with its associated structured data, and
finally determine the factuality of the statement.

A current limitation of DepChecker could be
that manually constructing rules over parse trees
requires both time and domain expertise. As a
result, we also seek to automatically induce the
manually generated rules using genetic optimiza-

1 We use ClearNLP dependency labels:
github.com/clir/clearnlp-guidelines

tion algorithms (Mitchell, 1998), in a system we
call DepCheckerGA. Our contributions can thus be
summarized as follows:

1. We develop a high-speed fact-verification sys-
tem that has a very high false statement recall
and very high true statement precision, for
future deployment in production.

2. We show that highly performing fact verifi-
cation models on structured, open domain
data benchmarks fail to perform well on NLG
statements created from structured, domain-
specific inputs, despite fine-tuning.

3. We show that our unsupervised, accurate sys-
tem DepChecker is explainable and up to 10×
faster than neural baselines.

4. We discuss how DepChecker’s rules can be
automatically learned and generalized to other
systems or domains via genetic optimization.

2 Methodology

2.1 Parsing and Fact Extraction Rules

DepChecker consists of three high-level compo-
nents: (1) a set of rules applied to a dependency
parse to identify the heads of entity mentions; (2)
rules over token tags and text used to identify the
complete mention; and (3) a system to link the
identified entity mentions to corresponding struc-
tured evidence, and thereby verify whether the text
is factual. Here, we focus on the product names,
attribute names, and attribute values that are part
of our structured product catalog. We use spaCy’s
dependency parser2 to extract product-attribute re-
lations from the text. We describe several examples
of rule development in Section 2.2. These rules
however only identify the head-tokens of product
and attribute mentions. A second set of patterns
over exact strings, regular expressions, lemmas,
parts of speech, and other linguistic attributes is
used to complete the entity spans, described in
Section 2.3. We end with product-attribute-value
relations like {product_3, size, 550w} (see Fig-
ure 1), which we call a “hypothesis”. We note that
an NLG based text generation model may produce
non-standard statements which the parser may not
parse “correctly”. We emphasize that DepChecker
is not actually affected by the correctness of the de-
pendency parse, so long as it is consistent across all
statements in the domain. We are using the parse

2 spacy.io/usage/linguistic-features
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The important things to know about product 3 are its 550w 4.7-star noise level rating 4.77-star easy to install ratingand
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Figure 1: Identifying entity attributes from the dependency parse tree of an input claim whose factuality is to be
assessed. Potential product mentions are shown in pink, attribute names in yellow, and attribute values in green.

only as a set of features to identify product and
attribute mentions and their relations to each other.

Statements in this shopping domain can also
compare attributes of different products. For ex-
ample, for the claim “With 5 stars, Product 1 has
the highest battery life rating of all three products”
to be true, Product 1’s battery life rating must be
5 stars, and the other products’ battery life ratings
must be less than 5 stars. We add to the hypothe-
ses one or more comparands (products to which
we compare), and a comparator (e.g., “more” or
“less”). Here, there are two implied pairwise com-
parisons, one each with Products 2 and 3.

The third component evaluates the extracted hy-
potheses against the catalog data. For each hypoth-
esis extracted from a claim, we iterate through the
catalog attributes to find a match. We first check
for an exact match. If there is none, we search
for catalog and hypothesis attributes whose cosine
similarity of their GloVe embeddings (Pennington
et al., 2014) is more than 0.9. If any hypothesis fails
to match, then the claim is False. If all hypotheses
evaluate to True, the claim is labeled True.

2.2 Dependency Rule Development

We illustrate the process of finding good rules to
identify product-attribute relationships with two ex-
amples. We annotate 250 examples and identify the
dependency paths from key verbs (e.g., “has”, “is”)
and possessives (poss) to product attributes. For
instance, the dobj (direct object) of “has” is always
a product attribute phrase. An obvious example is
“Product 1 has four processors”. Now consider the
example in Figure 1. We identify the verb are, and
descend the tree from there to identify products and
attributes. The first attribute (“550w size”) has a
attr dependency arc from “are”. Remaining at-
tributes are all (conj) children of another attribute.
DepChecker uses six of these attribute existence
rules rules to extract attributes.

Figure 2 shows a case with a possessive pronoun,
its, whose head, quality, is universally an attribute,

are its good quality, compact size, and high-end appearance…product 3

attr conj conj

poss

Figure 2: An example parse with a possessive, showing
that attributes are the head, and conjunct dependencies
of the head, of its. Color scheme as in Figure 1.

so we add a rule head(poss)→attribute. Again,
conj arcs link remaining attributes to the first. We
follow a similar process to find the product men-
tion, first climbing the tree to the main verb of
the sentence (here “like”, not shown in the figure),
and descending again to find the product mention.
DepChecker has six rules for possessives. Two ad-
ditional rules handle more generic verb heads, to
identify product attributes phrased like “the lights
are bright”. DepChecker has six more rules to han-
dle comparisons, closely following attribute exis-
tence rules. Thus, DepChecker relies on just twenty
rules to identify products from dependency trees.

2.3 Attribute Token Rules

Our dependency rules find the head token of a prod-
uct or attribute, and we must identify the complete
attribute and value, if present, for which we de-
veloped regular expressions on the part-of-speech
tags. In all, there are 30 rules for different prod-
ucts and attributes. For example, to extract the
complete attribute “easy to set up”, we use the pat-
tern /(NN|ADV)* ADJ (ADP|PART) (VB|NN) NN?
ADP?/. Finally, taking advantage of the relatively
simple statement structure for the e-commerce do-
main, we have two co-reference rules linking pro-
nouns to product mentions. We observe that these
rules are more accurate and faster than co-reference
resolution with general purpose models (Stylianou
and Vlahavas, 2021).

2.4 Genetic Rule Optimization

We now describe how we can automatically learn
the rules detailed in the above sections. To extract
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product:attribute and attribute name:value pairs
from statements, we first observe that we can iden-
tify a path from any token in the sentence up to a
common head and down to any other token. Each
pair of paths from two tokens to a shared head can
be expressed as a list of dependencies. For instance,
in Figure 1, “product” has a path [pobj, relcl,
nsubj] to the shared head token “are”, while the
attribute phrase “550w size” has a path [attr] to
“are”. Together, these paths form a candidate rule
for product:attribute extraction.

We extract all such candidate rules from a small
set of ground truth-labeled example sentences. In
principle, we could apply all of the extracted rules,
but not all are sufficiently precise. We therefore
apply genetic optimization (Fortin et al., 2012;
Mitchell, 1998), optimizing our rule selection to
increase product and attribute phrase head recall,
while maximizing token level precision to avoid
selecting spurious phrases.

We start from a set of candidate rules Rcand,
which are regular expressions over the dependency
labels linking products and attributes to common
head tokens. We further define a fitness function
E which we use to optimize individuals Ii, which
are collections of rules, and the population P as a
whole. In our case, we optimize for a combination
of precision and recall in identifying labeled prod-
ucts and attributes, and add a penalty for adding
more rules. To initialize the population, we cre-
ate npop individuals, each of which is initialized
by randomly selecting between 1 and 8 rules from
Rcand. Next, we begin to evolve the population.
At each step, we evaluate each individual in the
population using E. While our best individual is
below some target threshold fitness Etgt, we select
individuals, mutate some of them, and recombine
rules between individuals.

Selection consists of choosing the most “fit” in-
dividuals from the population, based on the fitness
evaluated using E. We use tournament selection
(Mitchell, 1998), implemented using deap (Fortin
et al., 2012)3. In tournament selection, we choose
a tournament size k (10 in our case) and select
that number participants randomly from the current
population generation. The most fit individual from
that subset of k individuals is added to the next gen-
eration. We use sampling with replacement, so the
most fit individuals are likely to be added more than
once to the next generation, strengthening the next

3 deap.readthedocs.io

generation while also allowing for some variation
to carry forward.

Next, we iterate over all individuals, first remov-
ing from each individual any redundant rules which
are wholly entailed by some other rule. Then with
probability pmut, we mutate the individual, and
recombine or “crossover” rules with another indi-
vidual with probability pcr. We mutate individuals
to diversify the new rule generation. Then, we
merge rules. Merging consists of aligning pairs of
rules and combining the aligned forms. We use
the Needleman-Wunsch (Needleman and Wunsch,
1970) algorithm to align the patterns. We choose
the most closely aligned pairs of rules to merge.
Where the tokens match, we simply add them to
the pattern; where there are gaps, we add a ‘*’ (re-
peater or Kleene star) operator, and where there are
differences, we use an ‘|’ (or) operator. For exam-
ple, given the patterns ABCD and ACE, the alignment
and merge would result in AB*C(D|E). As we will
explain below, this pairwise alignment is somewhat
limited, and can lead to complex patterns that are
hard to further combine or generalize.

If we recombine rules with another individual,
we first select an individual at random. We then
choose a rule at random from each individual, and
swap them between the two individuals.

3 Evaluation

To test our proposed approaches, DepChecker
and DepCheckerGA, we first developed a BART-
based (Lewis et al., 2020) data-to-text NLG model
to generate conversational statements in the e-
commerce domain, taking as input tabular product-
attribute data from a structured product catalog (Ni
et al., 2019). To train this NLG model, we asked hu-
man annotators to write text describing and compar-
ing the product attribute values of 2-3 catalog prod-
ucts (Figures 1 and 2 contain examples of the hu-
man generated sentences). We used this set of NLG
model generated sentences as our test set for factu-
ality assessment, to test DepChecker in this work.
As a baseline for DepChecker, we also trained a su-
pervised factual error detection binary classifier
(henceforth called RoBERTaChecker) using the
RoBERTa (Liu et al., 2019) language model, with
a mix of the above mentioned human-generated
product domain statements and artificially gener-
ated negative examples (generated by corrupting
the entity names and values in the human-generated
factually correct statements). This binary classifi-
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Method Acc TP FR AIT
Table-BERT (Chen et al., 2019) 0.56 0.50 0.31 452
GNN-TabFact (Ran et al., 2019) 0.43 0.53 0.20 644
TAPEX-base (Liu et al., 2021a) 0.52 0.54 0.79 228
TAPAS-base (Herzig et al., 2020) 0.51 0.66 0.97 724
RoBERTaChecker 0.67 0.87 0.94 681
DepChecker (proposed) 0.65 0.85 0.94 72
DepCheckerGA (proposed) 0.63 0.84 0.94 256

Table 1: Fact verification performance of different mod-
els. Acc: Accuracy; TP: True precision; FR: False re-
call; AIT: Average Inference Time (in milliseconds).

cation dataset was also used to fine-tune the neural
baselines shown in Table 1. The first four baselines
are approaches that have been specifically devel-
oped for the TabFact dataset (Chen et al., 2019),
and were also fine-tuned on TabFact. We also la-
beled some of this data with product name, attribute
name, and attribute value tags, to select dependency
rules as described in Section 2.4.

The factual error detection test set to evaluate
DepChecker consists of 195 sentences generated
by our BART based NLG model described above,
and includes 98 factually consistent or true state-
ments and 97 factually inconsistent or false state-
ments. This test set was manually labeled after
finalizing the DepChecker rules, to avoid any data
leakage. The values of all hyperparameters used
by DepChecker and DepCheckerGA were tuned
on a manually curated validation set. We report
the average execution time over all examples at
inference, on a single 2.3GHz Intel Xeon E5-2686
v4 CPU (an Amazon AWS EC2 p3.8xlarge in-
stance). Note that we explicitly include the de-
pendency parsing time in the reported execution
time for DepChecker. An example of a structured
product table from our dataset is {size_product3:

550w, noise level rating_product3: 4.7, easy to

install rating_product3: 4.77}, from which our
BART based NLG model generates the sentence
shown in Figure 1.

3.1 Results

As shown in Table 1, DepChecker outperforms all
baselines on accuracy or speed, and outperforms
most models on both. Models developed for large-
scale fact checking baselines have surprisingly low
accuracy: the best system, TAPAS (Herzig et al.,
2020) reaches only 51%: it labels nearly all ex-
amples as false. A more important task here is
to detect false statements, since making a false
statement to a customer in an e-commerce setting
could seriously damage a business’s reputation.
TAPAS identifies 97.0% of factually inconsistent

sentences (at the cost of very low precision on fac-
tually true statements), followed by our baseline
neural model, RoBERTaChecker, with false recall
94% but much better overall accuracy 67%. De-
pChecker is equally good, reaching 94% false re-
call and 65% accuracy. In addition, neural models,
especially those using transformer architectures,
are slow. Using GPUs makes them faster, but much
more costly. For both cost and energy impact in
a production deployment setting, as well as for a
lower latency in a conversational response gener-
ation setting, it is desirable to use more efficient
models. Table 1 shows that DepChecker is three to
ten times faster than all other baseline models, and
9.4 times faster than the only neural model with
comparable accuracy, RoBERTaChecker.

We next test how well we could automatically
reproduce DepChecker’s rules using our genetic
optimization scheme in Section 2.4 (DepCheck-
erGA). We find that the rules generated by genetic
optimization are not as compact or efficient as man-
ually created rules. These rules extract 95% of
head tokens of the 1000 product name, attribute
name, and attribute value spans in our test set, and
96% of the extracted tokens belonging to those
spans. These values are statistically indistinguish-
able from DepChecker, albeit with almost twice
as many rules. As a result of the additional rules,
average execution time increases to about 250 mil-
liseconds per sentence4, making DepCheckerGA
still superior to several of our baseline systems.

3.2 Discussion

Error Analysis and Explainability: Of all mod-
els, DepChecker and RoBERTaChecker have sig-
nificantly higher accuracy and high false recall.
They mis-classify very few false statements, and
also make different errors. Combined, these two
models achieve 99% false recall, better than any
other system. RoBERTaChecker makes errors on
encountering attributes altered from the input table
(“80 plus gold”→ “80 plus gram”), misses nega-
tion (attribute “heat sensitive: false”→ “customers
like its heat sensitivity”, or when an attribute value
is associated with the wrong product. DepChecker
makes errors only of the first kind, e.g., if it gets as
input “soft material” for the attribute “soft”.

Other neural models appear to make similar er-

4 Note that to implement our genetic optimization, we convert
dependency parses to strings and execute regular expression
rules; it may be possible to further optimize this by converting
the rules to SpaCy’s tree regex, used in DepChecker.
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rors to RoBERTaChecker. For instance, TAPEX
classifies “... product 3’s 1.0-inch unit count
...”, as true even though it is obviously wrong;
DepChecker classifies it correctly. TAPEX and
TAPAS both fail in cases where NLG transforms
attributes like “battery” to “battery life”, or when
the NLG fabricates an attribute completely, with
no corresponding input value. As with RoBER-
TaChecker, TAPEX and TAPAS make orthogonal
errors to DepChecker, and near 100% false recall
can be achieved. We aren’t sure why this should
be, since the neural models are opaque. However,
unlike other state-of-the-art systems, our proposed
approach DepChecker is both fast and explainable.
Its rules make it clearer to diagnose and understand
the exact reason DepChecker fails on an input, and
use this signal to correct the input claim or im-
prove the fact verification process. DepChecker’s
speed also enables it to be easily used in real-time
systems, and as a potential signal to improve the
training of NLG models generating factually incon-
sistent statements.

Comparing DepChecker and DepCheck-
erGA rules: We assess whether DepCheckerGA
can learn similar rules as those created by humans
or expert linguists (see Table 2). First, we observe
DepCheckerGA’s rules tend to be more narrow, il-
lustrated by the second example in Table 2, which
has a number of additional constraints compared
to the DepChecker rule, which has broader cover-
age as well. This is likely due to the fact that in
order to facilitate the genetic optimization strategy,
DepCheckerGA must fully specify the dependency
paths to each product and attribute in its rules. By
contrast, a linguist can find patterns that involve
only the key parts of the dependency links. It may
also be partly due to the limitations of our align-
ment and merging strategy in Section 2.4. This
leads to more, and unnecessarily specific rules.

In many cases, however, the rules found by
DepCheckerGA match those formed by expert
linguists. The first and third examples in Ta-
ble 2 demonstrate this. However, we note that
DepCheckerGA has redundant rules that identify
different parts of the same sentences. In the
third example, the rules shown find a link be-
tween “product”, “strap”, and the shared head
“style”. Another DepCheckerGA rule, NOUN
conj* ((pobj prep)|amod)5, unnecessarily iden-
tifies “adjustable”, showing that DepCheckerGA

5 see Table 2 caption for notation

could also do a better job pruning its rules.
Finally, while matches are more or less uni-

formly distributed across our hand-crafted rules,
only about 1 in 6 of DepCheckerGA’s rules match
more than 10 statements. In future, we will further
explore DepChecker’s rule combining strategies
for it to match DepChecker’s performance. Further,
our rule merging relies on two rules being mostly
identical. We do not merge multiple rules at once
to generalize better. Multiple sequence alignment
techniques could be used to improve DepCheck-
erGA (Chowdhury and Garai, 2017).

Dependency Parsing Errors: As noted in Sec-
tion 2.1, since we learn dependency patterns from
the parsed NLG text, the parse need only be con-
sistent across the domain, and not linguistically
correct. Parsing errors are taken into account while
learning the rules of DepChecker. It thus implicitly
handles any language errors made by the chosen
dependency parser, which might be more common
if the NLG input is not completely fluent. For
instance, in the statement customers feel highly
positive about product 1’s great features, the parser
incorrectly labels “features” as the object of adpo-
sition about, when it should be product. Both De-
pChecker and DepCheckerGA learn rules to handle
this technical error.

Generalizability: We showed that we can au-
tomatically learn a comparable set of rules over
dependency parse trees using genetic optimization
(Section 2.4). This allows DepChecker to gener-
alize to other domains, requiring only a small set
of data instances labeled with the relevant entity
names and values. It also allows a domain-specific
fact verification system to be built rapidly with al-
most no manual effort. However, as mentioned
earlier, the automatically learned rules may be less
efficient, so some expert linguist effort may still be
required. Our analysis indicates that our domain of
conversational shopping likely exhibits a compara-
tively small amount of variation in style and linguis-
tic structure of the text whose factuality is being
assessed in this paper. Extending DepChecker to
work well for domains with higher textual variation
is something we leave for future work.

To investigate DepChecker’s generalizability to
large-scale, general purpose corpora like TabFact,
we extend our defined rules to a sample of Tab-
Fact entities, which have been derived from DBPe-
dia (Auer et al., 2007). We replace the ‘product’
and ‘attribute’ entity mentions in our rules by more
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attribute rule; product rule or example sentence
DepChecker have dobj; have nsubj
DepCheckerGA have dobj; have nsubj conj*
example sentence Product 2 has the highest rating.
DepChecker have dobj .* conj; have nsubj
DepCheckerGA have dobj; VB advcl (acomp|dobj*) conj (acomp|amod*)*
example sentence According to reviews, previous buyers feel positive about product 1 because it

has easy setup and installation, great picture quality, and lights are bright.
DepChecker attribute product case; attribute .* conj
DepCheckerGA NOUN conj*; NOUN (nmod|poss)
example sentence previous buyers feel highly positive about product 1’s laptop style, adjustable

strap, and 17.3-inch grey color.

Table 2: Comparing similar rules from DepChecker (manually created) and DepCheckerGA (automatically learned
via genetic optimization). Rules are expressed as regular expressions over dependency paths. Italics indicates a
specific lemma must be at that position. Capital letters indicate a part-of-speech class. Heads are to the left. We
use universal dependencies and standard regular expression notation: * means zero or more instances of the token,
’.’ means any token. Bolded words indicate matched attributes; underlined words indicate matched heads. Note
that attribute stands for any word, and product is a specialized lemma.

generic ‘table-row’ and ‘table-column’ tokens of
the TabFact tables, and verify if a claim is true,
given an input table. DepChecker cannot yet han-
dle some of TabFact’s aggregations, so we check
the statement veracity for each table row indepen-
dently. If a claim is false for any one row of the
input table, we label it False, otherwise it is labeled
True. This simple technique achieves 60% accu-
racy on the TabFact test set (current state-of-the-art
model accuracy is 85%), suggesting the potential of
using dependency parse structure in more general
or complex fact checking scenarios.

4 Limitations

The major limitation of our work is that De-
pChecker in its basic form requires manual ef-
fort to construct rules for fact checking. While
we showed that this rule construction can be auto-
mated, it comes with a trade-off in the compactness
of the automatically generated rules and the overall
latency. However, as shown in Sections 3.1 and 3.2,
large, neural language models developed for fact
checking with structured general purpose data (e.g.,
TabFact derived from Wikipedia tables) are unable
to perform fact checking well on statements based
on our e-commerce structured catalog data. The
time required to assemble such a large volume of
labeled data in specific domains (e.g., health or
e-commerce) to train large neural models would
certainly cost more than one or two weeks of a
linguist’s time, and may still not be fast or accurate
enough to be deployed for production purposes.

Hence, it isn’t clear how much effort would be re-
quired to build a neural system comparable in speed
and accuracy to DepChecker, or that the benchmark
systems scale or generalize better than DepChecker
for a real-world deployment scenario. Like existing
data-to-text fact checking work, DepChecker also
assumes that the underlying structured data used to
verify the statement factuality is accurate.

Finally, we acknowledge that rule-based ap-
proaches are not new, but as we show in this work,
they can still outperform or at least complement
state-of-the-art language models. Their speed, sim-
plicity, accuracy, and explainability make them
valuable tools in production use cases. Since seem-
ingly state-of-the-art results based on large lan-
guage models may not generalize as well as hoped
across different domains and datasets, we would
like to point out that our rule-based approach, De-
pChecker, remains competitive in many scenarios.
Such a system can therefore still be worth investing
in, especially in an age of larger and slower models.

5 Conclusion

We propose DepChecker: a fast, unsupervised, and
explainable model to detect factual inconsistencies
in a conversational shopping and recommendation
setting. We show that DepChecker can outperform
strong baselines, and suggest that instead of pursu-
ing costlier, less explainable, slower models, more
research should go into how to further automate
development of simpler, less expensive and more
interpretable models for production use cases.
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