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Abstract
In this work, we build a dense retrieval based se-
mantic search engine on scientific articles from
Elsevier. The major challenge is that there is no
labeled data for training and testing. We apply
a state-of-the-art unsupervised dense retrieval
model called Generative Pseudo Labeling that
generates high-quality pseudo training labels.
Furthermore, since the articles are unbalanced
across different domains, we select passages
from multiple domains to form balanced train-
ing data. For the evaluation, we create two test
sets: one manually annotated and one automat-
ically created from the meta-information of our
data. We compare the semantic search engine
with the currently deployed lexical search en-
gine on the two test sets. The results of the
experiment show that the semantic search en-
gine trained with pseudo training labels can
significantly improve search performance.

1 Introduction

Search engines are deeply integrated into Elsevier’s
information services of its scientific literature data.
An example is the one provided by ScienceDi-
rect1, providing researchers with search services
on more than 19M full text articles. These search
engines are currently based on lexical search mod-
els such as BM25. The deployment of such models
is effortlessly simplified by using popular industry-
standard libraries such as Elasticsearch2. However,
lexical search suffers from the lexical gap problem
such as misspellings, synonyms, abbreviations, am-
biguous words, and ignoring of word order (Formal
et al., 2021).

Recently, dense retrieval (DR) models have
proven to be highly effective in solving the lex-
ical gap problem while still remain fast search
speed (Karpukhin et al., 2020; Xiong et al., 2020).
DR models map queries and passages to a com-
mon vector space and retrieve relevant passages

1https://www.sciencedirect.com
2https://www.elastic.co
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Internet of Things in Biomedical Engineering (https://www.sciencedirect.c…
https://www.sciencedirect.com//topics/engineering/learning-technique
Machine learning can be defined as the field of study of algorithms that make machines capable of
decision making and actuation without being explicitly designed to do so.

Advances in Geophysics (https://www.sciencedirect.com//topics/physics-…
https://www.sciencedirect.com//topics/physics-and-astronomy/machine-learning
Machine learning (ML) is deeply rooted in applied statistics, building computational models that use
inference and pattern recognition instead of explicit sets of rules. Machine learning is generally regarded
as a subfield of artificial intelligence (AI), with the notion of AI first being introduced by Turing (1950).
Samuel (1959)

Data Mining (Third Edition) (https://www.sciencedirect.com//topics/comp…
https://www.sciencedirect.com//topics/computer-science/labeled-example
Machine learning investigates how computers can learn (or improve their performance) based on data.
A main research area is for computer programs to automatically learn to recognize complex patterns
and make intelligent decisions based on data. For example, a typical machine learning problem is to
program a computer so

Thinking Machines (https://www.sciencedirect.com//topics/computer-scie…
https://www.sciencedirect.com//topics/computer-science/inductive-reasoning
Machine learning is an inductive reasoning approach in contrast to a traditional deductive reasoning
approach based on a mathematical observation. Learning or training is applied to update the
parameters representing a feature aiming to achieve a zero loss function. The learning process uses
back propagation, in which the error

Machine Learning and Data Mining (https://www.sciencedirect.com//topic…
https://www.sciencedirect.com//topics/computer-science/process-classification
As described in Chapter 1, learning is any modification of the system that improves its performance in
some problem solving task. The result of learning is knowledge which the system can use for solving
new problems. Knowledge can be represented in many different ways: it can be a set

Machine Learning and Data Mining (https://www.sciencedirect.com//topic…
https://www.sciencedirect.com//topics/computer-science/repeated-trial
Intellect separates, locates and compares details by searching mutual contrasts; Wisdom unites and
joins apparent opposites into one uniform harmony.— Sri Aurobindo•Practising, imitating the teacher,
and repeated trial and error is called learning. The process of transformation due to learning is called
knowledge acquisition. Learning by a living system
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https://www.sciencedirect.com//topics/computer-science/linear-separability
So far learning as been regarded as an optimization problem. Now we explore a different corner of
learning, which is perhaps more intuitive, since it is somehow related to the carrot and stick principle.
One can regard learning as a process driven by the combination of rewards and punishment

Quantum Machine Learning (https://www.sciencedirect.com//topics/math…
https://www.sciencedirect.com//topics/mathematics/nonparametric-model
Machine learning is an interdisciplinary field: it draws on traditional artificial intelligence and statistics.
Yet, it is distinct from both of them.

Results

what is machine learning

Figure 1: Interface of our semantic search engine.

by searching for (approximate) nearest neighbors.
DR has been well studied on laboratory data but
still in the early stage for industry-level applica-
tions (Hofstätter et al., 2022; Kim, 2022). DR is
mainly applied in multi-modal search in industry
where traditional lexical search is not possible, like
text-image search (Radford et al., 2021) or music
search (Castellon et al., 2021).

It is of great interest to use state-of-the-art DR
models to build semantic search engines for in-
dustry. Such search engines can enable efficient
access and search to scientific literature of Else-
vier and help researchers in their journey (Elsevier,
2022). Our goal in this work is to develop a seman-
tic search engine that needs no relevance-labeled
data to train the DR model, thus allowing easy
adaptation to new domains and easy deployment in
industry.

There are several challenges to be tackled. First,
training a DR model requires sufficient labeled
data such as MS-MARCO (Nguyen et al., 2016),
whereas there is often no such data for specific
domains or startups. In our case, we have a large
collection of passages from scientific articles but no
relevance label. Furthermore, it is shown that DR
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models trained on one domain do not generalize to
another (Thakur et al., 2021). The passages in our
corpus have a different word distribution compared
to that in MS-MARCO. Besides, the passages are
also unbalanced regarding their domains (see Sec-
tion 4.3). Therefore, using the models trained on
MS-MARCO will not yield high retrieval perfor-
mance. It is interesting to tackle the domain dif-
ference problem. Finally, there is no test set to
evaluate search performance and creating a good-
quality test set is time-consuming and expensive.
All these challenges hinder the application of DR
models in industry setting.

In this work, we trained a DR model using a
state-of-the-art unsupervised dense retrieval model
called GPL (Wang et al., 2021). It uses a pre-
trained query generator to generate queries from
passages. The passage is considered as positive
for the generated queries. Negative passages for
generated queries are retrieved using existing dense
retrieval models trained on MS-MARCO. An exist-
ing cross-encoder model trained on MS-MARCO
produces relevance scores of query-passage pairs
as supervision signals to train the DR model.

Finally, we constructed two test sets by either
manual annotation or automatic extraction of exist-
ing relevance information from the meta field of the
corpus. The experimental results show that our best
model can significantly improve the retrieval per-
formance compared to lexical and semantic search
baselines.

The semantic search engine we have created for
our product is shown in Figure 1. It is currently
deployed and running in a beta test mode.

2 Related Work

2.1 Dense retrieval

The very first work on dense retrieval (DR) was pro-
posed by Karpukhin et al. (2020). DR uses text en-
coders to represent queries and documents as dense
vectors and retrieve documents by similarity scores
between query vectors and document vectors. It
has shown to achieve competitive performance in
first-stage retrieval compared with traditional lexi-
cal retrieval method.

Researchers have been working towards improv-
ing the effectiveness of DR models through neg-
ative sampling (Xiong et al., 2020; Zhan et al.,
2021; Lin et al., 2021), pre-trained language mod-
els (Gao and Callan, 2021), and pseudo relevance
labels (Prakash et al., 2021; Yu et al., 2021), as well

as improving the efficiency of DR models with
sparse representation (Zhan et al., 2022; Thakur
et al., 2022).

2.2 Unsupervised dense retrieval

Unsupervised dense retrieval (UDR) aims to train
dense retrieval models without manually labeled
data. It generates high-quality pseudo labeled data
and designs proper loss functions to train DR mod-
els.

The first step is to generate positive examples,
which is done by extraction or generation. For
example, Izacard et al. (2021) extracted a pair of
relevant texts form the same document using the
inverse cloze task and independent cropping. Wang
et al. (2021) generated queries from documents us-
ing existing encoder-decoder as positive examples.

The second step is to generate negative examples.
Izacard et al. (2021) used contrastive loss to create
negative batches within a batch and across batches.
Wang et al. (2021) used existing weak retrievers to
retrieve top-k documents as negatives.

The third step is to design training loss. Due
to the noisy fact of pseudo examples, traditional
pairwise ranking loss (Burges, 2010) is not a good
choice because the training are easily affected by
noisy labels. Instead, contrastive loss is widely
used (Izacard et al., 2021; Xu et al., 2022). On the
other hand, relevance scores from existing general-
izable cross-encoder have been used as supervision
signal (Wang et al., 2021).

3 Methodology

3.1 GPL Model Training

Since there are no relevance labels for the pas-
sages in our corpus, we apply a recent unsupervised
dense retrieval model GPL (Wang et al., 2021) to
train our dense retrieval model. We generate 3
queries from each passage using a pre-trained query
generator (Nogueira et al., 2019). The passage-
query pairs will be the pseudo positive examples.
For each generated query, we retrieve similar pas-
sages using two existing DR models trained on
the MS-MARCO dataset (Reimers and Gurevych,
2019), and take the first 50 of each model as pseudo
negatives. Finally, we use a student-teacher train-
ing method. The teacher model is a cross-encoder
trained on MS-MARCO which shows good perfor-
mance in zero-shot retrieval tasks (Hofstätter et al.,
2020). The student model is the bi-encoder DR
model to be learned.
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The student-teacher training is used because the
pseudo labels are noisy and can not be directly used
in the traditional pairwise ranking loss (Burges,
2010) or contrastive loss (Wu et al., 2018). Instead,
using a cross-encoder has been demonstrated to
generalize well on different datasets (Hofstätter
et al., 2020) and thus can be used as a teacher
model through knowledge distillation.

For the knowledge distillation we have used
MarginMSE loss (Hofstätter et al., 2020). It is
defined as:

LMarginMSE = − 1

M

M−1∑
i=0

|δ̂i − δi|2 (1)

δ̂i = fbe(qi)
T fbe(p

+
i )− fbe(qi)

T fbe(p
−
i )

δi = fce(qi, p
+
i )− fce(qi, p

−
i ) ,

where fbe is the bi-encoder, which maps the text
of query or passage to a vector, fce is the cross-
encoder, which maps the text of query and passage
to a score, qi is the query, p+i is the positive passage,
and p−i is the negative passage.

By minimizing LMarginMSE , the MarginMSE
loss avoids the hard treatment of the positives
and negatives as in pairwise ranking loss (Burges,
2010) and contrastive loss (Wu et al., 2018). For
example, for (false positive, negative) pairs or
(positive, false negative) pair, we do not expect
the bi-encoder to put them far away in the embed-
ding space or have small similarity scores. The
cross-encoder will assign a small δ value and the
MarginMSE loss will teach the bi-encoder to pro-
duce small δ̂ value as well.

Implementation. We use all-t5-base-v1 as the
query generator because it is designed to gen-
erate key-word queries, which is similar with
the terms or topics people search in our product.
We use msmarco-distilbert-base-v3 and msmarco-
MiniLM-L-6-v3 as the negative retrievers, and
ms-marco-MiniLM-L-6-v2 as the teacher cross-
encoder as suggested in GPL. We use sebastian-
hofstaetter/distilbert-dot-tas_b-b256-msmarco as
the starting checkpoint of the student bi-encoder
because this is the best bi-encoder on MS-MARCO.
The teacher model and the student model contain
22M and 66M parameters, respectively. All the
models aforementioned can be downloaded from
Huggingface3. We set batch size 16. We set maxi-
mum sequence length 512. Note that the passages
are snippet from the articles and have on average

3https://huggingface.co/models

474 English words or 723 WordPiece (Wu et al.,
2016) tokens. Cutting off of the passages loses
information. It is worthy split the passages into
shorter ones and we leave the work for future study.

3.2 Test Set Construction

Corpus The corpus we are working on supports
a web service providing concept definitions and
subject overviews for researchers who want to ex-
pand their knowledge about scholarly and technical
terms.4 For example, for the term “water purifica-
tion”, a web page is created that contains its defi-
nition, several scientific article snippets containing
other definitions of the term, and several relevant
terms as well. The corpus contains about 2M pas-
sages extracted from scientific articles. The arti-
cles are from 20 different domains and not evenly
distributed across domains. Figure 3 shows the
domain distribution.

Manual test set. We aim to develop a semantic
search engine on top of this corpus, so that when
a user searches a term, the semantic search engine
returns passages containing the definition of the
term. Therefore, the ideal queries are questions
about scientific terms, and the ideal relevant pas-
sages are those talks about (part of) the definitions
the terms.

As the data contains scientific terms from 20
domains, we sample one term from each. We only
sample those having Wikipedia pages to increase
the chance that there exists relevant passages for a
query.

We use the widely-used pooling method in in-
formation retrieval (Ferro and Peters, 2019) to se-
lect passages for annotation. We include 3 dif-
ferent retrieval systems in the pool including the
BM25 model (Pérez-Iglesias et al., 2009), the TAS
model (Hofstätter et al., 2021), and the GPL model
trained by us, in order to ensure the passages in the
test set are diverse and not biased towards either
lexical retrieval or semantic retrieval methods. We
randomly sample from the top-10 passages in the
ranking lists.

We had 3 workers annotating the selected query-
passage pairs. Conflicts of annotation were dis-
cussed until an agreement was reached. Finally, 20
queries and 539 query-passage pairs are selected
and annotated.

Auto test set. Although the manual test set has
high quality, it is too small and thus sensitive for

4https://www.sciencedirect.com/topics/index
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evaluation. We use the noisy meta information
in our corpus and construct a larger test set. The
passages in the corpus is organised by terms. Each
term has several passages associated with it that are
considered relevant and containing the definition
of the term. The extraction of the definition and
relevant passages are done by production system
based on lexical methods. Thus the passages can
be roughly taken as relevant to that term. To bal-
ance terms from different domains, we sample 10
terms from each domain and take all the passages
associated with it as relevant. Finally, we have 200
queries and 3,562 relevant labels.

3.3 System Architecture
Figure 2 shows the architecture of the semantic
search engine. The system is divided into two parts,
offline and online. In the offline part, we download
the corpus from Amazon S3 buckets, then on Ama-
zon Sagemaker we preprocess the corpus, train the
the bi-encoder model and convert the passages into
768-dimensional vectors using the trained model.
The HNSW5 algorithm is used to index the pas-
sages.

The online part is divided into two parts. One
of the parts is an API-based service running on
Amazon Sagemaker. The task of this service is to
convert the user query into a vector and find the
passages closest to the query vector using the in-
dex we created in offline mode. The other part is
a UI based interface running on an Amazon EC2
instance. This part processes the user query and dis-
plays the passage associated with the query through
a UI interface.

The EC2 instance and API run on an Intel Xeon-
based processor and the cost of running them is 1
dollar per hour. For training the model, we use the
AWS p3.8x.large EC2 instance type. This instance
is installed with NVIDIA Tesla V100 GPUs. The
cost of training the model was approximately 200
dollars. During inference time, the system is run-
ning on a CPU instance and it is able to process up
to 70 requests/second. The average time needed to
get the search result for a query is 0.03 second.

4 Experimental Setup

4.1 Research Questions
(RQ1) How does the model perform compared with

the current production model and other base-
lines?

5https://github.com/nmslib/hnswlib
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Figure 2: Architecture of the semantic search engine.

(RQ2) Is it necessary to use the whole corpus to train
the model?

(RQ3) Whether balancing passages from different
domains in training batches improves model
performance?

4.2 Baselines
BM25. This baseline is the current search engine
in production. It uses lexical retrieval model BM25
implemented in Elasticsearch.
TAS (Hofstätter et al., 2021). The sebastian-
hofstaetter/distilbert-dot-tas_b-b256-msmarco
model is a zero-shot baseline. It was the best
bi-encoder on MSMARCO when this paper was
submitted. We also use this model as the starting
checkpoint to train the GPL model.
BM25+CE. This is a two-stage baseline imple-
mented by us. It consists of lexical retrieval and
re-ranking. We first use BM25 to produce a ranked
list of passages, then use a cross-encoder ms-marco-
MiniLM-L-6-v2 trained on MSMARCO to rerank
the top-1000 passages. We use this model as the
teacher model when training GPL.

4.3 Dataset
We use two test sets including the Manual and the
Auto. Table 2 shows the statistics. The Manual
has 20 queries and the Auto has 200 queries. Auto
also has more labels for query-passage pairs. Note
there is 0 non-relevant labels for Auto, however
this does not affect the evaluation as all the rest
passages without a relevant label will be counted as
non-relevant. To speed up evaluation, we randomly
sample a subset of passages for the models to re-
trieve from, combined with the passages in each of
the two test sets. This results in two test corpora
consisting of 100,513 and 102,506 passages for the
Manual and the Auto. The test corpora have the
same domain distribution with the full corpus.
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Model Manual test set Auto test set

NDCG@10 MAP@10 MRR@10 R@100 NDCG@10 MAP@10 MRR@10 R@100

BM251 61.86 42.59 77.38 87.05 53.08 24.17 68.81 70.81
TAS 47.78 25.98 74.17 67.64 28.20 9.97 46.81 40.16
GPL 71.29 42.42 85.70 91.71 49.78 22.44 74.21 59.41
GPL_BLC 74.42 44.96 87.62 91.77 50.16 22.47 75.49 59.69

BM25+CE2 84.90 54.96 95.00 90.99 68.33 36.87 86.68 78.56

1 Production model of our product.
2 Upper bound of our model.

Table 1: Retrieval performance (%). The best values for each metric and the upper bound method is in bold.

Manual Auto
Test set
# query 20 200
# passage 539 2614
# relevant 289 3562
# non-relevant 251 0
Test corpus
# passage 100513 102506

Table 2: Statistics of test sets.
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Figure 3: Passage domain distribution. The top 5 do-
mains cover about 58.1% of the passages and the bottom
5 domains only contains about 3.97% of the passages.

5 Results

5.1 Retrieval performance

In this section, we aim to answer RQ 1. We use
a subset of 83K passages from our corpus and
generate 3 queries for each passages and gener-
ate 100 negative passages for each query. Finally,
we sample 4M training examples in the format
of (qi, p+i , p−i , δi). It is suggested that such a
volume is enough to train a GPL model for a
new domain (Wang et al., 2021). We also empiri-
cally demonstrate the impact of training example
size in Section 5.2. We train two GPL models:
GPL is trained on 83K passages randomly sam-

pled. GPL_BLC is trained on 83K passages which
are balanced sampled from the 20 domains. Since
we aim to build a one-stage retrieval model, we
compare our model with a lexical retrieval model
– BM25 and a zero-shot dense retrieval model –
TAS. We also compare with a two-stage method –
BM25+CE.

Table 1 shows the retrieval performance. First,
BM25 performs robustly well on the two test sets,
while zero-shot TAS performs poorly. It indicates
that dense retrieval models do not generalize well
on new domain. This finding is consistent with
the work of Thakur et al. (2021). The difference
of metrics between BM25 and TAS is larger on
Auto, because we have annotated both lexical and
semantic relevant passages in the Manual test set
while most relevant passages in the Auto test set
are obtained by lexical methods only. The dense re-
trieval model TAS is thus down-estimated on Auto.
Second, BM25+CE performs the best. It improves
NDCG@10, MAP@10, and MRR@10 to a large
margin compared to BM25. The cross-encoder
model (ms-marco-MiniLM-L-6-v2) is trained on
MS-MARCO. Thus, the result indicates the good
generalization capability of cross-encoder ranking
models. Third, GPL or GPL_BLC perform better
than BM25 on most the metrics and better than
TAS on all the metrics. For example, an MRR@10
of 87.62 means that GPL_BLC can rank relevant
passages on the first or second position on averaged
queries, an R@100 of 91.77 means that GPL_BLC
can retrieve 91.77% of the relevance passages in
top 100. Note that the performance difference be-
tween GPL and GPL_BLC is big on Manual but
small on Auto. The possible reason is that on Auto
most semantically relevant passages are not labeled
in the test set.
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Figure 4: NDCG@10 of the Unbalanced and Balanced
corpus.

5.2 The impact of training example size

In this section, we aim to answer RQ 2. We use
all the 2M passages in the corpus and generate
32M training examples to train the model. We save
the checkpoint every 160K examples. We eval-
uate model performance on the Manual test set.
Figure 5 shows the NDCG@10 score against the
training example size. We observe that more train-
ing examples do help to improve the performance
of the model. The performance increases fast at
the beginning and achieves an NDCG@10 of 0.74
with about 1M training examples, it then increases
slowly towards an NDCG@10 of 0.80.

To sum up, it is not necessary to train the GPL
model with all passages in our corpus; a volume of
1M training examples should be sufficient for the
model.
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Figure 5: NDCG@10 of GPL model trained with differ-
ent number of examples. The x-axis is from 0.1× 107

to 3.2× 107.

5.3 The impact of domain distribution

In this section, we aim to answer RQ 3. Since
there is meta information about what domain the
passages belong to in our corpus, we compare the
model trained on the random 83K passages (Unbal-
anced) and the model trained on the 83K evenly
distributed in the 20 domains (Balanced). Figure 4
shows the NDCG@10 of corpus 83K and 83K-
balance. We use the Manual set as the test set. We
observe that (1) there is a large improvement on
83K-balanced compared to 83K-unbalanced; (2)
the NDCG@10 increase for most queries, and the
improvement is especially large for those with low
NDCG@10.

5.4 Case study

In this section, we show one query and the top 3
ranked passages selected from the Manual test set
to analyze the retrieval effectiveness. We showcase
three models including BM25, TAS, and GPL. The
case study helps us to know how the retrieved pas-
sages are different for the DR model trained on the
target domain, the zero-shot DR model and the lex-
ical retrieval model. BM25, as expected, retrieves
passages containing exact match of words in the
query. As it is a bag-of-word model, we observe
that the word “water” and “purification” do not
always appear together in the passages. TAS can
retrieve semantically similar passages, but they are
sometimes off the topic. For example, the 1st pas-
sage retrieved by TAS is about “fuel purification”,
it even contains the definition. However, it is not
about “water purification”. TAS_GPL can retrieve
relevant passages which even contain the definition.
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Model BM25 TAS GPL

Query What is Water Purification

1st passage ...Importance of purification.
Physicochemical properties of
our model system. Adsorption
layer of a nonionic surfactant.
Ionic surfactant at the air water
interface...

...The purification process is
shown schematically in Figure
7-38. Fuel purification is a
one-stage extraction procedure
which employs centrifuges to
treat distillates...

...Water purification for human
consumption purposes consists
in the removal of different con-
taminants as chemicals (i.e., pol-
lutants, toxic metals), biological
contaminants...

Relevance 0 0 2

2nd passage ... Such basic issues have to be
addressed ahead of any assess-
ment of water purification tech-
nologies, since such purification
may not even be necessary...

...Purification is practical with
distillate fuel and light crude
oils having a minimum 0.5% wa-
ter in the fuel, with a...

...Fuel purification is a one-
stage extraction procedure
which employs centrifuges to
treat distillates and light crude
oils without adding water...

Relevance 1 0 0
3rd passage ...Preparation of clarified growth

media from an overnight culture
of bacterial cells is the first and
perhaps most important step in
purifying OMVs. Before pro-
ceeding to purification...

...Disinfection, the desired result
of field water treatment, means
the removal or destruction
of harmful microorganisms.
Technically, it refers to chemi-
cal means such as...

The terms “water treatment”
and “water purification” are ex-
tensively used for any unit oper-
ations and processes that involve
methods and processing steps ...

Relevance 0 2 2

Table 3: Case study.

For example, the 1st passage is a good definition
of “water purification”. The case clearly shows
that lexical retrieval and dense retrieval find very
different passages. This is because their ways of
representing texts are completely different. Further-
more, training DR models on the target domain can
improve retrieval performance to a large margin
even though the training labels are noisy.

6 Conclusions & Future Work

In this work, we build a semantic search engine
on scientific articles. To tackle the challenge of no
labeled data for both training and test, we apply a
state-of-the-art unsupervised dense retrieval model
named GPL. As the articles are unbalanced across
different domains, we sample passages from mul-
tiple domains to form balanced training batches.
We also created two test sets for the evaluation:
one manually annotated and one automatically con-
structed from the meta information of our corpus.

We compare the semantic search engine with the
currently deployed lexical search engine on the test
sets. Both the qualitative and quantitative experi-
ment results show that the semantic search engine
can significantly improve the search performance.
This results suggest that GPL is a robust and effec-
tive model for unsupervised dense retrieval.

For the future work, we will train the query gen-
erator and the negative retriever on our data to gen-
erate a better quality of both positive and negative

training example to improve the retrieval perfor-
mance.

7 Limitations

Currently, we see 3 limitations in our work. First,
the query generator is trained on a different domain,
which results in skipping important keywords or
phrases around which the query should be gen-
erated. Second, the negative retrievers are not
adapted to the domain. The results obtained by
these retrievers are negative but not “hard nega-
tive”. This leads to limitations in learning of the
student model. Third, the semantic search engine
we build has not been evaluated on production pop-
ulation. We plan to conduct online evaluation in
the future.
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