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Abstract

Specialized transformer-based models for en-
coding tabular data have gained interest in
academia.  Although tabular data is om-
nipresent in industry, applications of table trans-
formers are still missing. In this paper, we study
how these models can be applied to an indus-
trial Named Entity Recognition (NER) prob-
lem where the entities are mentioned in tabular-
structured spreadsheets. The highly technical
nature of spreadsheets as well as the lack of
labeled data present major challenges for fine-
tuning transformer-based models. Therefore,
we develop a dedicated table data augmentation
strategy based on available domain-specific
knowledge graphs.

We show that this boosts performance in our
low-resource scenario considerably. Further,
we investigate the benefits of tabular structure
as inductive bias compared to tables as lin-
earized sequences. Our experiments confirm
that a table transformer outperforms other base-
lines and that its tabular inductive bias is vital
for convergence of transformer-based models.

1 Introduction

There has been growing interest in developing spe-
cial model designs intended to capture tabular struc-
ture (Deng et al., 2020; Yin et al., 2020; Herzig
et al.,, 2020; Wang et al., 2021). A recent sur-
vey named these models tabular language models
(TaLLMs) and provided an overview of the differ-
ent architectures and pretraining objectives (Dong
et al., 2022). One of the downstream tasks where
TalLMs are applicable is table interpretation (TT)
with its sub-tasks: entity linking, column type an-
notation and relation extraction (Deng et al., 2020).
Most TaLMs for TI use BERT as the backbone
language model (LM) for encoding the content of
table cells and aggregate their representations on

* Equal Contribution.

different levels (cell, row or column) depending on
the task.

Although tabular data is omnipresent in industry,
TalLMs such as table transformers, have not found
their way into industrial applications yet. One rea-
son being the nature of data stored in industrial
tables which is different and more dynamic than
data in academic datasets where the schema of the
table is consistent and each cell contains a single
entity of one type (Cutrona et al., 2020). As shown
in Figure 1, industrial tables contain multiple sub-
cell entities from different types, hence the TaLMs
which provide cell-level aggregation are not suffi-
cient. In this direction, we formulate the problem
of sub-cell named entity recognition (NER) in ta-
bles using TaLLMs.

Another challenge is that tabular data in industry
is often lacking labels, especially labels reflecting
the high variance across examples. Due to the
very technical and domain-specific nature only ex-
perts can effectively provide such labels, which
is — for most tasks — too expensive. These low-
resource scenarios are challenging for statistical
NLP models and usually prohibit fine-tuning of
large-scale transformer-based models. A popular
strategy to remedy low-resource scenarios is data
augmentation (DA) (Simard et al., 1996), which
allows to increase data diversity without having to
collect new examples. Common DA techniques in
NLP range from using external knowledge such as
WordNet (Zhang et al., 2015), machine-translation
models for back-translation (Yaseen and Langer,
2021) or mixing of examples inspired from com-
puter vision (Yun et al., 2019). An empirical study
by (Longpre et al., 2020) showed that applying
off-the-shelf DA techniques (Sennrich et al., 2016;
Wei and Zou, 2019) for fine-tuning of LM like
BERT or RoBERTa bring little to no improve-
ment and become even less beneficial in cross-
domain settings (Herzig et al., 2020; Zhong et al.,
2020). These studies emphasize the challenge of
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Figure 1: Example table from an industrial plant equipment spreadsheet. Boxes represent NER annotations.

developing domain-specific DA techniques which
would help improve the existing pretrained trans-
former models.

Although, there are no domain-specific DA tech-
niques applicable to a tabular dataset, in many
industrial domains there exist external resources
which can be exploited for creating augmented ta-
bles. In this paper we study a DA technique for
industrial spreadsheet tables leveraging publicly
available resource based on an industrial standard.
Specifically, the contributions of this paper are the
following:

¢ We introduce a table transformer model for
sub-cell NER, TABNER, and provide an in-
dustrial use case as a motivation for this. To
the best of our knowledge, this is the first at-
tempt to solve NER in tables with TaLMs.

* We develop a novel DA technique for semanti-
cally consistent augmentation of tables based
on domain-specific knowledge graphs.

* We empirically show that the inductive bias
of TaLMs is valuable and combined with our
DA technique boosts the performance by 9%
compared to a sequential model.

2 Industry NER Use Case

As motivation for tabular NER in an industrial con-
text, we describe a real-world dataset from which
information about industrial plant equipment, such
as actuators, sensors, vessels, etc. and their physi-
cal quantities should be extracted. This information
is typically collected and maintained by engineers
in spreadsheets. The spreadsheets are roughly orga-
nized in a tabular format, as can be seen from the ex-
ample table in Figure 1. In these spreadsheets, each
row typically represents information about one or
multiple equipment instances. Some columns rep-
resent relevant physical properties of these equip-
ments, while others are non-informative. However,

Dataset ‘ Htok  Otok Kok Heol Ocol
SemTab 2 25 1322 45 1.9
Plant 26 3.7 5853 163 21.6

Table 1: Dataset statistics: academic vs. industry.

the engineers do neither comply to a fixed schema
nor to unified spelling of equipment or properties.
The goal is to automatically extract relevant enti-
ties for creating a structured specifications of the
plant equipment. We phrase this problem as NER
task with the following types of entities. The type
TAG refers to a systematic identifier of an equip-
ment. There are some conventions for generating
equipment tags (e.g. NORSOK, KKS standards),
but most plant operators customize them and some
sheets do not contain identifiers at all. Type EQ is
for surface names of equipment types. The type
QUANT refers to the physical properties/quantities
describing the functional specifications of equip-
ment and the type UoM stands for unit of measure-
ment.

Table Statistics It is not obvious why performing
NER in tables would benefit from sophisticated lan-
guage models. In fact, looking at common tabular
benchmark datasets, such as the ones used in the
SemTab challenge (Cutrona et al., 2020), detecting
entities is usually very straightforward. Since all
tokens in a cell are assumed to represent a single
entity, sub-cell NER is an unnecessary step and we
only need to perform entity/cell linking. Looking
at the example table in Figure 1, however, gives the
impression that these industrial spreadsheets are
very differently structured from common bench-
marks. There can be quite some text and even
multiple sub-cell entities in a single cell. Table 1
supports this impression with statistical evidence.
The average number of tokens per cell, piok, 1S
30% higher in our industrial dataset compared to a
dataset from SemTab. Further, its standard devia-
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Figure 2: Input modifications to vanilla transformer to encode tokens with tabular structure.

tion ook and the Kurtosis Kok, show that there is
more variance due to the much longer tail of the
distribution of number of tokens in the plant tables.
Even more obvious is the difference at the column
level where the tables in the SemTab challenge
contain on average 4 times less columns (ucol)
than the tables describing plant equipment speci-
fication with much lower variance as well. This
suggests that every token in our NER task has a
much broader intra- and inter-cell context.

3 Related Work

There has been some research focused on extract-
ing entities and their quantities from web tables.
Ibrahim et al. (Ibrahim et al., 2016) phrased
this problem as entity linking using a table-biased
Markov random field and distant supervision.

Wu et al. (Wu et al., 2018) employed BiLSTM
models to encode rich-format documents (unstruc-
tured text, headings, tables) that mention electronic
components, quantities and units of measure. They
used hand-crafted labeling functions for collecting
(weakly) labeled entities and relations which can
be used as weak supervision.

A recent work on table classification (Koleva
et al., 2021) compared TaLMs like TaBERT (Yin
et al., 2020) versus non-contextual word embed-
ding methods for generating table vector represen-
tations. TURL (Deng et al., 2020) uses a Trans-
former (Vaswani et al., 2017) with table-specific
attention mechanism which has been pre-trainined
and fine-tuned towards solving the tasks of table in-
terpretation: column type annotation, entity linking
and relation extraction. However, this methods gen-

erates representations on a cell level and therefore
can not be applied for solving our NER problem.

We are not aware of any work that uses TaLMs
for sub-cell table NER in an industrial setting.

Data Augmentation Recently, many different
DA techniques have been proposed with the pur-
pose to solve low-resource issues in NLP by gener-
ating new examples from existing datasets. For a
comprehensive overview on the different DA tech-
niques, we refer the readers to the recent survey by
Feng et al. (Feng et al., 2021).

Several simple and effective DA techniques for
NER are presented by (Dai and Adel, 2020). How-
ever, these techniques are not directly applicable
to the industrial tabular data since they rely on
domain-agnostic linguistic resources like WordNet.
Similarly, methods for sequence labeling, such as
backtranslation (Yaseen and Langer, 2021) can not
be applied to tabular data because the content of
the tables are mostly facts and not full sentences.

4 Method

We now define the table NER problem and outline
how we encode tokens in tables using TaLMs.

We define a table as a tuple 7" = (C, H), where
C = {0171, €125+ -Cijyenn,y Cn,m} is the set of ta-
ble body cells for n rows and m columns. Ev-
ery cell ¢;; = (wciml,wcﬁj,g, .. ,wcmv,t) is
a sequence of tokens of length ¢. The table
header H {hi,ha,...,hy} is the set of
corresponding m column header cells, where
hj = (wh].’l,wh].’g, ... ,whm) is a sequence of
header tokens with length g. We use 7j; ; to re-
fer to the i-th row (H To,p) and 17, ;) =
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{hj,c14,...,cn,j} torefer to the j-th column of 7.
Each labeled cell has an NER-tag sequence:

(Y192, - - - Yjeett|)» Where each y; € Y. We use

IO tags, thus Y is {O} U {I-ENT?}, where

ENT € {TAG, EQ, QUANT, UoM}.

4.1 TABNER Model

Compared to the existing TaLMs such as TaBERT
(Yin et al., 2020), TURL or TAPAS (Herzig et al.,
2020) which generate cell-level representations, we
propose a simple modification to the vanilla trans-
former (Vaswani et al., 2017) which allows us to
use almost any pre-trained transformer' to obtain a
(sub-cell) token-level representations for a table.

Our TABNER model consists of a token encoder
layer ENC and a classification layer. A conceptual
architecture of the table token input encoding is
shown in Figure 2, where token vector represen-
tations for each token in the linearized table are
generated by aggregating the token embeddings,
the segment embeddings, and position embeddings.
The segment indicates if a token is part of the head
or the body (instead of the 1% / 2" sentence se-
mantics) and the position encoding is done on a
cell-level, so it restarts from O for every cell in
body C' and header H:

pos(T) = (pos(hi),...,pos(ci;))
pos(cell) = 0,...,t)

Similarly as in TURL, we use a table attention
mask (visibility matrix) «; ;, but on token-level
instead of cell-level. This mask allows every token
to attend exclusively to tokens which are either
in the same row or in the same column. «; ; is a
symmetric binary matrix defined as:

1 if col(i) = col(j) V row(i) = row(j),
=
I 0 otherwise,

where row (col) are functions that map linearized
token indices back to row (column) indices in the
table.

The output of the token encoder layer is a se-
quence of token representations:
S Wep, it = BENC(T),

whl,la e ,Whm’t, VVCl,l,17 °

which is then fed into a classification layer with a
Softmax activation to assign a score for each token
toaclassy € ).

"huggingface. co token classification models that take a
custom 2D attention_mask

4.2 Data Augmentation

As mentioned above, existing DA techniques for
NER, such as those presented in (Dai and Adel,
2020), are not a good fit for tabular data, since they
produce augmented tables with inconsistent con-
text. For example, the common label-wise token
replacement (LWTR) may replace the QUANT to-
ken nominal in Figure 1 with height or the UoM
bar with Celsius. This clearly introduces inconsis-
tencies in the context, since height pressure has no
physical meaning and neither height nor pressure
are measured in Celsius. A visualization of such
an inconsistent table can be seen in the Appendix
in Figure 5.

To overcome this problem external domain-
specific knowledge is needed. For many indus-
trial domains there exist resources (standardized
vocabularies, data models) that can be incorporated
for DA. We propose a novel DA approach which
leverages existing industrial semantic data models
to augment and to generate tables with consistent
context. In particular, we use the Reference Data
Library (RDL) of POSC Caesar (ISO-15926)2. The
RDL is a rich source of a domain-specific vocab-
ulary and relations in the process industry. For
example, it defines taxonomies that represent spe-
cific types of equipment (EQ), but also physical
quantities (QUANT) that plant equipment typically
possess. Figure 3 shows a small excerpt of the
RDL as knowledge graph. We leverage this data
in the process of augmenting existing tables with
consistent equipment, quantity and unit of measure
(UoM) context as follows.

First, we extract surface names (sfn) of
all entities of type ENT into a respective set
RDLgnT = {sfn-ent,sfn-ent,,...}, where
ENT € {EQ,QUANT,UoM}. Additionally, we
extract a dictionary RDLpgoq RDLgy —
RD Lgyanr that holds a set of applicable quanti-
ties for every equipment and a second dictionary
RDLgsy : RDLoyant — RD Lyeym that stores
all applicable units of measure for a certain quan-
tity. The extracted sets for the example graph are
also shown in Figure 3.

To ease notation we define a function f,,., which
returns the set of entity types contained in the set
of cells passed as arguments, €.g., fner (1] 2]) =
{EQ} means that the second column of table T’
contains entities of type EQ.

2http://data.posccaesar.org/rdl/
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Figure 3: Example graph from POSC Caesar and resulting sets/dictionaries for RDLTab.

Augmentation procedure Given a table T' we
generate an augmented sample 7,4 as follows:

1. Sample k columns that contain no NER
annotations as starting point for augmenta-
tion, Taug < sample(lJ; T}, j1, k), where
fner(T[:,j]) =d.

2. For every row ¢ in T},,,4: An EQ entity surface
name sfn-eq; is sampled uniformly at random
from RD LEgg. The cells in column £ + 1 hold
the sampled names: ¢; 11 < sfn-eq;.

3. Sample a column header h., from all training
table columns that contain at least one EQ
annotation: g1 < heg.

4. For every sampled equipment sfn-eq;: a
QUANT entity surface name sfn-quant;
is sampled uniformly at random from
RDLEsq(eq;). Each sfn-quant; is a new col-
umn header in Hgyg < Hayg U {sfn-quant;}.
Fill the resp. cells ¢; k4441 with a ran-
dom numeric value and optionally a ran-
domly sampled UoM surface name from
RD Loy (quant;).

5. Finally, generate a last column, where for ev-
ery sampled equipment sfi-eq; an artificial
TAG entity surface name sfn-tag; is generated.
This column’s header is then sampled from
all training tables headers that contain at least
one TAG annotation.

Artificial tags are generated by forming an
acronym from the EQ entity name and adding
groups of random alphanumeric strings, optionally
divided by the dash ’-’ character (which is similar
to tagging standards).

5 Experiments

In this section we empirically study the perfor-
mance of TABNER compared against several base-
lines as well as the benefits of our domain-specific
table DA technique.

TAG EQ QUANT UoM
359 427 359

tables  fiper
79 18 295

Table 2: Dataset used for experiments.

5.1 Dataset

We extract 79 tables from a pool of real-world
spreadsheets describing industrial plant equipment.
To get expert labels, we sub-sampled each table
to have a maximum of 5 rows. The labels were
collected on a cell-by-cell basis using the tool
Prodigy?. The statistics of the dataset are shown in
Table 2; the mean number of NER-tags per table
is 18, the other columns show the absolute number
of NER-tags for each entity type. All experiments
are carried out in a 5-fold cross validation where
we use 10% of each fold’s training data as valida-
tion set.

5.2 Baselines

We compare the performance of TABNER to mul-
tiple baselines. First, we design a rule-based NER
(RULENER) based on spaCy’s EntityRuler* us-
ing the same domain-specific vocabularies from
RDL as described in section 4.2 for matching. For
detecting entities of type TAG we employ a heuris-
tic: find the column with most unique body val-
ues which does not contain any known vocabu-
lary terms. Then we mark all alphanumeric to-
kens as TAG. The second baseline is a BILSTM-
CRF model that uses word embeddings (pre-trained
GloVe-6B-100d) as well as character embeddings
(Ma and Hovy, 2016). Here, we simply feed each
table in linearized form as input. Lastly, we fine-
tune a vanilla sequential BERT, again with lin-
earized input tables, without any table structure
encoding to study if the tabular structure inductive
bias is justified.

*https://prodi.gy
4https: //spacy.io/api/entityruler
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DA techniques We refer to the DA method ex-
plained in section 4.2 as RDLTab and compare
its performance against LWTR. For both DA tech-
niques, we experimented with n = 1, 2 number of
augmented tables per original table in each epoch.
In the case of LWTR, we generate n new tables
by randomly replacing m/2 tokens, where m is
the total number of NER labels available for the
table. When applying RDLTab, we generate n new
tables for every table in the training set. The best
performance was achieved with n = 1 sample of
augmented tables. Therefore, the presented results
are with n = 1 for both DA techniques and the
comparison with the performance when n = 2
samples is discussed in the Appendix.

6 Results and Analysis

Convergence First, we analyze the progress of
the training loss to study the convergence of the
different NER models, see Figure 4. The loss of
vanilla BERT is quite flat from the beginning and af-
ter a few epochs gets stuck at a bad local optimum
- hits early stopping based on validation. We ar-
gue that the global attention and position encoding
across the full table are blurring the NER training
signal for BERT and since we could not find a set-
ting to make it converge properly, we excluded it
from further experiments. A more detailed analysis
can be found in the Appendix.

In contrast to BERT, the training loss for TAB-
NER is converging quickly. Using only the training
data, without augmentation, has the least steepest
decline, which is due to observing less labels per
epoch. LWTR shows a very steep decline in the
beginning which, however, flattens out sooner than
RDLTab. Our hypothesis here is that LWTR adds
helpful variance in the labels at the beginning, but
has less variance to add in the long run, since it can
only sample from known training tables. RDLTab
on the other hand produces a more novel table con-
text over time as the RDL has richer external vo-
cabulary.

Table structure vs. sequential inductive bias
We present the final cross-validation F1 scores in
Table 3. It can be seen that TABNER outperforms
the baselines in all DA settings, proving the bene-
fits of being biased towards tabular structure. Sur-
prisingly, BILSTM-CRF does not suffer from the
linearized global table context as much as BERT
does and still shows competitive performance. One
reason might be that the sequential attention in the

0.8

—— BERT
TabNER_MoAug

—— TabNER_RDLTab

0.4+ — TabNER_LWTR

0.6

loss

0.2+

0.0+

T
0 2 5 7 10
epoch

Figure 4: Convergence of the training loss.

Model NoAug | LWTR | RDLTab
RULENER 0.08 - -
BILSTM-CRF 0.53 0.46 0.55
TABNER 0.54 0.52 0.58

Table 3: F1 scores with different DA techniques.

BILSTM is trained from scratch and can therefore
learn to only focus on very narrow context. While
BERT is already pre-trained to take long-range
context into account.

Data Augmentation The RDLTab DA boosts
performance for both TABNER and BILSTM-
CRF. This shows the added value of rich external
vocabulary for industrial low-resource problems.
Interestingly, LWTR harms performance in both
cases. We attribute this to the problem of produc-
ing phrases that are non-meaningful physically and
inconsistent in a tabular context.

7 Conclusion

In this paper, we demonstrate the applicability
of TaLMs to a novel NER problem in industrial
spreadsheets. Our experiments show that the tabu-
lar inductive bias of TalLMs is not only beneficial
for this problem, but may even a necessary condi-
tion when relying on pre-trained transformer-based
models. In addition to that we present a DA tech-
nique leveraging publicly-available industrial stan-
dard information models to produce augmented
tables with physically sound and consistent context.
Compared to an off-the-shelve DA, this technique
shows improved NER performance.

Future work includes understanding how much
tabular context is needed to make training large-
scale model more efficient. Another fruitful area is
active learning for tasks using TaLMs to reduce the
time for collecting expert labels.
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A Appendix

DA example Figure 5 shows how tabular con-
text becomes inconsistent when applying LWTR to
the table in Figure 1. The red tokens have been re-
placed with sampled tokens from the training set. It
can be seen that the QUANT entity height pressure
is now physically meaningless and neither height
nor pressure are measured in Celsius.

Probing table context To demonstrate the sensi-
tivity of TABNER towards table context, we con-
struct two synthetic tables with slightly modified
cell content. The table at the top in Figure 6a has
a column with header power (QUANT) with body
cells having random (inconsistent) UoM entities
8 celsius and 90 I. The bottom table’s column
with header capacity has consistent UoM context.
We are interested in how these two different con-
texts affect the classification of token ’/’, which is
hard to classify without context. In a column like
capacity it likely refers to the UoM entity ’liter’.
However, in most other contexts I’ is not part of
any entity. Looking at the respective logits in Fig-
ure 6b, we can see that TABNER is sensitive to
these context changes. The highest scoring class
for the random context is O, while in the consis-
tent case it is the class UoM. This is a beneficial
property, since it prevents false positives for highly
ambiguous tokens such as ’/’, which only in very
specific contexts are likely to be entities.

Experiment Details For fair comparison, both
TABNER and BERT are based on the pre-trained

Model TAG | EQ | QUANT | UoM
RULENER 0.1 |0.09| 004 | 0.1

BILSTM-CRF | 055 | 039 | 0.54 | 0.67
TABNER 0.60 | 043 | 047 | 0.77

Table 4: Class-wise F1 scores.

"bert-base-uncased’ and we select the best hy-
perparameters from these ranges: learning rate
{5e75,1e75, 5e~*}, batch size {2,4,8}. The
learning follows a linearly decreasing schedule
with a maximum of 20 epochs. For the BILSTM-
CRF we use the NER hyperparmeters from (Ma
and Hovy, 2016).

BERT Analysis In our experiments, we observe
that BERT almost exclusively fits to the O token
labels in the training set and does not pick up on the
other NER signals. Since it is an imbalanced prob-
lem, our hypothesis is that the global attention and
position encoding across the full table blurs tokens
with less frequent NER signals and BERT cannot
properly fit them. More sophisticated weighted
loss functions could be tried to remedy this prob-
lem. In Figure 7 the progress of the validation
set F1 score is shown. Even though the training
loss is still slightly decreasing, the validation NER
performance seems to have already peaked. In all
hyperparameter settings (even with much lower
learning rate 1e~") we could not achieve a test F1
score higher than 0.03.

Class-wise F1 scores As more fine-grained anal-
ysis, we present the class-wise F1 scores for each
model in Table 4. We can see that the TABNER
is better in extracting entities of types TAG, EQ
and UoM, while the BILSTM model is better at
classifying entities of type QUANT.

Data Augmentation Samples We experiment
with n = 1, 2 samples to evaluate if increasing the
training set by more then 100% will bring benefit
to the TabNER model. Figure 7 shows the vali-
dation set F1 score for the TabNER model with
the two DA techniques, LWTR and RDLTab, and
the different n = 1, 2 samples. Consistently, for
both techniques, when n = 2 the model converges
much faster, after only 5 epochs, however the per-
formance of the model is worse compared to when
weuse n = 1.
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Risk Ow.
rating Code

P-47-01 Area 47 - Cent. Valve for  High 20/30 Celsius Pump 5MW
refinement 10/20 bar Pipe

T-41-02/A,, Wrtr Tank (qty: 2) Low Inner: 10/20 - 2AV

T-41-02/B Outer: 5/10 Capacity : 500

Figure 5: LWTR introduces inconsistent tabular context. Red tokens have been replaced in the original in Figure 1.

£
External valve 8 celsius Open 2 ’
Witr pump 90|l Closed 2
. -1
leq | capacity | Other ;
External valve 8 m3 Open 2 °
Witr pump 90l Closed -
C‘) TA‘«G E‘O UoM QU‘ANT
(a) Two synthetic tables with small modifications. Top has (b) Unnormalized logits for token ’I” in top and bottom table
random context, bottom has consistent context. in 6a.

Figure 6: TABNER token logits with synthetic consistent and randomized table context.
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Figure 7: F1 score on validation set during training.
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