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Abstract

Conversational Question Answering (CQA)
aims to answer questions contained within dia-
logues, which are not easily interpretable with-
out context. Developing a model to rewrite con-
versational questions into self-contained ones
is an emerging solution in industry settings as
it allows using existing single-turn QA systems
to avoid training a CQA model from scratch.
Previous work trains rewriting models using
human rewrites as supervision. However, such
objectives are disconnected with QA models
and therefore more human-like rewrites do not
guarantee better QA performance.

In this paper we propose using QA feedback to
supervise the rewriting model with reinforce-
ment learning. Experiments show that our
approach can effectively improve QA perfor-
mance over baselines for both extractive and
retrieval QA. Furthermore, human evaluation
shows that our method can generate more ac-
curate and detailed rewrites when compared to
human annotations.

1 Introduction

Interacting through conversations is a natural
information-seeking procedure for humans, there-
fore it is important for AI assistants like Apple
Siri and Amazon Alexa to enable and improve
such experiences. In recent years Conversational
Question Answering (CQA) has gained more at-
tention, where a user can ask a series of related
questions and ideally obtain answers that leverage
the conversational context. Different from widely-
studied question answering (QA) tasks that happen
in single-turn (Rajpurkar et al., 2016, 2018; Tay
et al., 2018; Tang et al., 2019), the interpretation
of conversational questions in CQA depends on
questions and answers from previous turns.

Previous approaches to CQA usually train new
models from scratch, which can achieve promising
results but also are expensive in terms of obtaining
domain-specific training data. In industry settings,

q1: When was Joe Walsh born?

a1: November 20, 1947

q2: How did he get involved
 in music in his early life? a2: He was inspired by the

 success of the Beatles

q3: Did he perform in NYC ?

Conversation History

q3’: Did Joe Walsh perform 
music in NYC ?

rewrite
Current Conversational Question 

Figure 1: A conversational question rewriting example.

there are many single-turn QA models deployed.
Training new CQA models with additional annota-
tions to replace each existing single-turn QA model
is expensive, and generally not feasible. Moreover,
discarding existing single-turn models and datasets
is impractical, and studying how to reuse these
existing resources to tackle CQA merits attention.

Existing approaches to this task, called Conver-
sational Question Rewriting (CQR), often train
sequence-to-sequence models supervised by hu-
man rewrites to generate self-contained ques-
tions (Ren et al., 2018; Vakulenko et al., 2021).
Such methods have several limitations. First, the
CQR training objective is disconnected from CQA
performance. The annotation process of existing
rewriting datasets has no knowledge of the QA sys-
tems, and more human-like rewrites do not guaran-
tee better CQA performance. Second, the rewriting
model does not take into account the feedback from
downstream QA systems. In industry settings, mul-
tiple single-turn QA systems trained with different
datasets serve in the backend. It is impractical to
replace them with new CQA models, and we argue
that their output can still be used as signals to help
train rewriting models.

To overcome these limitations, we propose an
effective CQR approach upon the recent success of
Reinforcement Learning (RL) techniques for text
generation (Rennie et al., 2017). RL enables flexi-
ble ways to incorporate training objectives in the
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form of reward functions. We systematically an-
alyze different rewards and their effectiveness in
terms of final QA performance, as well as the qual-
ity of the question rewrites (i.e. the question still
has to be understandable and interpretable by hu-
mans). To optimize QA performance, we propose
various QA rewards to measure the likelihood of a
question yielding a better answer. In comparison
with the QA rewards, we also propose to use the
same RL approach with question rewriting (QR)
rewards reflecting the similarity between a model-
generated question and the human’s ground-truth.

We summarize our contributions as follows:

• To the best of our knowledge, we are the first
to study how to incorporate QA signals to
improve CQR using RL.

• We systematically propose and compare using
different training signals as rewards.

• We conduct experiments on two CQA tasks to
show our approach is effective.

• A user study shows that our method can gener-
ate more accurate and detailed rewrites when
compared to human annotations.

2 Related Work

Conversational Question Answering. Recently,
conversational QA has been studied which presents
new challenges for QA models such as being able
to resolve conversational dependencies so that a
conversational question can be interpreted by QA
models with conversational context. QuAC (Elgo-
hary et al., 2019) and CoQA (Reddy et al., 2019)
are two datasets for extractive CQA where answers
are extracted from passages. CAsT-19 (Dalton
et al., 2020) is a benchmark for retrieval CQA and
the target is to return relevant passages given a
question. QReCC (Anantha et al., 2021) combines
retrieval and extractive CQA where the answers
are extracted from passages returned by a retrieval
component. Kim et al. (2021) propose to train the
CQA model and rewriter simultaneously, which is
impractical for industry setting. A directly related
work to ours is Vakulenko et al. (2021) which pro-
poses to rewrite questions for CQA. However, they
do not consider taking the QA feedback into the
CQR training which is studied in our work.
RL for Nature Language Generation. Reinforce-
ment learning methods have been widely applied
for various language generation tasks. Li et al.
(2016) propose to apply deep reinforcement learn-
ing in dialogue generation to model future rewards

related to conversational properties, such as in-
formativeness, coherence and ease of answering.
Ranzato et al. (2016) propose Mixed Incremental
Cross-Entropy Reinforce (MIXER) for sequence
prediction to directly optimize the metrics used at
test time, such as BLEU or ROUGE. They show
MIXER outperforms several strong baselines for
greedy generation on text summarization, image
caption and machine translation. Nogueira and
Cho (2017) train a query rewriter based on the re-
wards relying on the ground-truth ranking list for
information retrieval. Buck et al. (2018) use RL
for single-turn question rewriting by maximizing
the answers’ quality which requires ground-truth.
Similar to our F1 reward, Wu et al. (2021) design
rewards from ground-truth answers to train a con-
versational query rewriter. Instead, we propose
alternative rewards indicating the confidence of an-
swers from a model itself which do not require
human annotations.

3 Problem Definition

In CQA, each conversation contains a sequence of
(question, answer) pairs D = {q1, a1, ..., qn, an},
where ai is the answer for question qi. A con-
versational question qi can be ambiguous and its
interpretation depends on the conversational con-
text ci = {q1, a1, ..., qi−1, ai−1}. The goal of CQR
for QA is to learn a model Rθ, parameterized by
θ, that can translate qi associated with ci into q′i, so
that the semantic meaning of q′i is equivalent to qi.

q′i = Rθ(qi, ci) (1)

A pretrained single-turn QA model is expected
to answer q′i better than qi. Note that the QA model
can be trained from a single-turn dataset different
from D and is fixed when training the rewriter. The
motivation is to explore whether the already de-
ployed single-turn QA models can be exploited to
train a rewriter and reused without further training
by accepting the rewritten questions.

4 Approach

4.1 Model Overview
We show our CQR approach with a modularized
design in Figure 2. There are two major compo-
nents: a CQR model Rθ as introduced in Section
3 and a reward function F that evaluates rewrite
q′i generated by Rθ by producing a reward score.
Then the CQR training can be formulated as a re-
inforcement training problem, where the objective
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Figure 2: Overview of our CQR approach. hi is human
rewriting of qi and ai is the ground-truth answer of qi.

is to maximize an expected reward or equivalently
minimize the following loss function:

Lrl(θ) = −Eq′i∼Rθ(qi,ci), qi∼T (F(q′i)) , (2)

where qi comes from data distribution T . During
training, we push Rθ to generate q′i that achieves
a higher reward by minimizing Equation 2. Here-
inafter, we omit θ from Rθ for simplicity.

We define two types of rewards: QR rewards
evaluate how similar a question rewrite is to the
ground truth one produced by human annotators;
QA rewards evaluate how well a QA model can
answer a question rewrite. We summarize the char-
acteristics of different rewards in Table 1. By max-
imizing one of the QR or QA rewards, we can
explicitly optimize the model to achieve the QR
or QA target. Next, we describe the two types of
rewards.

Reward ROUGE F1 Confidence BM25

Reward Type QR QA QA QA
CQA Type - Extractive Extractive Retrieval

Need Annotated Rewrites Y N N N
Need Annotated Answers N Y N N

Table 1: Characteristics of different rewards.

4.2 QR Rewards

The rationale of maximizing QR rewards is similar
to the aims of prior work: a good question rewrite
should be similar to a human rewrite. We use the
ROUGE-L score (Lin, 2004) between the question
rewrite q′i and the ground-truth hi as the QR reward:

F(q′i, hi) = ROUGEL(q
′
i, hi) (3)

This reward has been widely used by RL methods
for language generation tasks. Note that Eq. 3 does
not depend on the QA model and prior work can
be considered as maximizing QR rewards.

4.3 QA Rewards

We define QA rewards that reflect how well the
question rewrites can help a QA model obtain bet-
ter answers. Since QA rewards are task/model-
dependent, we introduce QA rewards for the fol-
lowing two sub-types.

4.3.1 Extractive CQA
Extractive CQA is a machine reading comprehen-
sion (MRC) task and an extractive QA model M
extracts the most likely span answer given a ques-
tion q and an evidence document p:

as = argmax
as

PM(as|q, p) (4)

We assume that M is trained on regular single-
turn QA data, and expects the input question q
to be self-contained. Therefore, CQA questions
should be rewritten by R before being sent to M.
Next, we introduce supervised and unsupervised
QA rewards.
Supervised QA rewards. A straightforward way
to measure the quality of a question rewrite q′i in
terms of QA is to calculate the similarity between
the predicted answer by M with q′i as input and
the ground-truth answer ai. We denote a′s as the
extracted answer span by M using the rewritten
question q′i as input. We measure the overlap be-
tween a′s and ai by F1 score:

F(q′i, ai) = F1(argmax
a′s

PM(a′s|q′i, p), ai) (5)

Intuitively, the rewrite q′i is better if a′s is closer
to the ground-truth answer. Compared with Equa-
tion 3, Equation 5 depends on the ground-truth
answers instead of human rewrites.
Unsupervised QA rewards. For a predicted span
a′s, M assigns a probability rc = PM(a′s|q′i, p)
that reflects the model’s confidence about the an-
swer. We assume that a higher confidence score of
an answer indicates that the QA model has a bet-
ter question understanding. Therefore, we directly
use the probability of the most likely answer as the
confidence reward for a question rewrite:

F(q′i) = maxPM(a′s|q′i, p) (6)

F1 rewards can be considered as judgment scores
on predicted answers by humans since the ground-
truth answers are used, while confidence rewards
represent the model’s self-judgments.
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4.3.2 Retrieval CQA
We also evaluate our method’s generalization on
a different retrieval CQA task, where the goal is
to return a list of documents in descending order
of relevance scores produced by a retrieval CQA
model:

rel = M(q, p) (7)

where p is a document. A retrieval CQA model
usually consists of two stages. In the first stage,
a lightweight ranking algorithm such as BM25 is
used to retrieve top-k candidate documents. In the
second stage, a more complex model such as BERT
(Devlin et al., 2019) is used to rerank candidate
documents. Here, we use the BM25 score between
a question and a document, which is a type of QA
reward that does not use annotated answers:

F(q′i) = BM25(q′i, p) (8)

We expect the rewrite q′i can retrieve documents
with higher BM25 scores in the first stage than qi
so that the performance in the re-ranking stage can
also be improved.

4.4 Training

There are two steps in our training framework.
The first step, the pre-training step, which has the
same supervised target as prior work. The objec-
tive is to minimize the cross-entropy loss between
the model’s prediction q′ and human ground-truth
rewrites h:

Lsup = −yh log yq′ , (9)

where yh is the one-hot vector of h and yq′ is
the distribution over tokens in q′ predicted by the
model. Supervised pre-training ensures the model
has the basic ability to rewrite the original question
given the conversational context.

The second step continues training R with RL to
maximize different rewards. In this work, we use
Self-Critical Sequence Training (SCST) (Rennie
et al., 2017). Given a question q, we generate two
question rewrites qs and q′. qs is generated by
sampling the word distribution from R at each step,
and q′ is generated by R using greedy decoding.
Then we minimize the following loss function:

Lrl = (r′ − rs)

N∑
t=1

logPR(w
s
t |ws

1:t−1, q, c) (10)

Here, PR(·), which is defined by R, is the prob-
ability of generating the t-th word conditioning
on previously generated tokens of qs, the original
question q and conversational history c. Intuitively,
minimizing Lrl increases the likelihood of qs if it
obtains a higher reward than q′ (i.e. rs > r′), and
thus maximizes the expected total reward. Given a
reward function, we can obtain r′ = F(q′) (F can
be one of Equation 3,5,6,8) and rs = F(qs).

We only choose one of the reward functions to
obtain the reward for a question. We leave the
combination of different rewards as future work.
Additional training procedure details are described
in Appendix A.

5 Data and Experimental Setup

5.1 Datasets

Similar to Vakulenko et al. (2021), we experiment
with CANARD (Elgohary et al., 2019) for extrac-
tive CQA and CAsT-19 (Dalton et al., 2020) for
retrieval CQA. As CAsT-19 is small compared to
CANARD, prior work (Vakulenko et al., 2021) uses
the same model trained on CANARD to evaluate
the rewriting performance on the test set of CAsT-
19. Similarly, we start with the modelnon CA-
NARD, and continue RL training with the BM25
reward on the training set without using any human
annotations provided by CAsT-19.

5.2 Evaluation Metrics

We use BLEU-1, BLEU-4, ROUGE-1 and
ROUGE-L for automatic evaluation. We also eval-
uate the performance of rewrites on downstream
QA tasks. For CANARD, we use F1 and Exact
Match (EM). For CAsT-19, we report MAP, MRR
and NDCG@3 as in Vakulenko et al. (2021).

5.3 Baselines

We consider the following baselines:
Origin uses the original conversational question as
input of QA.
BARTCQR We fine-tune BART (Lewis et al.,
2020) as a supervised baseline which has the same
training procedure as the pre-training step of our
method.
Co-reference (Vakulenko et al., 2021) is a rule-
based method. We replace anaphoric expressions
in original questions with their antecedents from
the previous conversation turns. A public neural
co-reference model (Lee et al., 2018) is used.
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QR Method QA Metrics QR Metrics

EM F1 B-1 B-4 R-1 R-L

Human 42.41 54.53 - - - -
Original 38.41 48.95 61.06 30.98 69.91 69.71
Co-reference 38.17 48.99 54.95 30.84 74.11 73.40
BARTCQR 41.26 53.60 64.20 39.33 76.70 74.00

RL-QR 41.33 53.74 64.25 39.52 76.70 74.01
RL-F1 41.91 54.27† 62.32† 37.79† 74.93† 72.09†

RL-C 41.91 54.61† 57.47† 34.18† 71.12† 68.21†

Table 2: Overall QR and QA performance (%) on CANARD. Bold indicates the best results except “Human”.
We denote BLEU-n as B-n and ROUGE-n as R-n. † denotes statistically significant difference from BARTCQR

(p < 0.05 with t-test).

QR Method QA Metrics QR Metrics
EM F1 B-1 B-4 R-1 R-L

BARTCQR (50%) 41.37 53.52 63.83 38.88 76.57 73.79
RL-C (50%) 42.09 54.76† 62.13 37.52 75.03 72.10
RL-C (50%+100%) 42.05 54.84† 57.86† 34.44† 71.67† 68.54†

Table 3: QR and QA performance (%) of BARTCQR and RL-C when using 50% of ground-truth rewriting. †
denotes statistically significant difference from BARTCQR (50%) (p < 0.05 with t-test).

Human uses the human rewrites and can be con-
sidered as an upper bound. However, we later show
that the human baseline is the upper bound for QR
target but not QA target.

5.4 Implementation Details

For all the QA models, we simulate the scenario
where they are trained on single-turn QA data and
cannot be updated when interacting with the rewrit-
ing component. The goal is to improve single-turn
QA models for CQA, which means the input for
QA models does not include any previous context.

Single-turn Extractive QA Model. To simulate
a single-turn extractive QA model, we fine-tune
ALBERT-XXLarge-v2 (Lan et al., 2020) on the
CANARD training set.

Single-turn Retrieval QA Model. Same as in
Vakulenko et al. (2021), we use Anserini’s imple-
mentation of BM25 (Robertson et al., 2009) for the
first-stage retrieval to obtain the top 1000 passages.
In the second stage, we use BERT-large for passage
re-ranking. Both components are fine-tuned on the
MS MARCO dataset so that the two-stage pipeline
resembles a single-turn retrieval QA model.

Rewriting Models. Our RL-based methods and
the supervised BART baseline (BARTCQR) use

BART-base model (Lewis et al., 2020).1 We use the
official CANARD validation set for early stopping.
RL-QR denotes the model when QR rewards are
used. RL-F1, RL-C and RL-BM25 denote models
where the F1, confidence and BM25 rewards are
used, respectively.

6 Results

Here, we study the following research questions:
RQ1: Can our proposed QR and QA rewards im-
prove the overall CQA performance? In particular,
how effective are unsupervised rewards?
RQ2: Does achieving the best QR target mean
achieving the best QA target?
RQ3: What is the quality, as judged by humans, of
the reward-guided question rewrites?

6.1 Evaluation on Extractive CQA
We list the results on CANARD in Table 2. EM
and F1 are QA metrics while others are QR metrics.
We observe several trends.

First, RL-based methods achieve the best results
on both QA or QR metrics over other non-human
baselines. Compared with BARTCQR, our pro-
posed RL methods can further improve the per-

1The max sequence length is set to 284, with batch size 24.
An Adam weight decay optimizer with an initial learning rate
of 1e-5 is used to train those models for 10 epochs.
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QR Method QA Metrics QR Metrics

MAP MRR NDCG@3 B-1 B-4 R-1 R-L

Origin 17.85 46.44 27.86 71.63 51.54 82.65 81.24
Human 39.23 87.06 58.19 - - - -

BARTCQR 28.02 61.49 44.04 75.12 55.54 84.82 83.84
Co-reference 26.82 59.74 43.05 71.19 51.79 88.06 87.69
RL-BM25 28.41 63.20 45.54 71.92 52.01 82.92 81.59

Table 4: QR and retrieval performance (%) on CAsT-19.

formance on QA target and QR target. Specifi-
cally, RL-C outperforms BARTCQR by 1.88% and
1.58% in terms of F1 and EM, respectively. RL-
QR achieves marginally better scores on BLEU-1,
BLEU-4 and ROUGE-L than BARTCQR. RL-F1
achieves better F1 and EM scores than RL-QR
and BARTCQR but does not outperform RL-C. We
notice that the F1 reward is less sensitive to ques-
tion rewrites than the confidence reward. A small
change in a question can lead to the same answer
and F1 score. However, the confidence score can
be different. In this aspect, RL-C seems to dif-
ferentiate the fluctuations on rewrites better than
RL-F1. In answer to RQ1, the confidence reward
is the most effective for CQA performance. As an
unsupervised reward which does not require either
human rewrites or gold answers to a question, the
confidence reward is even more effective than the
F1 reward. However, we do not claim or target
state-of-the-art performance in our work. The goal
is to verify whether our RL framework for CQR
with different rewards can further improve the per-
formance of a single-turn QA system for CQA.

Second, using QR rewards (RL-QR) leads to lim-
ited performance improvement under both QA and
QR metrics compared with BARTCQR. Maximiz-
ing the ROUGE rewards (Eq. 3) and minimizing
the cross-entropy loss (Eq. 9) share the similar in-
tuition that a good reformulation from the model
should be similar to human reformulated questions.
The two objectives are very close and therefore
lead to similar results. It is important to note that
the best scores of QR metrics and QA metrics are
not achieved by the same method. Moreover, using
QA rewards even lead to a large decrease in QR
metrics. Therefore, in response to RQ2, achieving
the best QR target does not mean achieving the best
QA target, and vice versa.

Third, RL-C achieves higher F1 scores than
the human baseline. Previous work (e.g. Vaku-

lenko et al., 2021) treats human annotations as an
upper bound. However, we argue that more human-
like rewrites do not guarantee better QA perfor-
mance. The results verify our hypothesis that QA
target does not necessarily align with QR target. In
§6.4, we qualitatively analyze if rewrites generated
by RL-C are better than the ground-truth.

6.2 Training with Fewer Samples
For a real-world CQA system, we can obtain a
large number of user questions with no correspond-
ing ground-truth rewrites or answers. Since the
confidence reward can be obtained easily from the
downstream QA models without requiring human
annotations, we can use RL-C to continue train-
ing the rewriting model. We first train a baseline
using 50% of training data from CANARD (de-
noted as BARTCQR (50%) ). Then we continue RL
training with the confidence reward using either
the same 50% data used in pre-training (denoted as
RL-C (50%)) or all questions in CANARD training
set (denoted as RL-C (50%+100%)). The results
are summarized in Table 3. We can see that RL-
C (50%+100%) benefits from the large amount of
questions during RL training and achieves better F1
and EM scores than RL-C (50%). Interestingly, RL-
C (50%+100%) outperforms the human baseline
in Table 2 by 0.31% in terms of F1. We also ex-
perimented with other ratios of data for supervised
pre-training and continually RL training. In the ex-
periments, we had similar observations that contin-
ual RL training with confidence rewards can further
improve the downstream CQA performance.

6.3 Evaluation on Retrieval CQA
For RL-BM25, we use RL-C trained on CANARD
as the pretrained model, then train it to maximize
the BM25 reward, which can be readily obtained
from the retrieval model. Results on CAsT-19 are
shown in Table 4. As with extractive CQA, RL-
BM25 achieves lower scores on QR metrics than
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RL-C vs. BARTCQR (%) RL-C vs. Human (%)

(1) RL is better 121 (60.5%) 105 (52.5%)
(2) RL is worse 39 (19.5%) 58 (29.0%)
(3) Both are good 28 (14.0%) 33 (18.5%)
(4) Both are bad 12 (6.0%) 4 (2.0%)
Total 200 200

Table 5: Results of user study comparing two groups of rewrites using four preference options.

Example 1

Original What happened after he was fired?
Human What happened after Aynsley Dunbar was fired?

BARTCQR What happened after Aynsley Dunbar was fired?
RL-C What happened after Aynsley Dunbar was fired by Herbie

Herbert in late 1978?

Example 2

Original What position did he play?
Human What position did Red Schoendienst play?

BARTCQR What position did
:::::
Ernie Schoendienst play?

RL-C What position did
::::
Don Schoendienst play in the Majors?

Table 6: Qualitative comparison of question rewrites. More examples are shown in Appendix C.

baselines. However, it improves the NDCG@3 of
BARTCQR by relatively 3.4%, which shows our
framework also generalizes to retrieval CQA. Note
that we do not use any supervised signals in CAsT-
19 training set for RL training.

6.4 Human Evaluation
In addition to CQA performance, generating user-
friendly rewrites is also important for real-world
applications, since the rewrites sometimes will be
displayed to users. To answer RQ3, we perform
a user study to evaluate the quality of model gen-
erated rewrites. Specifically, two groups are com-
pared: (1) The first group contains the rewrites
generated by RL-C and human rewrites; (2) The
second group contains rewrites from RL-C and
BARTCQR, respectively. For each group, we ran-
domly choose 200 questions from CANARD test-
ing set. For each pair, we collect human’s judg-
ments on which rewrite contains more accurate
context and details from conversation history.

The results are shown in Table 5. The study
suggests that RL-C significantly performs better
than Human and BARTCQR (p-value < 0.001, see
details in Appendix B.2). Remarkably, annotators
prefer the rewrites from RL-C than humans in
more than 50% cases. We show two examples
in Table 6. In the first example, both RL-C and
BARTCQR correctly replace the pronoun with
the referred person name. However, the rewrite
generated by RL-C includes more accurate details
which appear in conversation history. In the

second example, both RL-C (same as RL-F1 and
RL-QR) and BARTCQR fail to generate the correct
person’s name. This error might be due to the prior
knowledge of BART. To answer RQ3, we find that
our reward-guided model can generate rewrites pre-
ferred by humans. However, all rewriting models
can suffer from the coreference resolution problem.

7 Conclusion

We proposed a conversational question rewrit-
ing (CQR) approach using reinforcement learning.
Such rewriting approaches are an emerging solu-
tion in real-world settings where QA systems with
many existing answering backends trained on stan-
dalone questions must be adapted to work in con-
versational settings.

After assessing various QA and QR rewards,
we showed that optimizing QR rewards is limited
in improving CQA performance. In contrast, QA
rewards that do not require ground-truth annota-
tions consistently achieve the best CQA perfor-
mance over baselines. For extractive CQA, us-
ing confidence rewards improved F1 by 2% over
BART-based baseline on CANARD; and for re-
trieval CQA, using BM25 rewards improved the
NDCG@3 of the baseline by 3.4% on CAsT-19. A
human evaluation also demonstrated that our ap-
proach can generate higher-quality rewrites with
more accurate and detailed context information.
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Appendix

A Algorithm

There are two steps for training the rewriting
model.

1. The 1st step pre-training (line 1-6) is to
minimize the cross-entropy loss between the
model’s prediction q′ and human ground-truth
rewrite h. This objective is used in most of
prior work (e.g., Vakulenko et al. (2021)).

2. The 2nd step (line 8-16) continues training the
model with a reinforcement learning method
(Self-Critical Sequence Training). In line 10
and 11, we only chose one of the reward func-
tions to obtain the reward for a question. We
leave the combination of different rewards as
future work.

Algorithm 1: CQR training
Input :Initialized rewriter R, human question

rewrites H , conversations Tpre for
pre-training, conversations Trl for RL
training, selected reward function F

Output :Trained rewriter R
/* Step 1: pre-training R */

1 for D ∈ Tpre do
2 for question q, context c ∈ D and h ∈ H do
3 generate q′ = R(q, c) (greedy decoding);
4 minimize loss in Equation 9;
5 end
6 end
7 /* Step 2: self-critical training

*/
8 for D ∈ Trl do
9 for question q, context c ∈ D and h ∈ H do

10 generate qs from R(q, c) by sampling;
11 generate q′ from R(q, c) by greedy

decoding;
12 obtain rs = F(qs);
13 obtain r′ = F(q′);
14 minimize loss in Equation 10;
15 end
16 end

B Human Study Design

For each annotation, an annotator is presented with
the evidence document, conversation history, the
original question and two rewrites. The annotator is
required to select one from four options as listed in
Table 5. The source of rewrite is anonymized. For
each pair of rewrite, we randomly assign them to
two options so that the judgments are not biased by
the position of choices. We collect two judgments

per rewrite pair. If there is a tie, we collect addi-
tional judgments. The final judgments are based on
majority vote.

B.1 Appen Interface
Figure 3 shows the interface for annotators. Fig-
ure 4 contains the instruction which is visible for
each annotator. In the instruction, we show several
annotation examples in Figure 5.

B.2 Significance Tests
Here we describe how we conduct the Wilcoxon
signed-rank test on the annotation results. When
comparing RL-C with Human, for each sample,
if annotators think RL-C is better, RL-C obtains
score 1 and Human obtains score -1. Similarly,
if annotators think Human is better, then Human
obtains score 1 and RL-C obtains score -1. For
other cases (i.e. both are good or both are bad),
each of them obtains score 0. Then we use the
method “scipy.stats.wilcoxon” in scipy library2 to
do the test. About the study annotator agreement
rates, 48% samples have 100% agreement and the
overall agreement rate is around 80%.

C Rewriting Examples

In Table 7, we show examples where the rewrites
generated by RL-C are preferred by human an-
notators over the baseline method and ground
truth. Compared with ground-truth rewrites, RL-C
tends to generate rewrites with more factual de-
tails, which can help the user and also downstream
QA systems to understand the question without
conversation history. To some degree, it explains
why the CQA performance is improved with RL-C,
while the corresponding scores of QR metrics (i.e.,
BLEU-1, BLEU-4, ROUGE-1 and ROUGE-L) are
very low. It also indicates that the human ground-
truth in existing CQR datasets is not perfect and
only evaluating CQR model with QR metrics can
be biased.

The cases where both RL-C and the baseline
generate incorrect rewrites are shown in Table 8.
We can see that both methods make mistakes in
coreference resolution. However, RL-C still has the
tendency to include more conversational context in
the rewrites.

2https://docs.scipy.org
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Original What kind of things did she write about?
Human What kind of things did Le Guin write about?
BARTCQR What kind of things did Le Guin write about?
RL-C What kind of things did Le Guin write about in Sociology?
Original What did he study at the university?
Human What did Chinua Achebe study at the university?
BARTCQR What did Chinua Achebe study at the university?
RL-C What did Chinua Achebe study at the University of Ibadan?
Original What did he do after leaving Arrowverse?
Human What did John Barrowman do after leaving Arrowverse?
BARTCQR What did John Barrowman do after leaving Arrowverse?
RL-C What did John Barrowman do after leaving the Arrowverse television franchise?
Original What kind of topics did the show cover?
Human What kind of topics did the Rush Limbaugh Show cover?
BARTCQR What kind of topics did Rush Limbaugh’s show cover?
RL-C What kind of topics did Rush Limbaugh’s radio show cover in the 1970s?
Original What did he do after he landed?
Human What did Lindbergh do after he landed?
BARTCQR What did Charles Lindbergh do after he landed at Le Bourget Aerodrome?

RL-C
What did Charles Lindbergh do after he landed at Le Bourget Aerodrome
at 10:22 p.m. on Saturday, May 21, 1927?

Table 7: Examples of rewrites where the reformulated questions from RL-C are the best judged by human annotators.

Original Did others agree with him?

Human
Did others agree with Gottfried Wilhelm on the idea that the truth of religion and philosophy
cannot contradict with each other?

BARTCQR Did others agree with
::::::::
Leibniz’s

::::::::::
Theodicy?

RL-C
Did others agree with

:::::::
Leibniz’s ideas that the truths of theology (religion) and philosophy

cannot contradict each other, since reason and faith are both "gifts of God" in the Theodicy?
Original What did he rejoin as?
Human What did Eddie Collins rejoin as?
BARTCQR What did

:::::
Chris

:::::::
Hedges rejoin as?

RL-C What did
:::::
Chris

:::::::
Hedges rejoin as in August?

Original What year did his first film debut?
Human What year did was Paul Verhoeven’s first film debut?
BARTCQR What year did

::::::
Steven

::::::
Seagal’s first film debut?

RL-C What year did
::::::
James

::::::::
Cameron’s first film debut? Flesh and Blood (1985)?

Original Did he go into acting then?
Human Did Coogan go into acting after college?
BARTCQR Did

::::::
Charlie

::::::::
Chaplin go into acting after

:
A

::::::
Day’s

::::::::
Pleasure?

RL-C Did
::::::
Charlie

::::::::
Chaplin go into acting after college?

Original Did they do a second album?
Human Did Gerry Mulligan and Chet Baker’s quartet do a second album?
BARTCQR Did

::::::
Pacific

::::
Jazz do a second album?

RL-C Did
::::::
Pacific

::::
Jazz do a second album after PJ-8?

Table 8: Examples question rewrites where both RL-C and BARTCQR make mistakes.
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Figure 3: Interface on Appen.
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Figure 4: Instruction for annotators.
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Figure 5: An annotation example in the instruction.


